Selected Journals

Refereed Journals (selected)

2019

  1. Brahmi, B., Saad, M., Rahman, M.H., and Brahmi, A. (2019). Adaptive Force and Position Control based on Quasi-Time Delay Estimation of Exoskeleton Robot for Rehabilitation (2019). IEEE Transaction on Control Systems and Technology, Springer, pp.1–12 (Early Access), doi: 10.1109/TCST.2019.2931522, URL: https://ieeexplore.ieee.org/document/8795591?denied=
  2. Rahmani, M., and Rahman, M.H. (2019). Adaptive Neural Network Fast Fractional Sliding Mode Control, International Journal of Control, Automation and Systems, Springer, 17:1-10, doi:10.1007/s12555-019-0155-1
  3. Rahmani, M., and Rahman, M.H. (2019). A new adaptive fractional sliding mode control of a MEMS gyroscope, Microsystem Technologies, Springer Verlag, 25(9):3409-3416, doi: 10.1007/s00542-018-4212-8
  4. Brahmi, B., Brahmi, A., Saad, M., Gauthier, G., and Rahman, M. (2019). Robust Adaptive Tracking Control of Uncertain Rehabilitation Exoskeleton Robot. ASME. J. Dyn. Sys., Meas., Control. pp. 1-11, doi: 10.1115/1.4044372
  5. Brahmi, B., Laraki, M.H., Brahmi, A., Saad, M., and Rahman, M.H. (2019) Improvement of sliding mode controller by using a new adaptive reaching law: Theory and Experiment, ISA Transactions, ISSN 0019-0578, (In Press), doi: 10.1016/j.isatra.2019.08.010
  6. Fareh, R., Baziyad, M., Rahman, M.H., Rabie, T., and Bettayeb, M. (2019) Investigating Reduced Path Planning Strategy for Differential Wheeled Mobile Robot. Robotica, pp. 1-21. doi: 10.1017/S0263574719000572
  7. Brahmi, B., Laraki, M.H., Saad, M., Rahman, M.H., Ochoa-Luna, C., Brahmi, A. (2019). Compliant adaptive control of human upper-limb exoskeleton robot with unknown dynamics based on a Modified Function Approximation Technique (MFAT), Robotics and Autonomous Systems, Elsevier V.117 (July 2019): 92-102, doi: https://doi.org/10.1016/j.robot.2019.02.017
  8. Assad-Uz-Zaman, M., Rasedul Islam, M., Miah, S., and Rahman, M. H. (2019). NAO robot for cooperative rehabilitation training. Journal of Rehabilitation and Assistive Technologies Engineering, SAGE Publishing. 4:1-14, doi: 10.1177/2055668319862151.
  9. Joadder, M.A.M., Myszewski, J.J, Rahman, M.H., and Wang I., (2019). A performance based feature selection technique for subject independent MI based BCI, Health Inf Sci Syst, Springer, 7(1): 1-10, doi: 10.1007/s13755-019-0076-2
  10. Wang Y.C., Bohannon R.W., Kapellusch J., Washburn D., Li X, Yen S-C, Rahman M.H. (2019). Between-side differences in hand-grip strength across the age span: Findings from 2011-2014 NHANES and 2011 NIH Toolbox studies. Laterality: Asymmetries of Body, Brain and Cognition, Taylor & Francis Online, 24(6): 697-706. doi: 10.1080/1357650X.2019.1604727
  11. Islam, M.R., Assad-Uz-Zaman, M., and Rahman, M.H. (2019), Design and control of an ergonomic robotic shoulder for wearable exoskeleton robot for rehabilitation, International Journal of Dynamics and Control, Springer Nature, pp. 1-14, doi: 10.1007/s40435-019-00548-3
  12. Rahmani, M., Rahman, M.H., and Nosonovsky, M. (2019). A new hybrid robust control of MEMS gyroscope. Microsystem Technologies, pp. 1-8, doi: 10.1007/s00542-019-04584-z
  13. Rahmani, M. and Rahman, M.H. (2019). An upper-limb exoskeleton robot control using a novel fast fuzzy sliding mode control. Journal of Intelligent & Fuzzy Systems, 6(3), pp. 2581-2592, doi: 10.3233/JIFS-181558
  14. Rahmani, M., Rahman,M.H., and Ghommam, J. (2019). A 7-DoF Upper Limb Exoskeleton Robot Control Using a New Robust Hybrid Controller. International Journal of Control, Automation and Systems, 17(4), pp. 986-994, doi: 10.1007/s12555-018-0410-5
  15. Al-Shuka, H.F.N., Rahman, M.H., Leonhardt, S., Ciobanu, I. Berteanu(2019). Biomechanics, actuation, and multi-level control strategies of power-augmentation lower extremity exoskeletons: an overview, Int. J. Dynamics and Control, Springer Nature, pp. 1-27 doi:10.1007/s40435-019-00517-w
  16. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H., and Brahmi, A. (2019). Novel adaptive iterative observer based on integral backstepping control of a wearable robotic exoskeleton. International Journal of Computer Applications in Technology, Inderscience, 60(2):154-164, doi: 10.1504/IJCAT.2019.100132
  17. Rahmani, and Rahman, M.H(2019). A novel compound fast fractional integral sliding mode control and adaptive PI control of a MEMS gyroscope. Microsystem Technologies, pp. 1-7, doi: 10.1007/s00542-018-4284-5

2018

  1. Rahmani, M., and Rahman, M.H. (2018). Novel robust control of a 7-DOF exoskeleton robot. PloS one, 3(9), pp. 1-18, e0203440. doi: 10.1371/journal.pone.0203440.
  2. Brahmi, B., Saad, M., Lam, J.T.A.T., Ochoa Luna, C., Archambault, P., and Rahman, M.H., (2018). Adaptive Control of a 7-DOF Exoskeleton Robot with Uncertainties on Kinematics and Dynamics. European Journal of Control, 42:77-87, ISSN 0947-3580, doi: https://doi.org/10.1016/j.ejcon.2018.03.002
  3. Brahmi, B., Saad, M., Ochoa-Luna, C., Rahman, M.H., and Brahmi, A., (2018). Adaptive Tracking Control of an Exoskeleton Robot with Uncertain Dynamics Based on Estimated Time Delay Control. IEEE/ASME Transactions on Mechatronics. 2018, vol. 23, no. 2, pp. 575-585. doi: 10.1109/TMECH.2018.2808235
  4. Brahmi, B., Saad, M., Luna, C., Archambault, P., and Rahman, M.H. (2018). Passive and active rehabilitation control of human upper-limb exoskeleton robot with dynamic uncertainties. Robotica, 36(11): 1757-1779, doi:10.1017/S0263574718000723
  5. Brahmi, B., Saad, M., Brahmi, A., Luna, C.O., and M.H. (2018). Compliant control for wearable exoskeleton robot based on human inverse kinematics. International Journal of Advanced Robotic Systems, 15(6):1-18, DOI: doi: 10.1177/1729881418812133
  6. Fareh, R., Bettayeb, M., Rahman, M. (2018). Control of Serial Link Manipulator Using a Fractional Order Controller, International Review of Automatic Control (IREACO), 11(1): 29-35. doi: 10.15866/ireaco.v11i1.13275

2017

  1. Islam, M.R, Spiewak, C., Rahman, M.H., and Fareh, F. (2017). A Brief Review on Robotic Exoskeletons for Upper Extremity Rehabilitation to Find the Gap between Research Porotype and Commercial Type. Advances in Robotic and Automation, 6 (3):1-12, doi: 10.4172/2168-9695.1000177
  2. Brahim, B., Saad, M., Rahman, M.H., and Ochoa-Luna, C. (2017). Cartesian Trajectory Tracking of a 7-DOF Exoskeleton Robot Based on Human Inverse Kinematics., IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(3): 600-611. doi: 10.1109/TSMC.2017.2695003.

2016

  1. Brahim, B., Rahman, M.H., Saad, M., and O-Luna, C. (2016). Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton. World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering [Published as a selected paper from 2016 International Conference on Control, Dynamic Systems, and Robotics (ICCDSR), Amsterdam, Netherlands], 10 (4):1279-1285. doi: 10.5281/zenodo.1125645
  2. Spiewak, C., Islam, M.R., Rahman, M.H., Rahaman, M.A., Smith, R., and Saad, M. (2016). Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering [Published as a selected paper from 2016 International Conference on Control, Dynamic Systems, and Robotics (ICCDSR), Amsterdam, Netherlands], 10 (8), pp. 1372-76., doi: 10.5281/zenodo.1125743

2015

  1. Rahman, M H., Rahman, M. J., Cristobal, O.L., Saad, M., Kenne, J. P., and Archambault, P.S. (2015). Development of a Whole Arm Wearable Robotic Exoskeleton for Rehabilitation and to Assist Upper Limb Movements. Robotica, 33(1):19-39, DOI: http://dx.doi.org/10.1017/S0263574714000034.
  2. Rahman, M.H., Ochoa-Luna, C., Saad, M., and Archambault, P. (2015), EMG Based Control of a Robotic Exoskeleton for Shoulder and Elbow Motion Assist,” Journal of Automation and Control Engineering, 3 (4): 270-276, doi: 10.12720/joace.3.4.270-276.
  3. Cristóbal O-L., Rahman, M. H., Saad, M., Archambault, P. S., and Ferrer, S.B (2015). Admittance-Based Upper Limb Robotic Active and Active-Assistive Movements, International Journal of Advanced Robotic Systems, pp. 12 (114), 1-14., doi: 10.5772/60784

2014

  1. Rahman, M. H., Cristobal, O. L., Rahman, M. J., Saad, M., and Archambault, P. S. (2014). Force-position control of a robotic exoskeleton to provide upper extremity movement assistance. Int. J. Modelling Identification and Control, Inderscience Publisher, 21(4):390-400. DOI: 10.1504/IJMIC.2014.062026.
  2. Cristóbal O-L., Rahman, M.H., Saad, M., Archambault, P.S., and Zhu, W-H. (2014). Virtual Decomposition Control of an Exoskeleton Robot Arm. Robotica. October, 2014, pp. 1-23, DOI: 10.1017/S026357471400246X.

2013

  1. Rahman, M.H., Saad, M., Kenne, J.P., and Archambault, P.S. (2013). Control of an Exoskeleton Robot Arm with Sliding Mode Exponential Reaching Law. International Journal of Control, Automation and Systems, 11(1): 92-104., doi: 10.1007/s12555-011-0135-1.

2012

  1. Rahman, M.H., Ouimet, T.K., Saad, M., Kenne, J.P., and Archambault, P.S. (2012). Development of a 4DoFs Exoskeleton Robot for Passive Arm Movement Assistance. International Journal of Mechatronics and Automation, Inderscience Pub., 2(1):34-50., doi: 10.1504/IJMA.2012.046587.
  2. Rahman, M.H., Ouimet, T.K., Saad, M., Kenne, J.P., and Archambault, P.S. (2012). Development and Control of a Robotic Exoskeleton for Shoulder, Elbow and Forearm Movement Assistance. Applied Bionics and Biomechanics, 9 (3) pp. 275–292., doi: 10.3233/ABB-2012-0061.

2011

  1. Rahman, M.H., Ouimet, T.K., Saad, M., Kenne, J.P., and Archambault, P.S. (2011). Dynamic Modeling and Evaluation of a Robotic Exoskeleton for Upper-Limb Rehabilitation. International Journal of Information Acquisition, 8(1), pp. 83-102., doi: 10.1142/S0219878911002367.
  2. Rahman, M.H., Saad, J. P. Kenne, and P.S. Archambault. (2011). Robot assisted rehabilitation for elbow and forearm movements. International Journal of Biomechatronics and Biomedical Robotics, Inderscience Publishers, 1(4): 206-218., doi: 10.1504/IJBBR.2011.043748.

2008

  1. Kiguchi, K., Rahman, M. H., Sasaki, M., and Teramoto, K. (2008). Development of a 3DOF mobile exoskeleton robot for human upper-limb motion assists. Robotics and Autonomous Systems, 56(8), 678-691., doi: 10.1016/j.robot.2007.11.007.