Research Interests

We specialize in using numerical models to increase understanding of and improve our ability to predict high-impact weather features, particularly hurricanes and severe storms. Our research interests in these areas are fairly broad, with current emphases including tropical-midlatitude flow interactions, tropical storm intensity change over land, thunderstorm environment classification and forecast sensitivity, and mesoscale convective system structural morphology. If you’re interested in anything we’re working on, let’s talk!

Tropical Cyclone-Midlatitude Flow Interactions
The interaction of a tropical cyclone’s diabatically driven outflow with the antecedent midlatitude pattern can reconfigure the downstream flow over one or more synoptic-scale wavelengths. The specific outcome of this interaction is sensitive to the structure of the midlatitude waveguide and the phasing of the cyclone with the midlatitude waveguide. Our group conducts research to identify how the diabatically driven outflow modifies the midlatitude waveguide and to quantify the extent to which the associated large-scale flow reconfiguration can modify the downstream tropical-to-subtropical environment.

Overland Tropical Cyclone Intensity Change
Tropical cyclones are primarily fueled by enthalpy fluxes from an underlying warm ocean. However, some tropical cyclones have reintensified over land, even in non-baroclinic environments (i.e., absent large-scale forcing for ascent from an upstream trough). While it is generally accepted that making the surface more water-like is needed to permit overland reintensification, the precise processes at the land-surface interface and in the upper soil that can lead to a tropical cyclone intensifying over land are not yet agreed upon. Our group conducts research to better quantify these processes using both idealized and real-data numerical simulations.

Storm-Scale Environments and Predictability
Successful predictions of thunderstorms and their hazards are reliant upon accurate depictions of the storm-scale environment. Our group conducts research to objectively classify thunderstorm-supporting environments, document storm-scale forecast sensitivities and their implications for reliably identifying targeted observations for improving forecast skill, and to identify fundamental shortcomings in high-resolution numerical models (such as how they represent sea-surface temperatures) that limit predictive skill.

Mesoscale Convective Systems
Mesoscale convective systems are important contributors to the warm-season precipitation climatology of the central and eastern United States. Our group conducts research to better understand MCS dynamics, particularly rear-inflow jet structure and evolution, and document how uncertainty in convection initiation forecasts influences MCS predictability. We are also interested in how MCS intensity, structure, and propagation are influenced by mesoscale environmental heterogeneity, particularly as MCSs cross shorelines.

For a full publication listing with accessible summaries, please see the Publications page. A simple publication listing is available in Prof. Evans’ Curriculum Vita. Citation information is available in Prof. Evans’ Google Scholar profile.