Publications

Refereed Publications

  1. Gavrilov, A., Kravtsov, S., Buyanova, M., et al., 2023: Forced response and internal variability in ensembles of climate simulations: Identification and analysis using linear dynamical mode decomposition. Climate Dynamics,
  2. Blount, D. V., C. Evans, I. L. Jirak, A. R. Dean, and S. Kravtsov, 2023: An objective methods for clustering observed vertical thermodynamic profiles by their boundary layer structure. Wea. Forecasting38, 1143–1156, https://doi.org/10.1175/WAF-D-22-0195.1
  3. Mukhin, D., S. Kravtsov, A. Seleznev, E. Loskutov, M. Buyanova, and A. Feigin, 2023: Estimating predictability of a dynamical system from multiple samples of its evolution. Chaos33, doi: 10.1063/5.0135506,
  4. Kravtsov, S., and G. M. Reznik, 2023: Quasi-geostrophic monopoles in a sheared zonal flow: Influence of the beta-effect and variable shear, Physics of Fluids, 35, 016606, https://doi.org/10.1063/5.0131328.
  5. Kravtsov, S.A. Gavrilov,M. Buyanova, E. Loskutov, and A. Feigin, 2022: Forced signal and predictability in a prototype climate model: Implications for fingerprinting based detection in the presence of multidecadal natural variability, Chaos32, 123130, https://doi.org/10.1063/5.0106514.
  6. Kravtsov, S., I. Mastilovic, W. K. Dewar, A. McC. Hogg and J. R. Blundell, 2022: A Moist Quasi-Geostrophic Coupled Model: MQ-GCM2.0. Geosci. Model Dev., 15, 7449–7469, https://doi.org/10.5194/gmd-15-7449-2022
  7. Kravtsov, S., P. Roebber, T. M. Hamill, and J. Brown, 2022: Objective methods for thinning the frequency of reforecasts while meeting post-processing and model validation needs. Weather and Forecasting37(5), 727-748, https://doi.org/10.1175/WAF-D-21-0162.1.
  8. Reznik, G., and S. Kravtsov, 2021: Monopoles in a zonal flow with constant shear on a quasi-geostrophic f-plane: Effects of Galilean non-invariance. Physics of Fluids, 33, 116606; https://doi.org/10.1063/5.0069722
  9. Kravtsov, S., and A. A. Tsonis 2021. “Lorenz-63 Model as a Metaphor for Transient Complexity in ClimateEntropy 23, no. 8: 951, https://doi.org/10.3390/e23080951
  10. Tsonis, A.A., Wang, G., Lu, W., Kravtsov, S., Essex, C., and Asten, M.W., 2021: On time scales of intrinsic oscillations in the climate system. Entropy, 23, 459. https:// doi.org/10.3390/e23040459.
  11. Sergey Kravtsov and G. M. Reznik, 2021: Monopoles in a uniform zonal flow on a quasi-geostrophic β-plane: effects of the Galilean non-invariance of the rotating shallow-water equations. J. Fluid Mech., 909, A23, Cambridge University Press, doi:10.1017/jfm.2020.906. A free online-only version of the paper is available here.
  12. Reznik, G.M. and Kravtsov, S., 2020. Singular Vortices on a Beta-Plane: A Brief Review and Recent Results. Physical Oceanography, [e-journal] 27(6), pp. 659–676. doi:10.22449/1573-160X-2020-6-659-676.
  13. Gavrilov, A., S. Kravtsov and D. Mukhin, 2020: Analysis of twentieth century surface air temperature using linear dynamical modes, Chaos, 30, 123110, doi: 10.1063/5.0028246, https://doi.org/10.1063/5.0028246.
  14. Sergey Kravtsov, 2020: Dynamics and predictability of hemispheric-scale multidecadal climate variability in an observationally constrained mechanistic model. J. Climate, 33, 4599–4620, doi:10.1175/JCLI-D-19-0778.1.
  15. Sergey Kravtsov and G. M. Reznik, 2019: Numerical solutions of the singular vortex problem. Physics of Fluids, 31, 066602, https://doi.org/10.1063/1.5099896.
  16. Sergey Kravtsov, Christian Grimm and Shijie Gu, 2018: Global-scale multidecadal variability missing in the state-of-the-art climate models. npj Climate and Atmospheric Science, 1, 34, doi:10.1038/s41612-018-0044-6, https://www.nature.com/articles/s41612-018-0044-6.
  17. Nikola Jajcay, Sergey Kravtsov,George Sugihara, Anastasios A. Tsonis and Milan Palus, 2018: Synchronization and causality across time scales in El Nino/Southern Oscillation, npj Climate and Atmospheric Science, 1, 33, doi:10.1038/s41612-018-0043-7, https://www.nature.com/articles/s41612-018-0043-7.
  18. Kravtsov, S., 2017a: Pronounced differences between observed and CMIP5 simulated multidecadal climate variability in the twentieth century. Geophys. Res. Lett., 44, 5749–5757, doi: 10.1002/2017GL074016.
  19. Kravtsov, S., 2017b: Comment on ‘‘Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations. J. Climate, 30, 9763–9772, doi: 10.1175/JCLI-D-17-0438.1.
  20. Kravtsov, S., and D. Callicutt, 2017: On semi-empirical decomposition of multidecadal climate variability into forced and internally generated components. International J. Climatology37, 4417–4433, doi: 10.1002/joc.5096.
  21. Kravtsov, S., P. Roebber, and V. Brazauskas (2017), A virtual climate library of surface temperature over North America for 1979–2015, Scientific Data, 4, 170,155EP, doi:10.1038/sdata.2017.155.
  22. Kravtsov, S., N. Sugiyama and P. Roebber, 2017: Role of nonlinear dynamics in accelerated warming of Great Lakes. In: Advances in Nonlinear Geosciences. 2017. Springer International Publishing. 279–296. ISBN 978-3-319-58894-0.
  23. Sugiyama, N., S. Kravtsov, and P. Roebber, 2017: Multiple climate regimes in an idealized lake–ice–atmosphere model. Climate Dyn., DOI: 10.1007/s00382-017-3633-x.
  24. Kravtsov, S., N. Tilinina, Y. Zyulyaeva, and S. Gulev, 2016: Empirical modeling and stochastic simulation of sea-level pressure variability. J. Appl. Meteor. Climat.55, 1197­­–1219, doi: http://dx.doi.org/10.1175/JAMC-D-15-0186.1.
  25. Jajcay, N., J. Hlinka, S. Kravtsov, A. A. Tsonis and M. Palus, 2016: Time scales of the European surface air-temperature variability: The role of 7–8-year cycle. Geophys. Res. Letts., 43, 902–909, DOI: 10.1002/2015GL067325.
  26. Kravtsov, S., M. Wyatt, J. Curry, and A. A. Tsonis, 2015: Comment on “Atlantic and Pacific Multidecadal Oscillations and Northern Hemisphere temperatures.Science, 350, 1326, DOI: 10.1126/science.aab3570.
  27. Kravtsov, S., Rudeva, and S. Gulev, 2015: Reconstructing sea-level pressure variability via a feature tracking approach. J. Atmos. Sci., 72, 487-506, DOI: 10.1175/JAS-D-14-0169.1.
  28. Kravtsov, S., N. Sugiyama, and A. A. Tsonis, 2014. Transient behavior in the Lorenz model. Nonlin. Processes Geophys. Discuss., 1, 1905–1917. DOI: 10.5194/npgd-1-1905-2014.
  29. Kravtsov, S., M. G. Wyatt, J. A. Curry, and A. A. Tsonis, 2014: Two contrasting views of multidecadal climate variability in the 20th century. Geophys. Res. Lett., published online, doi:10.1002/2014GL061416.
  30. Hanrahan, J., P. Roebber, and S. Kravtsov, 2014: Attribution of decadal-scale lake-level trends in the Michigan–Huron system. Water, 6 (8), 2278–2299, DOI: 10.3390/w6082278.
  31. Kravtsov, S., and S. Gulev, 2013: Kinematics of eddy–mean-flow interaction in an idealized atmospheric model. J. Atmos. Sci., 70, 2574–2595. DOI: 10.1175/JAS-D-12-0309.1.
  32. Kravtsov, S., 2012: An empirical model of decadal ENSO variability. Climate Dynamics, 39, 2377–2391. DOI: 10.1007/s00382-012-1424-y.
  33. Peters, J., and S. Kravtsov, 2012: Origin of non-Gaussian regimes and predictability in an atmospheric model. J. Atmos. Sci.,69(8), 2587–2599. DOI: 10.1175/JAS-D-11-0316.1.
  34. Peters, J. M., Kravtsov, S. V., Schwartz, N. (2012). Predictability associated with nonlinear regimes in an atmospheric model. J. Atmos.Sci.,69(3), 1137–1154. DOI: 10.1175/JAS-D-11-0168.1.
  35. Wyatt, M., S. Kravtsov, and A. A. Tsonis, 2012: Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability. Climate Dyn., 38, 929–949, DOI: 10.1007/s00382-011-1071-8.
  36. Kravtsov, S., I. Kamenkovich, D. Kondrashov, and M. Ghil, 2011: Empirical stochastic model of sea-surface temperatures and surface winds over the Southern Ocean. Ocean Sciences, 7, 755–770. DOI: 10.5194/os-7-755-2011.
  37. Kravtsov, S., I. Kamenkovich, A. M. Hogg, J. M. Peters, 2011: On the mechanisms of late 20th century sea-surface temperature trends over the Antarctic Circumpolar Current. J. Geophys. Res. Oceans, 116, C11034. DOI: 10.1029/2011JC007473.
  38. Kravtsov, S., and R. Olivas Saunders, 2011; Comment on “Lies, damned lies, and statistics (in Geology).” Eos Trans. of AGU, 92, 65. DOI: 10.1029/2011EO080011.
  39. Culina, J., S. Kravtsov, and A. Monahan, 2011: Stochastic parameterisation schemes for use in realistic climate models. J. Atmos. Sci., 68, 284–299.   DOI: 10.1175/2010JAS3509.1.
  40. Kondrashov, D., S. Kravtsov, and M. Ghil, 2010: Signatures of nonlinear dynamics in an idealized atmospheric model.J. Atmos. Sci., 68, 3–12. DOI: 10.1175/2010JAS3524.1.
  41. Dharshana, K. G. T., S. Kravtsov, and J. D. W. Kahl, 2010: The relationship between synoptic weather disturbances and particulate-matter air pollution over the US. J. Geophys. Res. Atmos., 115, D24219. DOI: 10.1029/2010JD014852.
  42. Jamison, N., and S. Kravtsov, 2010: Decadal variations of North Atlantic sea-surface temperature in observations and CMIP3 simulations. J. Climate, 23, 4619–4636. DOI: 10.1175/2010JCLI3598.1
  43. Hanrahan, J. L., S. Kravtsov, M. Ghil, and P. Roebber, 2010: Connecting past and present climate variability to the water levels of Lakes Michigan and Huron. Geophys. Res. Lett., 37, L01701, DOI:10.1029/2009GL041707.
  44. Strounine, K., S. Kravtsov, D. Kondrashov, and M. Ghil, 2010: Reduced models of atmospheric low-frequency variability: Parameter estimation and comparative performance. Physica D, 239, 145–166, DOI:10.1016/j.physd.2009.10.013.
  45. Hogg, A., W. K. Dewar, P. Berloff, S. Kravtsov, and D. K. Hutchinson, 2009: The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J. Climate, 22, 4066–4082. DOI: 10.1175/2009JCLI2629.1.
  46. Kravtsov, S., M. Ghil, and D. Kondrashov, 2009: Empirical Model Reduction and the Modeling Hierarchy in Climate Dynamics and the Geosciences. Stochastic Physics and Climate Modeling, T. Palmer and P. Williams, Eds., Cambridge University Press, pp. 35-72.
  47. Hanrahan, J. L., S. Kravtsov, and P. J. Roebber, 2009: Quasi-periodic decadal cycles in levels of lakes Michigan and Huron. Great Lakes Res.,35, 30–35. DOI: 10.1016/j.jglr.2008.11.004.
  48. Kravtsov, S., Hoeve, J. E. T., S. B. Feldstein, S. Lee, and S.-W. Sun, 2009: The relationship between statistically linear and nonlinear feedbacks and zonal-mean flow variability in an idealized climate model. J. Atmos. Sci., 66, 353–372. DOI: 10.1175/2008JAS2804.1.
  49. Kravtsov, S., W. K. Dewar, M. Ghil, J. C. McWilliams, and P. Berloff, 2008: A mechanistic model of mid-latitude decadal climate variability. Physica D, 237, 584–599, DOI:10.1016/j.physd.2007.09.025.
  50. Kravtsov, S., and C. Spannagle, 2008: Multi-decadal climate variability in observed and simulated surface temperatures. J. Climate, 21, 1104–1121. DOI: 10.1175/2007JCLI1874.1.
  51. Kravtsov, S., W. K. Dewar, P. Berloff, J. C. McWilliams, and M. Ghil, 2008: North Atlantic climate variability in coupled models and data. Nonlin. Proc. Geophys., 15, 13­–24. DOI: 10.5194/npg-15-13-2008.
  52. Tsonis, A. A., K. Swanson, and S. Kravtsov, 2007: A new dynamical mechanism for major climate shifts. Geophys. Res. Lett., 34, L13705, DOI: 10.1029/2007GL030288.
  53. Kravtsov, S., W. K. Dewar, P. Berloff, J. C. McWilliams, and M. Ghil, 2007: A highly nonlinear coupled mode of decadal variability in a mid-latitude ocean–atmosphere model. Dyn. Atmos. Oceans, 43, 123–150, DOI: 10.1016/j.dynatmoce.2006.08.001.
  54. Berloff, P., S. Kravtsov, W. K. Dewar, and J. C. McWilliams, 2007: Ocean eddy dynamics in a coupled ocean–atmosphere model. J. Phys. Oceanogr., 37, 1103–1121. DOI: 10.1175/JPO3041.1.
  55. Kravtsov, S. P. Berloff, W. K. Dewar, M. Ghil, and J. C. McWilliams, 2006: Dynamical origin of low-frequency variability in a highly nonlinear mid-latitude coupled model. J. Climate, 19, 6391–6408. DOI: 10.1175/JCLI3976.1.
  56. Kondrashov, D., S. Kravtsov, and M. Ghil, 2006: Empirical mode reduction in a model of extratropical low-frequency variability. J. Atmos. Sci., 63,1859-1877. DOI: 10.1175/JAS3719.1.
  57. Kravtsov, S., A. W. Robertson, and M. Ghil, 2006: Multiple regimes and low-frequency oscillations in the Northern Hemisphere’s zonal-mean flow. J. Atmos. Sci., 63, 840-860. DOI: 10.1175/JAS3672.1.
  58. Kondrashov, D., S. Kravtsov, A. W. Robertson, and M. Ghil, 2005: A hierarchy of data-based ENSO models. J. Climate, 18, 4425-4444. DOI: 10.1175/JCLI3567.1.
  59. Kravtsov, S., D. Kondrashov, and M. Ghil, 2005: Multi-level regression modeling of nonlinear processes: Derivation and applications to climatic variability. J. Climate, 18, 4404-4424. DOI: 10.1175/JCLI3544.1.
  60. Kravtsov, S., A. W. Robertson, and M. Ghil, 2005: Bimodal behavior in the zonal mean flow of a baroclinic β-channel model. J. Atmos. Sci., 62,1746­–1769. DOI: 10.1175/JAS3443.1.
  61. Kravtsov, S., and M. Ghil, 2004: Interdecadal variability in a hybrid coupled ocean-atmospheresea-ice model. J. Phys. Oceanogr., 34, 1756-1775. DOI: 10.1175/1520-0485(2004)034<1756:IVIAHC>2.0.CO;2.
  62. Kravtsov, S. V., A. W. Robertson, and M. Ghil, 2003: Low-frequency variability in a baroclinic β-channel model with land-sea contrast. J. Atmos. Sci., 60, 2267-2293, 409TSTS56. DOI: 10.1175/1520-0469(2003)060<2267:LVIABC>2.0.CO;2.
  63. Kravtsov, S. V., and W. K. Dewar, 2003: On the role of thermohaline advection and sea ice in glacial transitions. J. Geophys. Res. Oceans, 108, 3203-3221, 2002JC001439. DOI: 10.1029/2002JC001439.
  64. Kravtsov, S. V., and A. W. Robertson, 2002: Midlatitude ocean-atmosphere interaction in an idealized coupled model. Clim. Dyn., 19, 693-711. DOI: 10.1007/s00382-002-0256-6.
  65. Kravtsov, S. V., and A. W. Robertson, 2001: On midlatitude ocean-atmosphere interaction in a simple coupled model. CLIVAR Exchanges, 19, 7-8.
  66. Kravtsov, S. V., 2000: Sea ice and climate. Part II: Model climate sensitivity to perturbations of the hydrological cycle. J. Climate, 13, 463-487. DOI: 10.1175/1520-0442(2000)013<0463:SIACPI>2.0.CO;2.
  67. Kravtsov, S. V., and W. K. Dewar, 1998: Multiple equilibria and transitions in a coupled ocean-atmosphere box model. J. Phys. Oceanogr., 28, 389-397. DOI: 10.1175/1520-0485(1998)028<0389:MEATIA>2.0.CO;2.
  68. Kravtsov, S. V., 1998: Sea Ice and Climate Sensitivity. PhD Thesis, Department of Oceanography, Florida State University.

Articles Pending Publication and Under Review

  1. Kravtsov, S., A. Westgate, and A. Gavrilov, 2024a: Global-scale multidecadal variability in climate models and observations. Part I: Forced response. Submitted to J. Climate. Main text and Supplementary Information.
  2. Kravtsov, S., A. Westgate, and A. Gavrilov, 2024b: Global-scale multidecadal variability in climate models and observations. Part II: The stadium wave. Submitted to Climate Dynamics. Main text and Supplemental Materials.

Manuscripts in Preparation and Unpublished Manuscripts

  1. Roebber, P., V. Brazauskas, and S. Kravtsov, 2017: The actuarial utility of weather and climate predictions. 2018 Climate Change, Casualty Actuarial Society, unpublished.
  2. Sugiyama, N., S. Kravtsov, and P. Roebber, 2017: Simulating recent warming of the Great Lakes in an idealized lake–ice–atmosphere modelUnpublished manuscript.
  3. Kravtsov, S.,  and A. A. Tsonis, 2008: How much of global warming is due to natural climate variability? Unpublished manuscript.