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Abstract: There are extensive studies on the allocation problems in the field of insurance and finance.
We observe that these studies, although involving different methodologies, share some inherent
commonalities. In this paper, we develop a new framework for these studies with the tool of
arrangement increasing functions. This framework unifies many existing studies and provides
shortcuts to developing new results.
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1. Introduction

Allocation problems widely exist in insurance and finance. The study of allocation problems
usually involves the comparison of different random variables. In the early literature, traditional
stochastic orders, such as likelihood ratio order and hazard rate ratio order (see Section 2 for definitions
and more discussions), were frequently employed to compare risks or stochastic returns of risky assets.
Later on, these traditional stochastic orders were criticized for not capturing dependence structures
among the stochastic components under consideration. To overcome this restriction, Shanthikumar
and Yao (1991) introduced the notion of joint likelihood ratio orders, which incorporates dependence
structure into stochastic comparison. Following this pioneering work, Cai and Wei (2014) and Cai
and Wei (2015) generalized the notion of joint likelihood ratio order and developed the concepts of
stochastic arrangement increasing (SAI) and weakly stochastically arrangement increasing through
right and left tails (RWSAI; LWSAI). They further explored the applications of these concepts in the
study of the allocations of deductibles and policy limits as well as portfolio selection problems. Similar
studies can be also found in Cheung (2007), Hennessy and Lapan (2002), Hua and Cheung (2008),
Kijima and Ohnishi (1996), Li and You (2012), Zhuang et al. (2009), and Pan and Li (2017), among
many others. Recently, Wei (2017) extended these concepts to higher degree cases and studied their
applications in portfolio selections. It is worth noting that, in addition to insurance and finance,
the notions of SAI and RWSAI have been also used in the field of operations research, see for example,
Belzunce et al. (2013).

The aforementioned papers, although studying different types of problems, exhibit inherent
commonalities in nature. Generally, these studies concern how to allocate insurance deductibles/policy
limits/investment weights to different risks/assets. In those cases, the objective functions can be
viewed as a function with two (or more) vector inputs, either deterministic or random, and the study
of allocation problems boils down to investigating the impact of different relative arrangements of
the input vectors on the value of the objective function. This natural brings out the concept of an
arrangement increasing function (see Marshall et al. (2010)).

In this paper, we shall employ the concept of arrangement increasing function to establish useful
properties of SAI random vectors, and these properties will be used to unify and extend existing studies
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on allocation problems. The rest of the paper is organized as follows: Section 2 introduces the concept
of the arrangement increasing function, the majorization order, stochastic orders, as well as some
relevant results. Section 3 establishes the main results of SAI random vectors. Specifically, the behaviors
of two independent SAI random vectors are characterized by arrangement increasing functions and
Schur-convex and -concave functions. Section 4 demonstrates the applications of properties established
in Section 3 in the study of allocation problems. Section 5 concludes the paper and outlines some
future research topics.

2. Preliminaries

Use x = (x1, . . . , xn) to denote a real vector and X = (X1, . . . , Xn) to denote a random vector.
Use Π to denote a permutation matrix. For example, xΠ returns a permutation of the vector x.
The class of permutations that exchange the elements in two positions is of particular interest, denoted
as Πij, for 1 ≤ i, j ≤ n. For example, (x1, . . . , xn)Πij = (x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xn).
Furthermore, define Dn = {x ∈ Rn : x1 ≥ . . . ≥ xn} and In = {x ∈ Rn : x1 ≤ . . . ≤ xn}.

2.1. Majorization Order

We first introduce the concept of a majorization order and some related notions. The definitions
and results in this subsection are all taken from Marshall et al. (2010), to which the reader is referred
for more detail.

Definition 1 (Definition A.1 of Chapter 1 of Marshall et al. (2010)). Let x, y ∈ Rn be two real vectors. x is
said to be majorized by y, denoted as x ≤m y, if{

∑k
i=1 x[i] ≤ ∑k

i=1 y[i], k = 1, . . . , n− 1
∑n

i=1 x[i]=∑n
i=1 y[i]

where x[i] denotes the ith largest element of {x1, . . . , xn}.

Clearly, the majorization order does not concern how elements of a vector are ordered. Specifically,
if x ≤m y, then xΠ1 ≤m yΠ2 for any permutation matrices Π1 and Π2. According to Marshall et al.
(2010), if x ≤m y, there exists z1, . . . , zn such that x ≤m z1 ≤m . . . ≤m zn ≤m y and zi+1 differs from zi
by only two elements for all i = 0, 1, . . . , n (with the convention of z0 = x and zn+1 = y). This means
that y can be reached by x through a sequence of operations that preserve the majorization order and
only modify two elements each time. In this sense, most proofs involving the majorization order in
this paper can be reduced to a bivariate case. In the bivariate case, (x1, x2) ≤m (y1, y2) if and only if
x1 + x2 = y1 + y2 and max{y1, y2} ≥ max{x1, x2}.

Definition 2 (Definition A.1 of Chapter 3 of Marshall et al. (2010)). Let φ be a real-valued function defined
on F ⊂ Rn. φ is said to be Schur-convex (or Schur-concave) if φ(x) ≤ (or ≥)φ(y) for any x, y ∈ F such that
x ≤m y.

Clearly, φ is Schur-concave if and only if −φ is Schur-convex.

The following lemma provides a useful tool to justify the Schur-convexity and Schur-concavity of
a function.

Lemma 1 (Theorem A.3 of Chapter 3 of Marshall et al. (2010)). Let φ be a real-valued function defined on
Dn and continuously differentiable on the interior of Dn. φ is then Schur-convex (or Schur-concave) on Dn if
and only if φ(k)(z) is decreasing (or increasing) in k, for any z ∈ Dn.
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To avoid technical discussions, when justifying Schur-convexity or -concavity using Lemma 1,
we allow φ(k)(z) to represent the one-sided derivative when φ(z) is continuous and both left- and
right-differentiable in each argument.

Definition 3 (Definition C.2 of Chapter 6 of Marshall et al. (2010)). A bivariate function φ is said to be
L-superadditive (or L-subadditive) if it satisfies

φ(α1 + δ1, α2 + δ2) + φ(α1 − δ1, α2 − δ2)

≥ (or ≤) φ(α1 + δ1, α2 − δ2) + φ(α1 − δ1, α2 + δ2)

for any δ1, δ2 ≥ 0.

L-superadditive is also referred to as supermodular in the literature. If φ is twice differentiable,
then φ(x, y) is L-superadditive (or L-subadditive) if and only if ∂2

∂x∂y φ ≥ (or ≤)0. Readers are referred
to Chapter 6 of Marshall et al. (2010) for more discussion about this concept.

2.2. Arrangement Increasing

Definition 4. Let g(x; y) : Rn ×Rn → R be a multivariate function. g is said to be arrangement increasing
(or decreasing) if

(i) g is permutation invariant, i.e., g(xΠ; yΠ) = g(x; y) for any permutation matrix Π and real vectors x
and y 1; and

(ii) g(x; y) ≥ (or ≤)g(x; yΠ12) for any x1 ≤ x2 and y1 ≤ y2.

Remark 1. Clearly, g(x; y) is arrangement decreasing if and only if −g(x; y) is arrangement increasing,
if and only if g(x;−y) is arrangement increasing. Furthermore, if g is arrangement increasing (or decreasing),
then u ◦ g is arrangement increasing (or decreasing) for any univariate increasing function u.

Definition 4 is taken from Proposition F.7 in Chapter 6 of Marshall et al. (2010). The original
definition of arrangement increasing involves some technical concepts and thus is not used
here. Proposition F.7 is an equivalent characterization of the original definition. Note that an
arrangement increasing function is permutation-invariant, meaning that its value depends only on
the relative arrangement (but not the absolute arrangement) of the two input vectors. For example,
g(x1, x2; y1, y2) = x1y1 + x2y2 is an arrangement increasing function, and the inputs of (x1, x2; y1, y2)

and (x2, x1; y2, y1) return the same function value.
In the rest of the paper, it is usually necessary to justify the arrangement increasing properties of

given functions. For this purpose, we cite some useful results from Chapter 6 of Marshall et al. (2010).

Lemma 2. (i) If g has the form g(u; v) = φ(u + v) for u, v ∈ Rn, then g is arrangement increasing if and
only if φ is Schur-convex on Rn.

(ii) If g has the form g(u; v) = ∑n
i=1 φ(ui, vi) for u, v ∈ Rn, then g is arrangement increasing if and only if φ

is L-supperadditive.

Below we establish the arrangement increasing property of several functions, which will be used
frequently in this paper.

Lemma 3. (i) The function fD(x; y) = ∑n
i=1 xi ∧ yi is arrangement increasing.

1 The permutation invariance implies the domain of the function is also permutation invariant, that is for any (x; y) in the
domain, so is (xΠ; yΠ) for any permutation matrix Π. Throughout out this paper, we assume this is true whenever we
consider an arrangement increasing function.
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(ii) The function fL(x; y) = ∑n
i=1(xi − yi)+ is arrangement decreasing.

Proof. (i) Denote η(x, y) = x ∧ y. It is easy to verify that η is L-superadditive. Therefore, fD(x; y) =
∑n

i=1 η(xi, yi) is arrangement increasing from Lemma 2 (ii).
(ii) Consider function ψ(x) = ψ(x) = ∑n

i=1(xi)+. Noting that x+ is convex, it is easy to verify that
ψ(x) is Schur-convex. Following Lemma 2 (i), g(x; y) , ∑n

i=1(xi + yi)+ = ψ(x + y) is arrangement
increasing. Therefore, fL(x, y) = g(x;−y) is arrangement decreasing from Remark 1.

2.3. Stochastic Orders

Stochastic orders are used to compare random variables. Below, we state the definitions of three
commonly used stochastic orders. Their definitions can be found in the standard literature (see Shaked
and Shanthikumar (2007)).

Definition 5. (i) Assume random variables X and Y have survival functions F̄X(x) and F̄Y(x). X is said to

be smaller than Y in hazard rate order, denoted as X ≤hr Y, if F̄Y(x)
F̄X(x) is increasing in x such that F̄X(x) > 0.

(ii) Assume X and Y have probability density functions fX(x) and fY(x). X is said to be smaller than Y in the

likelihood ratio order, denoted as X ≤lr Y, if fY(x)
fX(x) is increasing in x such that fX(x) > 0.

Definition 6. A random variable X is said to be smaller than Y in the sense of the usual stochastic order
(respectively, increasing convex order and increasing concave order), denoted as X ≤st Y (respectively, X ≤icx Y
and X ≤icv Y), if E[u(X)] ≤ E[u(Y)] for any increasing (respectively, increasing convex and increasing
concave) function u(x) such that the expectations exist.

It has been well established (see, for example, Shaked and Shanthikumar (2007)) that X ≤lr Y ⇒
X ≤hr Y ⇒ X ≤st Y, and X ≤st Y implies X ≤icx Y and X ≤icv Y. It is worth mentioning that, in the
literature of finance and economics, the usual stochastic order (≤st) and increasing concave order (≤icv)
are respectively referred to as the first order and second order stochastic dominance. They are both
implied by the likelihood ratio order (≤lr).

3. Properties of SAI Characterized by Arrangement Increasing Functions

Definition 7. A random vector X = (X1, . . . , Xn) is said to be stochastic arrangement increasing (SAI),
if E[h(X)] ≥ E[h(XΠij)] for any i < j and h : Rn → R such that

h(x) ≥ h(xΠij) for any xi ≤ xj. (1)

It is worth pointing out that, in the literature, Condition (1) is sometimes referred to as
arrangement increasing, which has a different meaning from Definition 4. Evidently, Condition
(1) concerns a function with the input of a single vector, while Definition 4 concerns a function with
the input of two vectors. As a matter of fact, the notion defined by Condition (1) can be viewed as a
degenerated case of the notion of arrangement increasing defined in Definition 4. It is not difficult
to verify that a function h : Rn → R satisfies Condition (1) if and only if g(x; y) , h(xΠ(y↑; y)) is
arrangement increasing in the sense of Definition 4, where Π(y↑; y) denotes the permutation matrix
that transfers the ascending version of y, that is y↑, to y itself. Here and henceforth, whenever the term
“arrangement increasing” is used, it refers to Definition 4.

According to Proposition 5.2 of Cai and Wei (2014), assuming X and Y are independent, (X, Y) is
SAI if and only if X ≤lr Y. In this sense, the notion of SAI incorporates a dependence structure in the
comparison of X and Y. We remark that, without the assumption of independence, the SAI notion
does not necessarily imply the likelihood ratio order, and thus the stochastic dominance, between the
marginal distributions. However, it is possible to extend those notions of stochastic dominance in
a similar way. That is, to incorporate dependence while comparing random variables according to
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stochastic dominance. Related discussions can be found in Wei (2017) and You and Li (2016). Some
remarks are also given in Section 5.

The following lemma provides a useful characterization of the notion of SAI. It is taken from Cai
and Wei (2014).

Lemma 4 (Theorem 6.1 of Cai and Wei (2014)). Bivariate random vector (X, Y) is SAI if and only if

E[h1(X, Y)] ≥ E[h2(X, Y)]

for any bivariate functions g1, g2 such that

(i) h1(x, y) ≥ h2(x, y) for any x ≤ y; and
(ii) h1(x, y) + h1(y, x) ≥ h2(x, y) + h2(y, x) for any x ≤ y.

Theorem 1. Let X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) be two independent random vectors. If X, Y are both
SAI, then

E[g(X; Y)] ≥ E[g(XΠ1; YΠ2)] (2)

for any arrangement increasing function g : Rn ×Rn → R, and any permutation matrices Π1 and Π2.

Proof. For any arrangement increasing function g, it is permutation-invariant. Therefore, g(x; y) =
g(XΠ; YΠ) for any permutation matrix Π. Therefore, it suffices to show that E[g(X; Y)] ≥ E[g(X; YΠ2)]

for any permutation matrix Π2.
We start by proving the case of n = 2. Consider any arrangement increasing function

g(x1, x2; y1, y2). For any x1 ≤ x2 and y1 ≤ y2, we have g(x1, x2; y1, y2) ≥ g(x2, x1; y1, y2). Since (X1, X2)

is SAI, then

h(y1, y2) = E[g(X1, X2; y1, y2)] ≥ E[g(X2, X1; y1, y2)] = E[g(X1, X2; y2, y1)] = h(y2, y1)

for any y1 ≤ y2. Since (Y1, Y2) is SAI, then E[h(Y1, Y2)] ≥ E[h(Y2, Y1)], which in turn implies that
E[g(X1, X2; Y1, Y2)] ≥ E[g(X1, X2; Y2, Y1)].

For any n ≥ 3, consider any 1 ≤ i < j ≤ n. According to Proposition 3.4 of Cai and Wei (2014),
(Xi, Xj)|Xij = xij and (Yi, Yj)|Yij = yij are SAI. It follows from the result derived for the case n = 2 that

E[g(x; Y)] = E[E[g(X; Y)|Xij, Yij]] ≥ E[E[g(x; YΠij)|Xij, Yij]] = E[g(x; YΠij)]

for any arrangement increasing function g and any i < j. For a general permutation matrix Π2, it can
be decomposed to the product of a sequence of Πij values. Therefore, the desired conclusion can be
reached by iteration in a finite number of steps.

For independent SAI random vectors X, Y, Theorem 1 implies that E[g(XΠ1; YΠ2)] achieve its
maximum when the components of X and those of Y are similarly ordered. This result provides a
useful shortcut to solve some optimal allocation problems, as seen in Section 4.

Theorem 2. Let X = (X1, X2), Y = (Y1, Y2) be two independent random vectors. If X, Y are both SAI, then

E[g1(X; Y)] ≥ E[g2(X; Y)] (3)

for any g1, g2 : R2 ×R2 → R such that, for any x1 ≤ x2 and y1 ≤ y2,

(i) g1(x; y) ≥ g2(x; y);
(ii) g1(x; y) + g1(xΠ12; y) ≥ g2(x; y) + g2(xΠ12; y);
(iii) g1(x; y) + g1(x; yΠ12) ≥ g2(x; y) + g2(x; yΠ12); and
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(iv)

g1(x; y) + g1(x; yΠ12) + g1(xΠ12; y) + g1(xΠ12; yΠ12)

≥ g2(x; y) + g2(x; yΠ12) + g2(xΠ12; y) + g2(xΠ12; yΠ12).

Proof. Define h1(y1, y2) = E[g1(X1, X2; y1, y2)] and h2(y1, y2) = E[g2(X1, X2; y1, y2)]. Since (X1, X2)

is SAI, Conditions (i) and (ii) imply that h1(y1, y2) ≥ h2(y1, y2) for any y1 ≤ y2 according to Lemma
4. Similarly, Conditions (iii) and (iv) imply that h1(y1, y2) + h1(y2, y1) ≥ h2(y1, y2) + h2(y2, y1) for
any y1 ≤ y2. Applying Lemma 4 on (Y1, Y2), we have E[g1(X, Y)] = E[h1(Y1, Y2)] ≥ E[h2(Y1, Y2)] =

E[g2(X, Y)].

Proposition 1. Consider function G(w; x; d) = u(w1φ(x1, d1) + w2φ(x2, d2)). Define g1(w; x) = G(w; x; d)
and g2(w; x) = G(w; x; dΠ12) with d1 ≤ d2. If u is increasing convex and φ(x, d) is increasing in x, d and
L-superadditive, then g1, g2 satisfies Conditions (i)-(iv) in Theorem 2.

Proof. Noting that g1(w; x) = g2(wΠ12; xΠ12), Condition (iv) holds with equality.
Consider any w1 ≤ w2, x1 ≤ x2, and d1 ≤ d2. Since φ(x, d) is L-superadditive, we have

φ(x1, d1) + φ(x2, d2) ≥ φ(x1, d2) + φ(x2, d1). (4)

Therefore, φ(x2, d2) − φ(x2, d1) ≥ φ(x1, d2) − φ(x1, d1) ≥ 0, so w2(φ(x2, d2) − φ(x2, d1)) ≥
w1(φ(x1, d2) − φ(x1, d1)) for any w1 ≤ w2. This further implies that w1φ(x1, d1) + w2φ(x2, d2)) ≥
w1φ(x1, d2) + w2φ(x2, d1), and thus u(w1φ(x1, d1) + w2φ(x2, d2))) ≥ u(w1φ(x1, d2) + w2φ(x2, d1)) for
any increasing function u, which verifies Condition (i).

Following from Condition (4), we have φ(x1, d1) + φ(x2, d2)− φ(x1, d2)− φ(x2, d1) ≥ 0; thus,

w2(φ(x1, d1) + φ(x2, d2)− φ(x1, d2)− φ(x2, d1))

≥ w1(φ(x1, d1) + φ(x2, d2)− φ(x1, d2)− φ(x2, d1)),

or, equivalently,

w1φ(x1, d1) + w2φ(x2, d2) + w1φ(x2, d1) + w2φ(x1, d2)

≥ w1φ(x1, d2) + w2φ(x2, d1) + w1φ(x2, d2) + w2φ(x1, d1).

Note that

w1φ(x1, d1) + w2φ(x2, d2) ≥ max{w1φ(x1, d2) + w2φ(x2, d1), w1φ(x2, d2) + w2φ(x1, d1)}.

Therefore, for any increasing convex function u, we have

u(w1φ(x1, d1) + w2φ(x2, d2)) + u(w1φ(x2, d1) + w2φ(x1, d2))

≥ u(w1φ(x1, d2) + w2φ(x2, d1)) + u(w1φ(x2, d2) + w2φ(x1, d1)).

This verifies Condition (iii).
Condition (ii) can be verified similarly.

Theorem 3. Let g : R2×R2 → R be an arrangement increasing function and X = (X1, X2) be an SAI random
vector. As a function of a = (a1, a2), E[g(X; a)] is Schur-convex (or Schur-concave) in a ∈ F if

(i) g(x; a) is Schur-convex (or Schur-concave) in a ∈ F for any x1 ≤ x2; and
(ii) g(x; a) + g(xΠ12; a) is Schur-convex (or Schur-concave) in a ∈ F for any x.
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Proof. Let a, b ∈ F such that a ≤m b. Define ha(x) = g(x; a) and hb(x) = g(x; b). It suffices to show
that E[ha(X)] ≤ E[hb(X)]. Since X is SAI, it suffices to verify that ha and hb satisfy the two conditions
of Lemma 4, which are immediately implied by Conditions (i) and (ii).

In Theorem 3, the domain F can be specified as needed. Typical choices include R2, D2, and I2.

Theorem 4. Define g(x, a) = u(∑n
i=1 φ(xi, ai)). For any SAI random vector X, h(a) , E[g(x; a)] is

(i) Schur-concave in a ∈ Dn if u is increasing concave and if φ is L-superadditive and concave in a;
(ii) Schur-convex in a ∈ Dn if u is increasing convex and if φ is L-subadditive and convex in a.

Proof. (i) According to the remarks following Definition 1, it suffices to prove the desired conclusion
for the case n = 2. Consider g(x; a) = u(φ(x1, a1) + φ(x2, a2)). According to Theorem 3, it suffices
to verify

(a) g(x; a) is Schur-concave in a ∈ D2 for any x1 ≤ x2; and
(b) g(x1, x2; a) + g(x2, x1; a) is Schur-concave in a ∈ D2.

Denote φ(2)(x, a) = ∂
∂a φ(x, a). Note that

∂

∂a1
g(x; a) = u′(φ(x1, a1) + φ(x2, a2))φ(2)(x1, a1);

∂

∂a2
g(x; a) = u′(φ(x1, a1) + φ(x2, a2))φ(2)(x2, a2).

Noting that φ is L-superadditive and concave in a, φ(2)(x, a) is increasing in x and decreasing
in a. Then, for any x1 ≤ x2 and a2 ≤ a1, we have φ(2)(x1, a1) ≤ φ(2)(x2, a2), so ∂

∂a1
g(x; a) ≤ ∂

∂a2
g(x; a),

which verifies (a) according to Lemma 1.
From Lemma 2 (ii), φ(x1, a1) + φ(x2, a2) is arrangement increasing. For any x1 ≤ x2 and a2 ≤ a1,

it follows that φ(x1, a1) + φ(x2, a2) ≤ φ(x1, a2) + φ(x2, a1), so u′(φ(x1, a1) + φ(x2, a2)) ≥ u′(φ(x1, a2) +

φ(x2, a1)) since u is concave. Therefore,

∂

∂a1
(g(x1, x2; a1, a2) + g(x2, x1; a1, a2))

= u′(φ(x1, a1) + φ(x2, a2))φ(2)(x1, a1) + u′(φ(x1, a2) + φ(x2, a1))φ(2)(x2, a1)

≤ u′(φ(x1, a1) + φ(x2, a2))φ(2)(x2, a1) + u′(φ(x1, a2) + φ(x2, a1))φ(2)(x1, a1)

≤ u′(φ(x1, a1) + φ(x2, a2))φ(2)(x2, a2) + u′(φ(x1, a2) + φ(x2, a1))φ(2)(x1, a2)

=
∂

∂a2
(g(x1, x2; a1, a2) + g(x2, x1; a1, a2))

where the first inequality follows from φ(2)(x1, a1) ≤ φ(2)(x2, a2) and the second one follows from
φ(2)(x2, a1) ≤ φ(2)(x2, a2) and φ(2)(x1, a1) ≤ φ(2)(x1, a2) . This verifies (b) according to Lemma 1.

(ii) Note that

−h(a) = E
[
−u

(
n

∑
i=1

φ(Xi, ai)

)]
= E

[
u∗
(

n

∑
i=1

φ∗(Xi, ai)

)]

where u∗(z) = −u(−z) is increasing concave, and φ∗(x, a) = −φ(x, a) is L-superadditive and concave
in a. Following the conclusion of (i), −h(a) is Schur-concave in a ∈ Dn, which implies that h(a) is
Schur-convex in a ∈ Dn.

4. Applications in Insurance and Finance

In this section, we shall study two typical allocation problems, namely allocations of policy limits
and deductibles and portfolio selections. We remark that some of the results have been already derived,
but this section shows how those studies can be unified in one framework using the results derived in
Section 3.
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4.1. Allocation of Policy Limits and Deductibles

We first consider the optimal allocation of policy limits and deductibles. For the convenience of
comparison, we follow the notations of Zhuang et al. (2009). Let X = (X1, . . . , Xn) denote n random
losses of a decision-maker and S = (S1, . . . , Sn) denote the random occurrence times of these losses.
Without any insurance arrangement, the total discounted risk of the decision-maker is ∑n

i=1 Xie−δSi ,
where δ denotes the force of interest.

Suppose the decision-maker enters into an insurance agreement (and thus becomes insured),
which grants a total amount of policy limit ` and allows the insured to freely allocate the deductible to
each risk. Assume the insured allocates the total policy limit according to the vector ` = (`1, . . . , `n),
where `i ≥ 0 and ∑n

i=1 li = `. With such an insurance arrangement, the retained risk of the
insured becomes

Tx;S(`) =
n

∑
i=1

(Xi − `i)+e−δSi .

The goal of the insured is to find the optimal allocation so as to minimize the total risk in a certain
stochastic sense. Note that, for a fixed total policy limit, the premium is fixed and thus is not taken into
consideration. Mathematically, the problem is formulated as

min
`∈A(`)

E[u(Tx;S(`))] (5)

where A(`) = {` : ∑n
i=1 `i = `, and `i ≥ 0 for all i = 1, . . . , n}, and u is a utility function.

There is a similar type of insurance contract that grants a total amount of deductible and allows the
insured to arbitrarily allocate deductibles to different risks. Assume the total deductible d is allocated
according to d = (d1, . . . , dn). The total retained risk is then Rx;S(d) = ∑n

i=1(Xi ∧ di) e−δSi , and the goal
is to minimize this risk in the following sense:

min
`∈A(d)

E[u(Rx;S(d))] (6)

where A(d) = {d : ∑n
i=1 di = d, and di ≥ 0 for all i = 1, . . . , n}, and u is a utility function.

Since initially proposed by Cheung (2007), these two problems have been extensively studied
by many authors, see, for example, Li and You (2012), Zhuang et al. (2009), Lu and Meng (2011),
and Manesh et al. (2016), and rich results have been established. Below, we reprove some of those
results from a simplified approach, which illustrates the convenience of using the properties of the
SAI notion derived in Section 3. Furthermore, we shall compare the retained risks under different
allocation vectors subject to majorization order.

Proposition 2 (Corollaries 3.3(b) and 3.6(b) of Zhuang et al. (2009)). Consider the case δ = 0 and assume
X is SAI.

(i) The optimal solutions to Problem (5), `∗ = (`∗1 , . . . , `∗n), should satisfy `∗1 ≤ · · · ≤ `∗n, for any increasing u.
(ii) The optimal solutions to Problem (6), d∗ = (d∗1 , . . . , d∗n), should satisfy d∗1 ≥ · · · ≥ d∗n, for any

increasing u.

Proof. (i) Define g(x; y) = u(∑n
i=1(xi − yi)+). The desired conclusion is restated as

E[g(x; `∗)] ≤ E[g(x; `∗Π)],

for any permutation matrix Π.
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Note that `∗ = (`∗1 , . . . , `∗n) with `∗1 ≤ · · · ≤ `∗n is a degenerated SAI random vector and is
independent of the SAI random vector X. According to Theorem 1, it suffices to verify that g(x; y) is
arrangement decreasing, which is true due to Lemma 3 (ii) and Remark 1.

(ii) Similar to the proof of (i), it suffices to verify that g(x, y) = u(∑n
i=1(xi ∧ yi)) is arrangement

increasing, which follows from Lemma 3 (i) and Remark 1.

Proposition 3. Consider Problems (5) and (6) with δ > 0. Assume X = (X1, . . . , Xn) and W = (e−δS1 , . . . , e−δSn)

are independent and both are SAI.

(i) The optimal solutions to Problem (6), d∗ = (d∗1, . . . , d∗n), should satisfy d∗1 ≥ · · · ≥ d∗n, for any increasing
convex function u.

(ii) The optimal solutions to Problem (5), `∗ = (`∗1 , . . . , `∗n), should satisfy `∗1 ≤ · · · ≤ `∗n, for any increasing
convex function u.

Proof. We focus on the proof of the case n = 2.

(i) It suffices to show that

E[u(W1(X1 ∧ d1) + W2(X2 ∧ d2))] ≥ E[u(W1(X1 ∧ d2) + W2(X2 ∧ d1))] (7)

for any d1 ≤ d2.
Define G(w; x; d) = u(w1φ(x1, d1) + w2φ(x2, d2)) with φ(x, d) = x ∧ d, g1(w; x) = G(w; x; d1, d2)

and g2(w; x) = G(w; x; d2, d1). With these notations, Condition (7) is equivalent to E[g1(W; X)] ≥
E[g2(W; X)] for d1 ≤ d2. It is easy to verify that φ(x, d) = x ∧ d is L-superadditive and increasing in
d. According to Proposition 1, g1 and g2 satisfy Conditions (i)–(iv) of Theorem 2, which immediately
implies that E[g1(W; X)] ≥ E[g2(W; X)].

(ii) It suffices to show that

E[u(W1(X1 − `1)+ + W2(X2 − `2)+)] ≤ E[u(W1(X1 − `2)+ + W2(X2 − `1)+)]

for any `1 ≤ `2, which can be rewritten as (by denoting t1 = −`2 and t2 = −`1),

E[u(W1(X1 + t2)+ + W2(X2 + t1)+)] ≤ E[u(W1(X1 + t1)+ + W2(X2 + t2)+)]

for any t1 ≤ t2. The rest can be proved similarly as Condition (i).

Proposition 3 recovers the results of Theorems 4.3 and 4.7 of Zhuang et al. (2009), Theorems 6.3
and 6.5 of Cai and Wei (2014), and Theorem 4.2 of Pan and Li (2017). Although this is not a new result,
we remark that the proof is significantly simplified. Furthermore, it is worth noting that Pan and
Li (2017) studied a more general version of Problems (5) and (6) and their Theorem 4.1 can be also
implied by Theorem 2 and Proposition 1.

Proposition 4. Assume X is SAI. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two real vectors.

(i) If a, b ∈ Dn and a ≥m b, then ∑n
i=1(Xi ∧ ai) ≤icv ∑n

i=1(Xi ∧ bi).
(ii) If a, b ∈ Dn and a ≥m b, then ∑n

i=1(Xi − ai)+ ≥icx ∑n
i=1(Xi − bi)+.

Proof. Note that the bivariate function x ∧ d is L-superadditive and concave in a, (i) immediately
follows from Theorem 4 (i). Similarly, noting that (x− a)+ is L-subadditive and convex in a, (ii) follows
from Theorem 4 (ii).
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Proposition 4 (i) implies that the deductible allocation vector (d, 0, . . . , 0) minimizes the insured’s
retained risk in the sense of the increasing concave order, and thus solves Problem (6). This makes
sense because, when the total deductible is assigned to X1, the “smallest” risk, it is least likely to
be reached and thus produces the “smallest" retained risk. On the other hand, when it comes to
Problem (5), it is not obvious what allocation strategy is optimal. However, Proposition 4 (ii) implies
that the policy limit allocation vector (l, 0, . . . , 0) is the worst strategy, which would maximize the
retained risk in the sense of increasing convex order. Recalling the results derived in Proposition 2, we
remark that the assumption of b ∈ Dn can be removed in both statements of Proposition 4.

Similar studies have been conducted, for example, by Lu and Meng (2011) and Manesh et al.
(2016). In their papers, the retained risk is minimized in the sense of the usual stochastic order, and
the logconcavity of the marginal distribution function or exchangeability is assumed. Proposition 4
shows that, when the minimization criterion is reduced to the sense of increasing convex order, those
additional assumptions are no longer needed.

4.2. Portfolio Selections

Let X = (X1, . . . , Xn) denote the stochastic return rates of n risky assets. For an investor endowed
with initial wealth w, the concern is how to allocate the investment so as to maximize the final
return. With allocation vector a = (a1, . . . , an) where ∑n

i=1 ai = w, the investor’s final wealth is
a · X = ∑n

i=1 aiXi. The optimization problem is formulated as

max
a∈A(w)

E[u(
n

∑
i=1

aiXi)] (8)

where A(w) = {a ≥ 0 : ∑n
i=1 ai = w}, and u is a utility function.

Proposition 5. Assume X = (X1, . . . , Xn) is SAI. The solution to Problem (8), (a∗1 , . . . , a∗n), should satisfy
a∗1 ≤ · · · ≤ a∗n for any increasing utility function u(x).

Proof. Like the proof of Proposition 2, the desired conclusion follows from the fact that g(x; a) =

u(∑n
i=1 aixi) is arrangement increasing for any increasing function u.

Proposition 6. Assume X is SAI. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be two real vectors.

(i) If a, b ∈ In and a ≥m b, then ∑n
i=1 biXi ≤icx ∑n

i=1 aiXi.
(ii) If a, b ∈ Dn and a ≥m b, then ∑n

i=1 biXi ≥icv ∑n
i=1 aiXi.

Proof. As before, we focus on the proof for the bivariate case.
(i) Define g(x; a) = g(x1, x2; a1, a2) = u(a1x1 + a2x2). It suffices to show that E[g(X1, X2; a1, a2)]

is Schur-convex in (a1, a2) ∈ In for any increasing convex function u. According to Theorem 3,

(a) g(x1, x2; a1, a2) is Schur-convex in (a1, a2) ∈ I2 for any x1 ≤ x2; and
(b) h(a1, a2) , g(x1, x2; a1, a2) + g(x2, x1; a1, a2) is Schur-convex in (a1, a2) ∈ I2 for any x1 ≤ x2.

For any x1 ≤ x2, it is easy to verify that a1x1 + a2x2 is Schur-convex in (a1, a2) ∈ I2.
g(x1, x2; a1, a2) = u(a1x1 + a2x2) is also Schur-convex since u is increasing. This verifies (a).

For any x1 ≤ x2 and a1 ≥ a2, a1x1 + a2x2 ≤ a1x1 + a2x2, so u′(a1x1 + a2x2) ≤ u′(a2x1 + a1x2) for
any convex u. Therefore,

∂

∂a1
h(a1, a2) = x1u′(a1x1 + a2x2) + x2u′(a2x1 + a1x2)

≥ x2u′(a1x1 + a2x2) + x1u′(a2x1 + a1x2) =
∂

∂a2
h(a1, a2),

which implies that h is Schur-convex in (a1, a2) ∈ D2 according to Lemma 1. By noting that h(a1, a2) is
symmetric, i.e., h(a1, a2) = h(a2, a1), (b) is verified.
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(ii) can be proved similarly.

It is worth pointing out that the results of Propositions 5 and 6 are not new. Specifically,
the conclusion of Propositions 5 has been derived by Theorem 5.2 by Cai and Wei (2015). The result of
Proposition 6 is implied by Theorem 1 in the work by You and Li (2016). The purpose of stating these
two propositions is to show that they can be proved by an innovative yet simplified approach.

5. Concluding Remarks

In this paper, we derive several properties of SAI random vectors by using arrangement increasing
functions. With these properties, we aim to set up a unified framework for the study of different types
of allocation problems. As evidenced in Section 4, the establishment of such a framework significantly
facilitates solving the allocation problems in insurance and finance.

Another advantage of this framework is that it allows the potential of introducing dependence
between random vectors. Recall that, whenever two random vectors are involved, they are assumed
to be independent. However, this is not essentially necessary. Note that most results concerning
two random vectors are derived based on Theorems 1 and 2, or more specifically, based on the
properties described by Inequalities (2) and (3). If a new dependence structure can be developed by
the characterizations of Inequalities (2) or (3), it would be possible to get rid of the assumption of
independence between two random vectors. Admittedly, there are still technical difficulties and we
leave it for future research.

Throughout this paper, we focus only on the SAI structure, while other dependence structures
such as RWSAI, LWSAI, and WSAI are also considered in the existing studies of allocation problems.
It would be interesting to set up a similar framework using arrangement increasing or other relevant
functions, which can be done in future research.

Acknowledgments: The author is grateful to the two anonymous reviewers for their valuable comments,
which greatly improve the presentation of the paper. The author acknowledges the financial support from
the Research and Creative Activities Support grant (RACAS, grant number: AAC2253) from the University of
Wisconsin-Milwaukee.

Conflicts of Interest: The authors declare no conflict of interest.

References

Belzunce, Félix, Helena Martínez-Puertas, and José M. Ruiz. 2013. On allocation of redundant components for
systems with dependent components. European Journal of Operational Research 23: 573–80. [CrossRef]

Cai, Jun, and Wei Wei. 2014. Some new notions of dependence with applications in optimal allocation problems.
Insurance: Mathematics and Economics 55: 200–9. [CrossRef]

Cai, Jun, and Wei Wei. 2015. Notions of multivariate dependence with applications in optimal portfolio selections.
Journal of Multivariate Analysis 138: 156–69. [CrossRef]

Cheung, Ka Chun. 2007. Optimal allocation of policy limits and deductibles. Insurance: Mathematics and Economics
41: 291–382. [CrossRef]

Hennessy, David A., and Harvey E. Lapan. 2002. The use of Archimedean copulas to model portfolio allocations.
Mathematical Finance 12: 143–54. [CrossRef]

Hua, Lei, and Ka Chun Cheung. 2008. Worst allocations of policy limits and deductibles. Insurance Mathematics
and Economics 43: 93–98. [CrossRef]

Kijima, Masaaki, and Masamitsu Ohnishi. 1996. Portfolio selection problems via the bivariate characterization of
stochastic dominance relations. Mathematical Finance 6: 237–77. [CrossRef]

Li, Xiaohu, and Yinping You. 2012. On allocation of upper limits and deductibles with dependent frequencies and
comonotonic severities. Insurance Mathematics and Economics 50: 423–29. [CrossRef]

Lu, ZhiYi, and LiLi Meng. 2011. Stochastic comparison for allocations of policy limits and deductibles with
applications. Insurance: Mathematics and Economics 48: 338–43. [CrossRef]

Manesh, Sirous Fathi, Baha-Eldin Khaledi, and Jan Dhaene. 2016. Optimal allocation of policy deductibles for
exchangeable risks. Insurance: Mathematics and Economics 71: 87–92. [CrossRef]

http://dx.doi.org/10.1016/j.ejor.2013.05.004
http://dx.doi.org/10.1016/j.insmatheco.2014.01.009
http://dx.doi.org/10.1016/j.jmva.2014.12.011
http://dx.doi.org/10.1016/j.insmatheco.2006.11.010
http://dx.doi.org/10.1111/1467-9965.00136
http://dx.doi.org/10.1016/j.insmatheco.2008.03.005
http://dx.doi.org/10.1111/j.1467-9965.1996.tb00116.x
http://dx.doi.org/10.1016/j.insmatheco.2012.02.008
http://dx.doi.org/10.1016/j.insmatheco.2010.12.006
http://dx.doi.org/10.1016/j.insmatheco.2016.07.010


Risks 2018, 6, 49 12 of 12

Marshall, Albert W., Ingram Olkin, and Barry C. Arnold. 2010. Inequalities: Theory of Majorization and Its Applications.
New York: Springer.

Pan, Xiaoqing, and Xiaohu Li. 2017. On capital allocation for stochastic arrangement increasing actuarial risks.
Dependence Modeling 5: 145–53. [CrossRef]

Shaked, Moshe, and J. George Shanthikumar. 2007. Stochastic Orders. New York: Springer.
Shanthikumar, J. George, and David D. Yao. 1991. Bivariate Characterization of Some Stochastic Order. Advances

in Applied Probability 93: 642–59. [CrossRef]
Wei, Wei. 2017. Joint stochastic orders of high degrees and their applications in portfolio selections. Insurance:

Mathematics and Economics 76: 141–48. [CrossRef]
You, Yinping, and Xiaohu Li. 2016. Ordering scalar products with applications in financial engineering and

actuarial science. Journal of Applied Probability 53: 47–56. [CrossRef]
Zhuang, Weiwei, Zijin Chen, and Taizhong Hu. 2009. Optimal allocation of policy limits and deductibles under

distortion measures. Insurance: Mathematics and Economics 44: 409–14. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/demo-2017-0010
http://dx.doi.org/10.2307/1427627
http://dx.doi.org/10.1016/j.insmatheco.2017.07.008
http://dx.doi.org/10.1017/jpr.2015.7
http://dx.doi.org/10.1016/j.insmatheco.2008.11.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Majorization Order
	Arrangement Increasing
	Stochastic Orders

	Properties of SAI Characterized by Arrangement Increasing Functions
	Applications in Insurance and Finance
	Allocation of Policy Limits and Deductibles
	Portfolio Selections

	Concluding Remarks
	References

