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In recent years, multivariate insurance risk processes have received increasing attention in risk theory. First-passage-time problems
in the context of these insurance risk processes are of primary interest for risk management purposes. In this article we study joint-
ruin problems of two risk undertakers in a proportionally shared Markovian claim arrival process. Building on the existing work in the
literature, joint-ruin–related quantities are thoroughly analyzed by capitalizing on existing results in certain univariate insurance surplus
processes. Finally, an application is considered where the finite-time and infinite-time joint-ruin probabilities are used as risk measures
to allocate risk capital among different business lines. The proposed joint-ruin allocation principle enables us to not only capture the
risk dynamics over a given time horizon, but also overcome the “cross-subsidizing” effect of many existing allocation principles.

1. INTRODUCTION
In recent years, multivariate insurance risk models have received increasing attention in risk theory. The inherent flexibility

to simultaneously capture risk characteristics of multiple business lines is one of the main reasons for this accrued interest. The
analysis of these multivariate risk models is also a primary interest for risk management purposes, because it is vital for insurers
to accurately assess the risks inherent to their overall insurance business, as well as to find efficient risk management mechanisms
to mitigate them. A common mathematical framework in this context is the multivariate insurance risk process defined as

U(t ) = (U1(t ), . . . ,Um(t )) = (u1 + c1t − S1(t ), . . . , um + cmt − Sm(t )) , (1)

for t ≥ 0, whereUi(t ) represents the time-t surplus level of the ith business line (withUi(0) = ui ≥ 0). Also, let ci ≥ 0 and {Si(t ),
t ≥ 0} be the level premium rate and the aggregate claim process of the ith business line, respectively. A potential challenge in
analyzing the multivariate surplus process (1) resides in the dependence structure among the aggregate claim processes {Si(t ), t ≥
0} for i = 1, 2, . . . ,m. In the multivariate setting, three definitions of ruin have mainly been considered (see, e.g., Cai and Li 2007):

τor = inf{t ≥ 0 : min
1≤i≤m

Ui(t ) < 0}, (2)

τsim = inf{t ≥ 0 : max
1≤i≤m

Ui(t ) < 0}, (3)

and

τand = inf{t ≥ 0 : inf
0≤s≤t

Ui(s) < 0 for all i = 1, . . . ,m}, (4)
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where inf ∅ = ∞. For notational convenience, we sometimes denote (2)–(4) as τ�, where � can be any of “or,” “and,” or
“sim.” Accordingly, let ψ�(u1, . . . , um, t ) = P{τ� ≤ t} be the finite-time ruin probability, where its infinite-time counterpart is
ψ�(u1, . . . , um) = limt→∞ ψ�(u1, . . . , um, t ). Note that the ruin times (2)–(4) have different trigger sensitivities. For instance, it is
not difficult to show that τor ≤ τand ≤ τsim almost surely, which implies that τor has the fastest trigger time, and τsim is triggered
last.

As alluded to earlier, the multivariate insurance risk model has been the subject matter of analysis under various model setups.
Cai and Li (2005, 2007) studied the surplus process (1), when the aggregate claim processes {Si(t ), t ≥ 0} (i = 1, . . . ,m) follow a
multivariate compound Poisson risk process with phase-type jumps. Using multivariate stochastic-order arguments, bounds for the
infinite-time ruin probabilities ψor, ψand , and ψsim are derived. This was later followed by the work of Gong et al. (2012), in which
certain ruin related quantities for the ruin time τor are examined under a different multivariate compound Poisson setup for the
claim arrival dynamic. Given the complexity of the research problem, most of the other contributions in the literature have focused
on the bivariate case (i.e., m = 2). Chan et al. (2003), Yuen et al. (2006), and Dang et al. (2009) are notable contributions in the
bivariate setting. More closely related to the present work is the contribution of Avram et al. (2008a) in a proportional reinsurance
setup, where the aggregate claim process of an insurance portfolio is proportionally shared between two risk undertakers. Explicit
expressions and asymptotic results for the ruin probabilities are obtained. Badescu et al. (2011) later extended the ruin analysis
by adding an independent compound Poisson process to one of the two risk undertakers. All of the aforementioned papers work
within the confines of the multivariate compound Poisson risk model. A notable exception in the literature is the work of Elliott
et al. (2012b) on general hitting times of some hidden Markovian-modulated diffusion processes, which could in turn be used to
approximate the classical compound Poisson process. In the multivariate insurance setting, Elliott et al. (2012a) utilized a partial
differential equation approach to obtain the ruin probabilities when the risk processes are described by a multivariate diffusion
process. See also Elliott et al. (2011) for the treatment of hitting times of a discrete Markov chain.

In this article we propose to generalize the claim-counting process to the Markovian arrival process (MAP) (e.g., Ahn and
Badescu 2007) and study the bivariate risk model under a proportional reinsurance setting (e.g., Avram et al. 2008a), where an
insurance portfolio is proportionally shared between two risk undertakers. The present study has three layers of significance.
First, it proposes a methodology to deal with the multivariate insurance risk model with MAP claim-counting processes. Second,
according to Cai and Li (2007), the multivariate risk model with comonotonic aggregate claim processes is of central importance
because it provides bounds for both the finite-time and infinite-time ruin probabilities. Indeed, this article studies the bivariate risk
model with a special class of comonotonicity and thus provides insights for future studies of models with general comonotonic
properties. Third, the joint-ruin probabilities can be used as an alternative tool to tackle the classical capital allocation problem, as
illustrated in Section 5.

In relation to the alluded capital allocation problem, a variety of capital allocation principles have been proposed. Cummins
(2000) provided an overview of common capital allocationmethods suitable for insurers and pointed out the importance of solvency
risk in the insurance industry. By considering themarginal contribution of each business line to an insurer’s default value,Myers and
Read (2001) also showed how option-pricing methods can be used to allocate the required capital among business lines. For more
risk-measure–based capital allocation principles, readers are referred to, e.g., Dhaene et al. (2003, 2012), Panjer (2001), Tsanakas
(2009), and Xu and Mao (2013) and references therein. Numerous allocation methods model the risks via the terminal value of a
position over a given time horizon (see Principles 1–3 of Section 5, for instance). A potential drawback of these allocation methods
is that no path-dependent information on the underlying position is incorporated into the allocation problem. This comment does
not apply to ruin-based allocation principles (see, e.g., Dhaene et al. 2003; Frostig and Denuit 2009; and Mitric and Trufin 2015
and references therein), where path-dependent information is incorporated in the decision-making exercise. Also, many of the
allocation principles aim to minimize the aggregation of the loss deviation from capital (based on a certain risk measure) of each
individual business line and implicitly allow “cross-subsidization” among different business lines (see, e.g., Dhaene et al. 2012);
that is, a “ruin” event of an individual business line may be compensated by other outperforming business lines. As pointed out
by Erel et al. (2015), cross-subsidization could potentially distort investment decisions, performance appraisals, incentives, and
pricing. In a regulated setting, companies may also “push” riskier lines of business if cross-subsidization is allowed (see Myers
and Read 2001). To minimize this “cross-subsidization” effect, we propose to examine a ruin-based capital allocation problem
involving the finite-time ruin probability of τor (with the fastest trigger time among (2)–(4)). Hence, we formulate the optimal
capital allocation problem as

inf
u1, . . . , um ≥ 0

u1 + · · · + um = K

ψor(u1, . . . , um, t ), (5)

for a given total capital level K ≥ 0 and a time horizon t ≥ 0.
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The rest of the article is organized as follows. In Section 2 the bivariate MAP risk model (1) with proportionally shared risks
under study is formally defined. Some preliminary results are also reviewed. In Section 3 explicit expressions for a quintuple
Laplace transform (LT) involving ruin-related quantities of interest and for the finite-time joint-ruin probabilities are given in
terms of ruin quantities in the associated univariate risk model. Specific observations in the context of the compound Poisson risk
model are made in Section 4. In Section 5 we consider the compound Poisson risk model with a mixture of exponential claim size
distribution to illustrate the joint-ruin capital allocation principle (5) when m = 2.

2. PRELIMINARIES

2.1. Review of the One-Dimensional MAP Risk Model
In the univariate MAP risk model, the insurance surplus process {U (t ), t ≥ 0} is modeled as

U (t ) = u+ ct − S(t ), (6)

where u > 0 is the initial surplus level, c > 0 is the level premium rate, and the aggregate claim amount process S = {S(t ), t ≥ 0}
is defined as

S(t ) =

⎧⎪⎨⎪⎩
N(t )∑
k=1

Xk, N(t ) > 0,

0, N(t ) = 0.

It is assumed that the claim number process {N(t ), t ≥ 0} is a Markovian arrival process with representation MAP(α,G0,G1) of
order n (see, e.g., Ahn and Badescu 2007). For such a process, an irreducible underlying continuous time Markov chain (CTMC)
J = {J(t ), t ≥ 0} with initial probability vector α = (α1, α2, . . . , αn) on the state space E = {1, 2, . . . , n} is introduced: A matrix
generatorG0 = [g0,i j]n×n with g0,i j ≥ 0 for i �= j is given to govern the transitions of the CTMC from state i to j (i �= j) without an
accompanying claim, while another matrix generator G1 = [g1,i j]n×n with g1,i j ≥ 0 is used to define the transitions of the CTMC
from state i to j with an accompanying claim. Note that g0,ii (i = 1, 2, . . . , n) are negative such that the sum of the elements on
each row of the matrix G0 + G1 is zero.

We further assume that a claim size Xk (k ≥ 1) accompanying a transition of J from state i to j has density pi j, LT p̃i j(s) =∫∞
0 e−sx pi j(x)dx, and mean μi j. Conditional on J, the claim sizes {Xk}∞k=1 are mutually independent, also independent of {N(t ),
t ≥ 0}. As usual, we impose a positive security loading assumption on the process {U (t ), t ≥ 0},

n∑
i=1

πi

n∑
j=1

g1,i jμi j < c, (7)

where π = (π1, π2, . . . , πn) contains the stationary probabilities of the CTMC J. In the following, we consider some ruin quantities
of interest in the one-dimensional MAP risk model (6), which are essential components in the characterization of ruin results
pertaining to τ� in the later sections.

Let τ = inf{t ≥ 0 : U (t ) < 0} be the time of ruin, and define the ruin probability matrix �(u, t; c) = [ψi j(u, t; c)]n×n as

ψi j(u, t; c) = P (τ ≤ t, J(τ ) = j |U (0) = u, J(0) = i ) . (8)

The dependence of � on c is explicitly emphasized for notational convenience in the subsequent analysis. Note that the finite-
time ruin probability �(u, t; c) can be evaluated by inverting analytically or numerically the LT of the time of ruin. Also, let
�(u; c) = limt→∞ �(u, t; c) be the ultimate ruin probability. Of general interest in the analysis of the hitting time τ is the triple
LT �δ,s,r(u; c) = [φδ,s,r,i j(u; c)]n×n, defined as

φδ,s,r,i j(u; c) = E[e−δτ−sU (τ−)−r|U (τ )|
I{τ < ∞, J(τ ) = j}|U (0) = u, J(0) = i], (9)

for δ, s, r ≥ 0. The triple LT�δ,s,r is a special case of the so-called Gerber-Shiu function (see, e.g., Gerber and Shiu 1998). Readers
are referred to, e.g., Ahn and Badescu (2007) and Landriault and Shi (2015) for an expression of �δ,s,r(u; c). We remark that the
LT of the time to ruin and the deficit at ruin (i.e., a special case of (9)) for the more general class of spectrally negative Markov
additive processes can be found in Ivanovs and Palmowski (2012, Corollary 4).
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An auxiliary ruin quantity of interest in the later analysis is the matrix distribution function H(u, y, t; c) = [Hi j(u, y, t; c)]n×n
for a given t ≥ 0 defined as

Hi j(u, y, t; c) = P (U (t ) ≤ y, τ > t, J(t ) = j |U (0) = u, J(0) = i ) ,

for y ≥ 0 and i, j ∈ E. From Ivanovs (2014, Theorem 1), we have∫ ∞

0
e−δtH(u, dy, t; c)dt = (

eRyWδ (u) − Wδ (u− y)I(u > y)
)
dy, (10)

where the matrix scale function {Wδ (x), x > 0} is defined in terms of the matrix exponent Lδ (s):

W̃δ (s) =
∫ ∞

0
e−sxWδ (x)dx = L−1

δ (s)

with

Lδ (s) = (cs− δ)I + G0 + G̃p(s). (11)

In (11), I is an n× n identity matrix and G̃p(s) = [g1,i j p̃i j(s)]n×n. Furthermore, the matrix R in (10), whose nonzero eigenvalues
are the zeros of det(Lδ (−z)) with negative real parts, is the left solution (associated with the corresponding left eigenvectors) of
Lδ (−z) = 0. Readers are referred to Ivanovs (2014, Remark 2) and references therein for more details concerning the matrix R.

An alternative expression for H(u, y, t; c) can be found by drawing a connection with a time-reversed process. First, we define
the distribution function (df) of the aggregate claim S(t ) as F(y, t ) = [Fi j(y, t )]n×n, with

Fi j(y, t ) = 1 − Fi j(y, t ) = P (S(t ) ≤ y, J(t ) = j |J(0) = i ) , (12)

a quantity that has been extensively analyzed by Ren (2008) and others. For convenience, we also rewrite (12) as

F(y, t ) = F(0, t ) +
∫ y

0
f(z, t )dz, y ≥ 0, (13)

where f(y, t ) = [ fi j(y, t )]n×n for y > 0 is the aggregate claim density. Furthermore, for τ+
x = inf{t ≥ 0 : U (t ) > x}, it is well known

(e.g., Ivanovs and Palmowski 2012) that

E[e−δτ
+
x ] =

∫ ∞

0
e−δtZ(dt, x; c) = eQx,

where Z(t, x; c) = [Zi j(t, x; c)]n×n is defined as

Zi j(t, x; c) = P
(
τ+
x ≤ t, J

(
τ+
x

) = j |U (0) = 0, J(0) = i
)
, (14)

and Q is a certain transition rate matrix which has the same eigenvalues as R. For the detailed expression of Q, as well as the
relations between Q and R, see D’Auria et al. (2010, Theorem 1) and Ivanovs (2014, Section 4.2).

For a given t > 0, the time reversed process {(Û (s), Ĵ(s)), 0 ≤ s < t} is defined as

Û (s) = u+U (t ) −U ((t − s)−), Ĵ(s) = J((t − s)−),

for 0 ≤ s < t (see, e.g., Ivanovs 2014). Note that the process {(Û (s), Ĵ(s)), 0 ≤ s < t} is also aMAP risk process (with matrix expo-
nent L̂δ (s) = [Lδ (s)]
 = (cs− δ)I + G0


 + [G̃p(s)]
, where 
 denotes the transpose of a matrix). For the process (Û (s), Ĵ(s)),
let F̂(y, t ), f̂(y, t ) and Ẑ(s, x; c) be the time-reversed equivalent of (12), (13), and (14), respectively. To this end, an alternative
expression for H(u, y, t; c) is provided in Proposition 2.1, where the proof is given in Appendix A.
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Proposition 2.1. For the MAP risk process {(U (t ), J(t )), t ≥ 0},

H(u, dy, t; c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F(0, t ), y = u+ ct,

f (u+ ct − y, t ) dy

−
(∫ t

y
c∧t

[
Ẑ (ds, y; c) f̂ (u+ c(t − s), t − s)

]
)
dy,

0 ≤ y < u+ ct,
(15)

where x ∧ y = min(x, y).

2.2. Two-Dimensional MAP Risk Model with Proportional Reinsurance
In this article, we study the ruin times τor, τand , and τsim under a bivariate MAP risk model, where the aggregate risk S is

proportionally shared by two risk undertakers. More precisely, we define the surplus level of the kth undertaker (k = 1, 2) at time
t by

U0
k (t ) = u0k + c0kt − ωkS(t ), k = 1, 2, (16)

where u0k > 0 is the initial surplus level of the kth undertaker, c0k > 0 is its level premium rate, and ω1, ω2 > 0 are the quota shares
with ω1 = 1 − ω2. We impose the positive security loading constraint on each process,

n∑
i=1

πi

n∑
j=1

g1,i jμi j <

(
c01
ω1

∧ c02
ω2

)
.

Here, for simplicity and without loss of generality, we propose to work with the rescaled surplus process {Uk(t ), t ≥ 0}, where

Uk(t ) ≡ U0
k (t )

ωk
= uk + ckt − S(t ), k = 1, 2, (17)

where uk = u0k/ωk and ck = c0k/ωk. To avoid triviality, we assume u2 > u1 and c1 > c2.1 Also, let T = (u2 − u1)/(c1 − c2) and

(t ) = U2(t ) −U1(t ) = u2 − u1 − (c1 − c2)t with 
(T ) = 0.

Avram et al. (2008a) show that the ruin time τor(τsim) associated to the insurance surplus processes (17) can be viewed as a
one-dimensional first-crossing problem of S above a piecewise linear boundary given by bmin(t ) = mink=1,2{uk + ckt} (bmax(t ) =
maxk=1,2{uk + ckt}). Here, we consider the ruin times (2)–(4) for the bivariate process U(t ) defined in (17). For convenience, let

τk(t ) = inf{s ≥ t : Uk(s) < 0}, (18)

for k = 1, 2, with the abbreviated notation that τk = τk(0). It is not difficult to conclude that

τor =
{
τ1, if τ1 ≤ T

τ2, if τ1 > T
, τand =

{
τ2, if τ1 ≤ T

τ1, if τ1 > T
, τsim =

{
τ2, if τ2 ≤ T

τ1(T ), if τ2 > T
. (19)

3. QUINTUPLE LT ANALYSIS OF A SHARED MAP RISK PROCESS
In this section, we jointly consider the ruin time, the surplus prior to ruin, and the deficit at ruin of both risk undertakers in the

shared MAP risk processes (17) by analyzing their quintuple LT mδ (u1, u2; τ�) = [mδ,i j(u1, u2; τ�)]n×n defined as

mδ,i j(u1, u2; τ�)
≡ E

[
e−δτ�−η1U1(τ�−)−γ1|U1(τ� )|−η2U2(τ�−)−γ2|U2(τ� )|I{τ� < ∞, J(τ�) = j}|U(0) = (u1, u2), J(0) = i

]
, (20)

1If both the premium rate and the initial surplus of one process are no less than their counterparts in the second process, the second process will ruin first with
probability 1. In this case, the bivariate ruin problem reduces to a univariate ruin problem.
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for δ, η1, γ1, η2, γ2 ≥ 0. As in the univariate case, when the LT parameters δ, η1, γ1, η2, γ2 are all zeros, mδ (u1, u2; τ�) reduces to
the infinite-time ruin probability �� (u1, u2) = limt→∞ ��(u1, u2, t ), where ��(u1, u2, t ) = [ψ�,i j(u1, u2, t )]n×n is the finite-time
ruin probability matrix defined as

ψ�,i j(u1, u2, t ) = P(τ� ≤ t, J(τ�) = j|U(0) = (u1, u2), J(0) = i). (21)

Note that the quintuple LTmδ is informatively as general as the Gerber-Shiu function with an arbitrary penalty function. More
importantly, the analysis of mδ in the two-dimensional MAP risk model (17) can be conducted through the triple LT �δ,s,r in the
univariate risk model. Indeed, given that 
(t ) = U2(t ) −U1(t ) = u2 − u1 + (c2 − c1)t, we can reduce the dimension of mδ , and
arrive at

mδ,i j(u1, u2; τ�)
= E[e−δτ�−ξ2
(τ� ) e−ηU1(τ�−)−γ |U1(τ� )|I{τ� < ∞, J(τ�) = j}|U1(0) = u1, J(0) = i]

= E[e−δτ�+ξ1
(τ� ) e−ηU2(τ�−)−γ |U2(τ� )|I{τ� < ∞, J(τ�) = j}|U2(0) = u2, J(0) = i],

where ξi = ηi + γi (i = 1, 2), η = η1 + η2, and γ = γ1 + γ2. Explicit expressions for (20) under the three ruin cases are stated in
Proposition 3.1. The proof of these results can be found in Appendix B.

Proposition 3.1. For the shared MAP risk process (17), if δ ≥ ξ2(c1 − c2), mδ (u1, u2; τ�) admits the following decomposition:

mδ (u1, u2; τor ) = e−ξ2(u2−u1 )�δ1,η,γ (u1; c1) − e−δT
∫ ∞

0
H(u1, dy,T ; c1)�δ1,η,γ (y; c1)

+ e−δT
∫ ∞

0
H(u1, dy,T ; c1)�δ2,η,γ (y; c2), (22)

mδ (u1, u2; τand ) = eξ1(u2−u1 )�δ2,η,γ (u2; c2) − e−δT
∫ ∞

0
H(u1, dy,T ; c1)�δ2,η,γ (y; c2)

+ e−δT
∫ ∞

0
H(u1, dy,T ; c1)�δ1,η,γ (y; c1), (23)

mδ (u1, u2; τsim) = eξ1(u2−u1 )�δ2,η,γ (u2; c2) − e−δT
∫ ∞

0
H(u2, dy,T ; c2)�δ2,η,γ (y; c2)

+ e−δT
∫ ∞

0
H(u2, dy,T ; c2)�δ1,η,γ (y; c1), (24)

where δ1 = δ − ξ2(c1 − c2) and δ2 = δ + ξ1(c1 − c2).

Also, expressions for the finite-time ruin probabilities ��(u1, u2, t ) can be obtained in a similar fashion. These results are
presented in Proposition 3.2 (its proof can be found in Appendix C).

Proposition 3.2. The finite-time ruin probabilities ��(u1, u2, t ) are given by

�or(u1, u2, t ) = �(u1, t ∧ T ; c1) + I{t > T }
∫ ∞

0
H(u1, dy,T ; c1)�(y, t − T ; c2), (25)

�and (u1, u2, t ) = �(u2, t; c2) − I{t > T }
∫ ∞

0
H(u1, dy,T ; c1)�(y, t − T ; c2)

+ I{t > T }
∫ ∞

0
H(u1, dy,T ; c1)�(y, t − T ; c1), (26)

�sim(u1, u2, t ) = �(u2, t ∧ T ; c2) + I{t > T }
∫ ∞

0
H(u2, dy,T ; c2)�(y, t − T ; c1). (27)
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Note that Equation (25) is a generalization of Avram et al. (2008b, Proposition 1) from the compound Poisson (CP) risk model
to the MAP risk model. In the next section, we draw some additional conclusions for the CP risk model.

4. COMPOUND POISSON RISK MODEL REVISITED
In a CP risk model, the aggregate claim process {S(t ), t ≥ 0} is assumed to be a compound Poisson process, that is, {N(t ), t ≥ 0}

is a Poisson process with arrival rate λ > 0, and the claim sizes {Xi}∞i=1 (independent of {N(t ), t ≥ 0}) form a sequence of iid random
variables with density p and mean μ. Note that the CP risk model is a special case of the MAP risk model, where the underlying
CTMC J has only one state. For this insurance risk model, an explicit form for the density of the time to ruin (and hence, its finite
time ruin probability ψ (u, t; c)) can be found in Dickson and Willmot (2005). Also, the hitting time distribution (14) is known to
be

Z(t, x; c) =

⎧⎪⎨⎪⎩
0, t < x

c ,

e−λ
x
c +

∫ t

x
c

x

s
f (cs− x, s)ds, t ≥ x

c ,

where f (x, t ) = ∑∞
k=1

(λt )k

k! e
−λt p∗k(x) is the time-t aggregate claim density (Gerber and Shiu 1998, Eq. 5.15) and p∗k denotes the

k-fold convolution of p.2 Moreover, Proposition 2.1 can be simplified to

H(u, dy, t; c) ≡ P (U (t ) ∈ dy, t < τ |U (0) = u )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

e−λt, y = u+ ct,

f (u+ ct − y, t ) dy, ct ≤ y < u+ ct,

f (u+ ct − y, t )dy− e−λ
y
c f
(
u+ ct − y, t − y

c

)
dy

−
(∫ t

y
c

y

s
f (cs− y, s) f (u+ c(t − s), t − s)ds

)
dy,

0 ≤ y < ct.

(28)

Equipped with explicit expressions forψ (u, t; c) andH(u, y, t; c), the joint ruin probabilitiesψ�(u1, u2, t ) can be computed through
(25)–(27). Likewise, the quintuple LTs (22)–(24) can be restated as follows.

Proposition 4.1. For the CP risk model, the quintuple LT mδ (u1, u2; τ�) admits the following decomposition:

mδ (u1, u2; τor ) = e−ξ2(u2−u1 )φδ1,η,γ (u1; c1) − e−δT E[φδ1,η,γ (U1(T ); c1) I{τ1 > T }|U1(0) = u1]

+ e−δT E[φδ2,η,γ (U1(T ); c2) I{τ1 > T }|U1(0) = u1], (29)

mδ (u1, u2; τand ) = eξ1(u2−u1 )φδ2,η,γ (u2; c2) − e−δT E[φδ2,η,γ (U1(T ); c2) I{τ1 > T }|U1(0) = u1]

+ e−δT E[φδ1,η,γ (U1(T ); c1) I{τ1 > T }|U1(0) = u1], (30)

mδ (u1, u2; τsim) = eξ1(u2−u1 )φδ2,η,γ (u2; c2) − e−δT E[φδ2,η,γ (U2(T ); c2) I{τ2 > T }|U2(0) = u2]

+ e−δT E[φδ1,η,γ (U2(T ); c1) I{τ2 > T }|U2(0) = u2]. (31)

In (29)–(31), the expectation

E[φδ,η,γ (Uj(T ); ck )I{τ j > T }|Uj(0) = u] =
∫ ∞

0
H(u, dy,T ; c j )φδ,η,γ (y; ck ), (32)

for j, k = 1, 2, can be evaluated from the defective distribution H defined in (28) and the knowledge of the triple LT φδ,η,γ (u; c)
in Landriault and Willmot (2009), although the calculations to evaluate mδ may be quite intensive.

2In this section, we silently change all the mathbold matrix symbols to their normal forms, since only a single state space is involved in the CP risk model.
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However, it is worth pointing out that the representation (32) can be evaluated more simply in some special cases, includ-
ing when φδ,η,γ (u; c) can be expressed as a combination of exponential functions in u. We refer the reader to Landriault and
Willmot (2008), where some cases are highlighted under distributional assumptions on the claim size density p. For illustrative
purposes, we focus the rest of the discussion on the joint LT of the ruin time and the deficits at ruin (η = 0), when the claim sizes
{Xi}∞i=1 are exponentially distributed with mean μ = 1/β. In this context, Landriault and Willmot (2008, Corollary 7) have shown
that

φδ,0,γ (u; c) = νδ (−R)eRu, (33)

where νδ is a certain coefficient, and R is the negative root of the Lundberg equation cs− λ− δ + λβ/(β + s) = 0. By substituting
(33) into (32), it becomes crucial to find an efficient way to evaluate expectations of the form E[eθU (T )

I{τ > T }|U (0) = u]. For
θ > −β, let

dP(θ )

dP

∣∣∣∣ = e−θS(t )+λt
θ

β+θ � L(θ )(t ). (34)

It is easy to verify that {L(θ )(t ), t ≥ 0} is a martingale, and that

E[eθU (t )
I{τ > t} |U (0) = u ] = eθu+(c− λ

β+θ )θt P(θ ){τ > t |U (0) = u }, (35)

where P(θ ){τ > t|U (0) = u} denotes the t-year survival probability under P(θ ). From Asmussen (2000, Section III.4), under the
probability measure P(θ ) with θ > −β, the surplus process (6) is known to be another compound Poisson risk model with premium
rate c, where the aggregate risk process S is a compound Poisson process with arrival rate λβ/(β + θ ), and exponential claim sizes
with mean 1/(β + θ ). Moreover, the t-year survival probability P

(θ ) in (35) under this risk model can be evaluated through the
density of the time to ruin given by Drekic (2009),

P
(θ ){τ > t|U (0) = u}

= 1 −
∫ t

0

λβ

β + θ
e−

λβ

β+θ se−(β+θ )(u+cs)
[
I0
(
2
√
λβc

√
s (s+ u/c)

)
− s

s+ u/c
I2
(
2
√
λβc

√
s (s+ u/c)

)]
ds,

where Ik(z) = ∑∞
j=0

(z/2)2 j+k
j!( j+k)! is the modified Bessel function of the first kind of order k.

Therefore, combining Proposition 4.1 and Eqs. (33) and (35), we can obtain simpler expressions for the quantitiesmδ (u1, u2; τor ),
mδ (u1, u2; τand ) and mδ (u1, u2; τsim). We remark that according to (4.6) in Gerber and Shiu (2005), it holds that R > −β, which is
a necessary condition for the probability measure P(θ ) to be well defined.

5. CAPITAL ALLOCATION APPLICATION
In this section, a capital allocation application is considered in relation to the joint ruin probabilities ψor(u1, u2, t ) in the propor-

tional reinsurance framework (16). We aim to identify how to best allocate the total capital u among u1 and u2 so as to minimize
the finite-time ruin probability ψor(u1, u2, t ). For simplicity, we perform the numerical analysis under the CP risk model.

Various allocation principles have been proposed over the years. A good review of the literature on this topic can be found in
Dhaene et al. (2012). We mention a few capital allocation principles below related to the aggregate risk Y (t ) = ∑m

i=1 Yi(t ), where
{Yi(t ), t > 0} is the risk process of the ith business line.
1. The covariance allocation principle:

Ki = K · Cov (Yi(t ),Y (t ))

Var (Y (t ))
,

2. The VaR (haircut) allocation principle:

Ki = K · VaRα (Yi(t ))∑m
j=1VaRα

(
Yj(t )

) , where 0 < α < 1,
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3. The CTE allocation principle:

Ki = K · E [Yi(t ) |Y (t ) > VaRα (Y (t )) ]

E [Y (t ) |Y (t ) > VaRα (Y (t )) ]
.

As for ruin-based allocation methods, we also mention:

4. The finite-time ruin allocation principle:

Ki = K · ψ (0, t; ci)∑m
j=1 ψ

(
0, t; c j

) ,
where ψ (0, t; ci) is the finite-time ruin probability of the ith business line with zero initial surplus.

One may also look at an infinite-time ruin allocation principle by letting t → ∞ in Principle 4. In general, the finite-time and
infinite-time ruin allocation principles are not likely to minimize the joint-ruin probabilities of the multivariate surplus process.
Yet they provide simple allocation methods that incorporate the likelihood of ruin for each business line into the capital allocation
decision making.

In what follows, we compare the joint-ruin allocation principle (5) with the aforementioned four principles under the CP risk
model.

Example 1. For the two surplus processes defined in (16), we assume that S is a compound Poisson process with claim arrival rate
λ = 0.15 and claim sizes {Xi}∞i=1 with density

p(y) = 0.4

15
e−

y
15 + 0.6

10
e−

y
10 , y > 0,

and mean μ = 12. The level premium rates are c01 = 1.2 and c02 = 1 for the first and second business lines, respectively. With an
equal quota share arrangement (i.e., ω1 = ω2 = 0.5), it follows that c1 = 2.4 and c2 = 2. We aim to numerically determine the
optimal capital allocation between each business line when the total capital level is u01 + u02 = K (or equivalently u1 + u2 = 2K
given that uk = u0k/ωk for k = 1, 2).

The numerical analysis below is performed using Mathematica. First, we illustrate in Figure 1 the behavior of ψor(u1, u2,∞)
in u1 when 2K = 40. In Figure 2 the behavior of ψor(u1, u2, 80) in u1 is depicted when 2K = 60. In both cases, we observe that
the ruin probability first decreases as more capital is allocated to the first business line. The reversed trend is later observed where
more capital allocated to the first business line leads to an increase in ruin probability.

Tables 1, 2, and 3 present the optimal allocation pairs (u∗
1, u

∗
2 ) that minimizeψor(u1, u2, 40),ψor(u1, u2, 80), andψor(u1, u2,∞),

respectively, when the total capital level is set at 2K (2K = 40, 60, 80, 100, or 160). The optimal allocation pairs (u∗
1, u

∗
2 ) are found

FIGURE 1. Joint-Ruin Probability ψor (u1, u2,∞) with 2K = 40.
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FIGURE 2. Joint-Ruin Probability ψor (u1, u2, 80) with 2K = 60.

numerically through a grid search method. As expected, we can see from all three tables that the minimum joint-ruin probability
decreases as a function of K. Also, for a given K, we observe that more capital is allocated to the second business line as t moves
from 40 to 80 to ∞. Intuitively, the impact of the safety loading on the joint-ruin probability tends to dominate in the long run.
Given that c1 > c2 (and hence, the safety loading of business line 1 is greater than business line 2), it is more optimal to move
capital from the first business line to the second as the time horizon increases.

Second, we compare the above allocation results for the joint-ruin probability ψor(u1, u2, t ) to the standard capital allocation
methods described under Principles 1–4. The results are shown in Tables 4–9 for a time horizon t = 40, 80, and a total capital
2K = 40, 100, and 160, respectively. Note that the net loss for each business line is defined as Yk(t ) = ωkS(t ) − c0kt for t ≥ 0 and
k = 1, 2. For Principles 2 and 3, we chose α = 0.95. For a given time horizon t and a total capital 2K, the capital allocation results
based on Principles 1–4 are presented in columns 2 and 3 of each table. Column 4 shows the percentage of capital allocated to
each business line. We note that, for a given t, the percentage of total capital allocated to each business line does not vary with the
total capital 2K. Columns 5 and 6 provide the values of joint ruin probabilities using the capital allocation pairs in column 2. Since
the premium rate does not affect the variance and covariance calculations in the proportional model, the capital allocation weights
under the covariance principle are always equal to the proportional reinsurance weights (ω1, ω2) = (0.5, 0.5), which yields the
highest joint ruin probability. Except for this principle, it seems that all other allocation principles acknowledge the lower safety
loading for the second business line and, thus, tend to allocate more capital to business line 2.

TABLE 1
Optimal Capital Allocations Minimizing ψor(u1, u2, 40)

2K (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 40)

40 (17.47, 22.53) (8.74, 11.26) (0.4368, 0.5632) 0.4130
60 (26.76, 33.24) (13.38, 16.62) (0.4460, 0.5540) 0.3051
80 (36.18, 43.82) (18.09, 21.91) (0.4523, 0.5477) 0.2227
100 (45.71, 54.29) (22.85, 27.15) (0.4571, 0.5429) 0.1607
160 (74.73, 85.27) (37.37, 42.63) (0.4671, 0.5329) 0.0570

TABLE 2
Optimal Capital Allocations Minimizing ψor(u1, u2, 80)

2K (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 80)

40 (16.67, 23.33) (8.34, 11.66) (0.4168, 0.5832) 0.5170
60 (25.44, 34.56) (12.72, 17.28) (0.4240, 0.5760) 0.4123
80 (34.31, 45.69) (17.16, 22.84) (0.4289, 0.5711) 0.3253
100 (43.30, 56.70) (21.65, 28.35) (0.4330, 0.5670) 0.2543
160 (70.96, 89.04) (35.48, 44.52) (0.4435, 0.5565) 0.1154
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TABLE 3
Optimal Capital Allocations Minimizing ψor(u1, u2,∞)

2K (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2,∞)

40 (15.54, 24.46) (7.77, 12.23) (0.3885, 0.6115) 0.7531
60 (23.20, 36.80) (11.60, 18.40) (0.3867, 0.6133) 0.6887
80 (30.59, 49.41) (15.30, 24.70) (0.3824, 0.6176) 0.6289
100 (37.78, 62.22) (18.89, 31.11) (0.3778, 0.6222) 0.5733
160 (57.91, 92.09) (33.96, 46.04) (0.3619, 0.6381) 0.4311

TABLE 4
Optimal Capital Allocations under Various Principles with (t, 2K) = (40, 40)

Principles (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 40) ψor(u∗

1, u
∗
2,∞)

P.1 (20, 20) (10, 10) (0.5, 0.5) 0.4266 0.7646
P.2 (17.53, 22.47) (8.77, 11.23) (0.4383, 0.5617) 0.4130 0.7550
P.3 (18.10, 21.90) (9.05, 10.95) (0.4525, 0.5475) 0.4137 0.7564
P.4 (18.99, 21.01) (9.49, 10.51) (0.4746, 0.5254) 0.4175 0.7594

Overall, there seems to be no consistent pattern to report among the allocation principles (except that the various principles
lead to quite different capital allocation schemes). In this particular example, we can see that none of the allocation principles
can be viewed as dominating the others to achieve the lowest finite-time joint-ruin probability. For instance, the haircut principle
yields the lowest ψor(u1, u2, t ) when t = 40 and 2K = 40 (which is relatively close to the global minimum of 0.4130). The CTE
principle provides a capital allocation with the lowest ψor(u1, u2, t ) whenever t = 80 and when (t, 2K) = (40, 100). Finally, the
finite-time ruin allocation principle provides the lowest ψor(u1, u2, t ) (= 0.0574) in the case of (t, 2K) = (40, 160). Yet in this
example, the allocations under the CTE principle are typically close to the ones that minimize the finite-time joint-ruin probability.
These interesting observations should motivate the risk community to further explore the joint-ruin–based allocation principles
and in particular their connections with other existing principles.

TABLE 5
Optimal Capital Allocations under Various Principles with (t, 2K) = (40, 100)

Principles (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 40) ψor(u∗

1, u
∗
2,∞)

P.1 (50, 50) (25, 25) (0.5, 0.5) 0.1734 0.6015
P.2 (43.83, 56.17) (21.91, 28.09) (0.4383, 0.5617) 0.1633 0.5797
P.3 (45.25, 54.75) (22.63, 27.37) (0.4525, 0.5475) 0.1609 0.5833
P.4 (47.46, 52.54) (23.73, 26.27) (0.4746, 0.5254) 0.1629 0.5905

TABLE 6
Optimal Capital Allocations under Various Principles with (t, 2K) = (40, 160)

Principles (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 40) ψor(u∗

1, u
∗
2,∞)

P.1 (80, 80) (40, 40) (0.5, 0.5) 0.0639 0.4913
P.2 (70.13, 89.87) (35.06, 44.94) (0.4383, 0.5617) 0.0638 0.4435
P.3 (72.40, 87.60) (36.20, 43.80) (0.4525, 0.5475) 0.0589 0.4489
P.4 (75.94, 84.06) (37.97, 42.03) (0.4746, 0.5254) 0.0574 0.4592
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TABLE 7
Optimal Capital Allocations under Various Principles with (t, 2K) = (80, 40)

Principles (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 80) ψor(u∗

1, u
∗
2,∞)

P.1 (20, 20) (10, 10) (0.5, 0.5) 0.5329 0.7646
P.2 (15.82, 24.18) (7.91, 12.09) (0.3956, 0.6044) 0.5178 0.7532
P.3 (17.16, 22.84) (8.58, 11.42) (0.4289, 0.5711) 0.5173 0.7544
P.4 (18.85, 21.15) (9.42, 10.58) (0.4711, 0.5288) 0.5232 0.7589

TABLE 8
Optimal Capital Allocations under Various Principles with (t, 2K) = (80, 100)

Principles (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 80) ψor(u∗

1, u
∗
2,∞)

P.1 (50, 50) (25, 25) (0.5, 0.5) 0.2762 0.6015
P.2 (39.56, 60.44) (19.78, 30.22) (0.3956, 0.6044) 0.2605 0.5739
P.3 (42.89, 57.11) (21.45, 28.55) (0.4289, 0.5711) 0.2543 0.5779
P.4 (47.11, 52.88) (23.56, 26.44) (0.4711, 0.5288) 0.2613 0.5892

TABLE 9
Optimal Capital Allocations under Various Principles with (t, 2K) = (80, 160)

Principles (u∗
1, u

∗
2 ) (u01, u

0
2) % Weight ψor(u∗

1, u
∗
2, 80) ψor(u∗

1, u
∗
2,∞)

P.1 (80, 80) (40, 40) (0.5, 0.5) 0.1327 0.4913
P.2 (63.30, 96.70) (31.65, 48.35) (0.3956, 0.6044) 0.1297 0.4333
P.3 (68.62, 91.38) (34.31, 45.69) (0.4289, 0.5711) 0.1166 0.4405
P.4 (75.38, 84.62) (37.69, 42.31) (0.4711, 0.5288) 0.1198 0.4574
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APPENDIX A. PROOF OF PROPOSITION 2.1
By definition,

Hi j(u, y, t; c) = P(U (t ) ≤ y, J(t ) = j|U (0) = u, J(0) = i)

− P(U (t ) ≤ y, τ ≤ t, J(t ) = j|U (0) = u, J(0) = i)

= P(S(t ) ≥ u+ ct − y, J(t ) = j|J(0) = i)

−
∫ y

0
P(U (t ) ∈ dz, τ ≤ t, J(t ) = j|U (0) = u, J(0) = i)

= Fi j(u+ ct − y) −
∫ y

0
P(U (t ) ∈ dz, τ ≤ t, J(t ) = j|U (0) = u, J(0) = i). (A.1)

By a one-to-one sample path mapping between {(U (s), J(s)), 0 ≤ s < t} when U (0) = u and U (t ) = z and {(Û (s), Ĵ(s)), 0 ≤
s < t} when Û (0) = u and Û (t ) = z, it is clear that

P (U (t ) ∈ dz, τ ≤ t, J(t ) = j |U (0) = u, J(0) = i )

= P
(
Û (t ) ∈ dz, τ̂+

z+u ≤ t, Ĵ(t ) = j
∣∣Û (0) = u, Ĵ(0) = i

)
,
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for z > 0 where τ̂+
z+u = inf{0 ≤ s < t : Û (s) = z+ u}. By further conditioning on τ̂+

z+u and Ĵ (̂τ
+
z+u), one finds that

P(U (t ) ∈ dz, t ≥ τ, J(t ) = j|U (0) = u, J(0) = i)

=
(∫ t

0

n∑
k=1

P
(̂
τ+
z+u ∈ ds, Ĵ

(̂
τ+
z+u
) = k

∣∣Û (0) = u, Ĵ(0) = j
)
f̂ki(u+ c(t − s), t − s)

)
dz

=
(∫ t

z
c∧t

n∑
k=1

Ẑ jk(ds, z; c) f̂ki(u+ c(t − s), t − s)

)
dz (A.2)

Substituting (A.2) into (A.1) easily leads to (15).

APPENDIX B. PROOF OF PROPOSITION 3.1
We silently assume throughout this proof thatU1(0) = u1 andU2(0) = u2, unless otherwise stated. Given that τor = τ1 if τ1 ≤ T

and τor = τ2 if τ1 > T , we have

mδ,i j(u1, u2; τor )
= E[e−δτ1−ξ1
(τ1 )e−ηU1(τ1−)−γ |U1(τ1 )|I{τ1 ≤ T, J(τ1) = j}|J(0) = i]

+E[e−δτ2+ξ2
(τ2 )e−ηU2(τ2−)−γ |U2(τ2 )|I{τ2 < ∞, J(τ2) = j}I{τ1 > T }|J(0) = i]

= e−ξ2(u2−u1 )E[e−δ1τ1−ηU1(τ1−)−γ |U1(τ1 )|I{τ1 < ∞, J(τ1) = j}|J(0) = i]

−E[e−δτ1−ξ1
(τ1 )e−ηU1(τ1−)−γ |U1(τ1 )|I{τ1 < ∞, J(τ1) = j}I{τ1 > T }|J(0) = i]

+E[e−δτ2+ξ2
(τ2 )e−ηU2(τ2−)−γ |U2(τ2 )|I{τ2 < ∞, J(τ2) = j}I{τ1 > T }|J(0) = i], (B.1)

where δ1 = δ − ξ2(c1 − c2) ≥ 0 and ξi = ηi + γi (i = 1, 2). Conditioning on the surplus level and the state at time T (with no ruin
occurs before T ), and utilizing the matrix renewal property, we have

E[e−δτ1−ξ1
(τ1 )e−ηU1(τ1−)−γ |U1(τ1 )|I{τ1 < ∞, J(τ1) = j}I{τ1 > T }‖J(0) = i]

=
n∑
l=1

∫ ∞

0
Hil (u1, dy,T ; c1)

× e−δTE[e−δ1τ1e−ηU1(τ1−)−γ |U1(τ1 )|I{τ1 < ∞, J(τ1) = j}‖U1(0) = y, J(0) = l]

= e−δT
n∑
l=1

∫ ∞

0
Hil (u1, dy,T ; c1) × φδ1,η,γ ,l j(y; c1). (B.2)

Recall that τ1 > T implies τ2 > T and thus τ2 = τ2(T ). Using virtually the same arguments, one finds

E[e−δτ2+ξ2
(τ2 )e−ηU2(τ2−)−γ |U2(τ2 )|I{τ2 < ∞, J(τ2) = j}I{τ1 > T }‖J(0) = i]

= e−δT
n∑
l=1

∫ ∞

0
Hil (u1, dy,T ; c1)φδ2,η,γ ,l j(y; c2), (B.3)

where δ2 = δ + ξ1(c1 − c2) ≥ 0. Substituting (B.2) and (B.3) into (B.1) leads to the matrix representation (22). Second, given that
{τ1, τ2} = {τor, τand}, one easily obtain the following identity:
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mδ (u1, u2; τor ) + mδ (u1, u2; τand ) = mδ (u1, u2; τ1) + mδ (u1, u2; τ2)
= e−ξ2(u2−u1 )�δ1,η,γ (u1; c1) + eξ1(u2−u1 )�δ2,η,γ (u2; c2).

Equation (23) follows immediately from (22). Finally, from (19) for τsim, Eq. (24) can be validated using similar arguments.

APPENDIX C. PROOF OF PROPOSITION 3.2
For τor, we know that τor = τ1 if τ1 ≤ T and τor = τ2 if τ1 > T . If t ≤ T , then

ψor,i j(u1, u2, t ) = P(τor ≤ t, J(τor ) = j|U1(0) = u1,U2(0) = u2, J(0) = i)

= P(τ1 ≤ t, J(τ1) = j|U1(0) = u1,U2(0) = u2, J(0) = i)

= ψi j(u1, t; c1).

If t > T , then

ψor,i j(u1, u2, t ) = P(τ1 ≤ t, τ1 ≤ T, J(τ1) = j|U1(0) = u1,U2(0) = u2, J(0) = i)

+P(τ2 ≤ t, τ1 > T, J(τ2) = j|U1(0) = u1,U2(0) = u2, J(0) = i)

= ψi j(u1,T ; c1) + P(τ2 ≤ t, τ1 > T, J(τ2) = j|U1(0) = u1, J(0) = i).

Following the same arguments as in Proposition 3.1, we can show that

P(τ2 ≤ t, τ1 > T, J(τ2) = j|U1(0) = u1, J(0) = i) =
n∑
l=1

∫ ∞

0
Hil (u1, dy,T ; c1)ψl j(y, t − T ; c2).

This completes the proof of (25). Equation (26) can be obtained through the following identity:

ψor,i j(u1, u2, t ) + ψand,i j(u1, u2, t ) = ψi j(u1, t; c1) + ψi j(u2, t; c2).

Finally, Eq. (27) can be proved in a similar way to Eq. (25).
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