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a b s t r a c t

In this paper, we propose the dependence notions of weakly stochastic arrangement
increasing through left tail probability (LWSAI) and weakly stochastic arrangement in-
creasing (WSAI) to model multivariate dependent risks. We derive properties and char-
acterizations of these new notions and show that many existing dependence structures
are the special cases of these notions of dependence. We apply the dependence notions of
LWSAI and WSAI to the problem of optimal portfolio selections with dependent risks and
generalize many existing studies.

Published by Elsevier Inc.

1. Introduction

The problem of optimal portfolio selections has been an interesting research topic in insurance and finance. In most
of the existing studies on optimal portfolio selections, assets or risks in an investment/insurance portfolio are assumed
to be independent or to have some special dependence structures such as exchangeable assets or comonotonic risks.
However, even with the special dependence structures on the assets or risks, the solutions to the problem of optimal
portfolio selections are usually not available if the joint distribution of the assets are unknown. Therefore, many studies
investigated the properties of the solutions to the problem of optimal portfolio selections when assets in a portfolio
have some dependence structures but their joint distribution is unknown. In particular, ordering optimal proportions or
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allocations has been a challenging problem due to the dependence of the risks and the unavailability of the joint distribution
of the risks in a portfolio selection problem. Such researches in insurance and finance can be found in [6,12,11,7,3,2,4,13,19],
and references therein. The optimal portfolio selection problems in these studies can be generally formulated as follows.

Let X1, . . . , Xn be random variables, representing the stochastic return rates of n different assets in an investment
portfolio of an investor. Let ai be the investment weight on asset i, then

n
i=1 ai = 1. Furthermore, we assume that

0 ≤ ai ≤ 1 for i = 1, . . . , n or short positions are not allowed. Thus, at the end of the investment term, the total return rate
is
n

i=1 aiXi. The investor wants to choose a portfolio (a1, . . . , an) so as to maximize the expected utility of his total return.
Mathematically, we want to study the following problem:

max
(a1,...,an)∈An

E


u


n

k=1

akXk


, (1.1)

where An is the collection of all the possible portfolios and is defined as

An =


(a1, . . . , an) ≥ 0 :

n
k=1

ak = 1


,

and u is a utility function.
Landsberger and Meilijson [12] investigated Problem (1.1) for two independent assets. Kijima and Ohnishi [11]

generalized the studies of Landsberger and Meilijson [12] by introducing a dependence structure between two assets.
Hennessy and Lapan [7] used the Archimedean copula to model the dependence between multiple assets and ordered
the optimal allocations. Recently, Li and You [13] had generalized the studies of Hennessy and Lapan [7] by introducing
a multivariate dependence structure defined through the arrangement increasing property of the joint density function of
the assets. On the other hand, Hadar and Seo [6] discussed mutually independent assets ordered by the usual stochastic
order. With certain utility functions u, they managed to order the optimal investment weights for Problem (1.1).

In practice, default may occur on an asset or bond investment. An interesting extension of Model (1.1) is to incorporate
default risks. Assume that the investor faces the risk of default on each asset or bond. We use Bernoulli random variable Ik
to indicate the default event of the asset or bond k. The return rate Xk is realized only if Ik = 1, otherwise the return rate
of the asset k is 0 or default occurs on the asset k. Therefore, the total return rate with default risks is

n
k=1 akXkIk, and the

optimal portfolio selection problem becomes

max
(a1,...,an)∈An

E


u


n

k=1

akXkIk


. (1.2)

Model (1.2) was proposed and studied by Cheung and Yang [3]. They assumed that (X1, . . . , Xn) are exchangeable and
managed to order the optimal allocations with certain assumptions on the default indicators I1, . . . , In. Later, Chen and Hu
[2] studied Problem (1.2) with independent return rates X1, . . . , Xn and the certain utility functions u and generalized the
results of Hadar and Seo [6].

Furthermore, Cheung and Yang [4] proposed a mixture risk model for the problem of optimal portfolio sections. In this
model, we assume that there is a group of fundamental risks {Xj : j ∈ J} in the financial market, where J is an arbitrary
index set. These fundamental risks can be interpreted as stochastic return rates under different investment environments.
Although the index of the fundamental risks can be uncountably infinite, we assume J to be a finite set {1, 2, . . . ,m}

for simplicity in this paper. We further assume that the return rate of any security in the market is a mixture of these
fundamental risks and associate different securities with different mixing random variables M1, . . . ,Mn. Mathematically,
we denote the return rates of n assets or securities in an investment portfolio by

XMi =


j∈J

Xj I{Mi = j} =

m
j=1

Xj I{Mi = j}, i = 1, . . . , n,

where {Mi, i = 1, . . . , n} are random variables taking values in J = {1, 2, . . . ,m}. In this context, the optimal portfolio
selection problem is formulated as

max
(a1,...,an)∈An

E


u


n

k=1

akXMk


. (1.3)

To study Problem (1.3), Cheung and Yang [4] assumed that X1, . . . , Xn are comonotonic with X1 ≤st · · · ≤st Xn. This
mixture risk model with the same assumption was also adopted by Hu and Wang [8] to study some allocation problems
in insurance.

We point out that, in most of the existing studies of Problems (1.1)–(1.3), the return rates of assets are assumed to be
independent or comonotonic or exchangeable. Motivated by this observation, this paper proposes new dependence notions
to model more general dependent risks and use these notions of dependence to unify and extend the existing studies on the
optimal portfolio selection problems with dependent risks. The rest of the paper is organized as follows.
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In Section 2,we present preliminaries about stochastic orders and define the dependence notions of LWSAI andWSAI.We
also recall the dependence notions of stochastic arrangement increasing (SAI) andweakly stochastic arrangement increasing
through right tail probability (RWSAI) defined by Cai andWei [1] and cite some results on SAI andWSAI, which will be used
in this paper. In Section 3, we derive properties of LWSAI and WSAI and give characterizations of LWSAI. In Section 4, we
show how to construct LWSAI random vectors through certain copulas. By doing so, we demonstrate that the dependence
structure studied in [7] is a special case of LWSAI. In Section 5, we use LWSAI and WSAI random vectors to model the
return rates and restudy the optimal portfolio selection problems (1.1)–(1.3) with more general dependent risks. These
studies generalize the results of Hennessy and Lapan [7], Chen and Hu [2], and Cheung and Yang [3,4]. In Section 6, we give
concluding remarks.

2. Preliminaries and the dependence notions of LWSAI and WSAI

For the sake of convenience, we use the following notations throughout the paper. We denote an n-dimensional real-
valued vector (x1, . . . , xn) by x and an n-dimensional random vector (X1, . . . , Xn) by X. We use S(X) or S(X1, . . . , Xn) to
denote the support of random vector X, which means that P{X ∈ S(X)} = P{(X1, . . . , Xn) ∈ S(X1, . . . , Xn)} = 1. For any
set K = {i1, . . . , ik} ⊂ {1, . . . , n} where 1 ≤ i1 < · · · < ik ≤ n and k = 1, . . . , n, we denote xK = (xi1 , . . . , xik) and
XK = (Xi1 , . . . , Xik). In particular, for any 1 ≤ i < j ≤ n, if K = {i, j}, we write K̄ = ij = {1, . . . , n} \ {i, j},XK = Xij,XK̄ =

Xij, xK = xij , and x
K̄

= x
ij
.

Let π = (π(1), . . . , π(n)) be any permutation of {1, . . . , n}, we define π(x) = (xπ(1), . . . , xπ(n)). For any 1 ≤ i ≠ j ≤ n,
we denote the special permutation of transposition by πij = (πij(1), . . . , πij(n)), where πij(k) = k for k ≠ i, j and
πij(i) = j, πij(j) = i.

We first recall definitions of comonotonicity and some stochastic orders. Readers are referred to Dhaene et al. [5] for a
detailed discussion on comonotonicity, and [17] for a comprehensive study on various stochastic orders.

Definition 2.1. A random vector (X1, . . . , Xn) is said to be comonotonic, if

P{X1 ≤ x1, . . . , Xn ≤ xn} = min{P{X1 ≤ x1}, . . . , P{Xn ≤ xn}},

for any (x1, . . . , xn) ∈ Rn. �

Definition 2.2. Let X and Y be two random variables with distribution functions FX (x) = P{X ≤ x} = 1 − F̄X (x) and
FY (y) = P{Y ≤ y} = 1 − F̄Y (y) and probability density functions (or probability mass function in discrete cases) fX (x) and
fY (y).

(i) We say that X is smaller than Y in usual stochastic order, denoted as X ≤st Y , if F̄X (x) ≤ F̄Y (x) for all x ∈ R.
(ii) We say that X is smaller than Y in reversed hazard rate order, denoted as X ≤rh Y , if FY (x)/FX (x) is increasing in

x ∈ {x : FX (x) > 0}.
(iii) We say that X is smaller than Y in likelihood ratio order, denoted as X ≤lr Y , if fY (x)/fX (x) is increasing in x ∈ {x : fX (x)

> 0}. �

These stochastic orders only involve comparison of marginal distributions. Shanthikumar and Yao [18] incorporated
interdependence into comparisons of two random variables by introducing bivariate stochastic orders. Cai and Wei [1]
generalized some of the bivariate stochastic orders to multivariate cases. In the following, we recall some of their notions.

Consider function g : R n
→ R. Denote ∆ijg(x1, . . . , xn) = g(x1, . . . , xn) − g(πij(x1, . . . , xn)). For 1 ≤ i < j ≤ n, define

G
ij
sai(n) = {g(x1, . . . , xn) : ∆ijg(x1, . . . , xn) ≥ 0 for any xi ≤ xj}, (2.1)

G
ij
lwsai(n) = {g(x1, . . . , xn) : ∆ijg(x1, . . . , xn) is decreasing in xi ≤ xj}, (2.2)

G
ij
rwsai(n) = {g(x1, . . . , xn) : ∆ijg(x1, . . . , xn) is increasing in xj ≥ xi}, (2.3)

G
ij
wsai(n) = {g(x1, . . . , xn) : ∆ijg(x1, . . . , xn) is increasing in xj}. (2.4)

The class G
ij
sai(n) describes the arrangement increasing property of multivariate functions. Readers are referred to

Marshall et al. [15] for more discussions about the arrangement increasing property. It is easy to verify that G
ij
wsai(n) ⊂

G
ij
lwsai(n) (G

ij
rwsai(n)) ⊂ G

ij
sai(n). The following definitions of SAI and RWSAI were proposed by Cai and Wei [1].

Definition 2.3. A random vector X = (X1, . . . , Xn) or its joint distribution is said to be stochastic arrangement increasing
(SAI) if E [g(X)] ≥ E [g(πij(X))] for any 1 ≤ i < j ≤ n and g(x1, . . . , xn) ∈ G

ij
sai(n) such that the expectations exist.

A random vector X = (X1, . . . , Xn) or its joint distribution is said to be weakly stochastic arrangement increasing through
right tail probability (RWSAI) if E [g(X)] ≥ E [g(πij(X))] for any 1 ≤ i < j ≤ n and g(x1, . . . , xn) ∈ G

ij
rwsai(n) such that the

expectations exist. �
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For a randomvectorwith a joint density function, Cai andWei [1] developed an equivalent characterization of SAI through
the arrangement increasing property of the joint density function, as shown in Theorem 3.6 and Remark 3.7 of Cai and Wei
[1]. We point out that, for a discrete random vector, we can derive a similar characterization through the joint probability
mass function, as shown by the following proposition.

Proposition 2.4. Let (X1, . . . , Xn) be a discrete random vector with joint probability mass function p(x1, . . . , xn) = P{X1 =

x1, . . . , Xn = xn}. The random vector (X1, . . . , Xn) is SAI if and only if

p(x1, . . . , xn) ≥ p(πij(x1, . . . , xn)),

for any 1 ≤ i < j ≤ n and (x1, . . . , xn) ∈ S(X1, . . . , Xn) such that xi ≤ xj.

Proof. We only prove the bivariate case. The proof for the multivariate case is similar to that for the bivariate case.
First, assume that (X1, X2) is SAI. For any (x1, x2) ∈ S(X1, X2) such that x1 ≤ x2, there exists A ⊂ {(x, y) ∈ R2

| x ≤ y}
satisfying S(X1, X2) ∩ A = {(x1, x2)}. Define h(u, v) = I{(u, v) ∈ A}, it is easy to verify that h(u, v) ∈ G12

sai(2). According to
the definition of SAI, we have E[h(X1, X2)] ≥ E[h(X2, X1)], which implies that p(x1, x2) ≥ p(x2, x1).

Now assume that p(x1, x2) ≥ p(x2, x1) for any x1 ≤ x2. Consider any function g ∈ G12
sai(2), i.e., g(x1, x2) ≥ g(x2, x1) for

any x1 ≤ x2. Note that

E[g(X1, X2)] =


x1<x2


p(x1, x2)g(x1, x2) + p(x2, x1)g(x2, x1)


+


x1=x2

p(x1, x2)g(x1, x2)

≥


x1<x2


p(x1, x2)g(x2, x1) + p(x2, x1)g(x1, x2)


+


x1=x2

p(x1, x2)g(x1, x2)

= E[g(X2, X1)].

The inequality follows from the fact that ac + bd ≥ ad + bc for a ≥ b, c ≥ d. �

Definition 2.5. A random vector X = (X1, . . . , Xn) or its joint distribution is said to be weakly stochastic arrangement
increasing through left tail probability (LWSAI), if E [g(X)] ≥ E [g(πij(X))] for any 1 ≤ i < j ≤ n and g(x1, . . . , xn) ∈ G

ij
lwsai(n)

such that the expectations exist.
A random vector X = (X1, . . . , Xn) or its joint distribution is said to be weakly stochastic arrangement increasing (WSAI),

if E [g(X)] ≥ E [g(πij(X))] for any 1 ≤ i < j ≤ n and g(x1, . . . , xn) ∈ G
ij
wsai(n) such that the expectations exist. �

Aspointed out byCai andWei [1], the notion of RWSAI is amultivariate generalization of the joint hazard rate order,which
was proposed by Shanthikumar and Yao [18]. Here, we point out that the notions of LWSAI and WSAI are respectively the
multivariate generalizations of the joint reversed hazard rate order and the joint stochastic order proposed by Shanthikumar
and Yao [18] aswell.We also remark that the introduced concepts of LWSAI andWSAI are used to generalize themultivariate
models used in the optimal portfolio selections. As illustrated in Sections 3 and 4, these concepts allow risks to be dependent
in a more general structure than the existing multivariate models do. However, we point out that these concepts essentially
describe the properties of multivariate distributions rather than study multivariate dependence itself since we do not study
whether these concepts satisfy the desirable properties of a notion of dependence. For modeling dependence, we refer to
the monographs of Joe [9,10].

At the end of this section, we use the multivariate normal random vectors and the exchangeable random vectors as
examples to illustrate the notions of SAI, LWSAI, RWSAI, and WSAI. First, by noting that G

ij
wsai(n) ⊂ G

ij
lwsai(n) (G

ij
rwsai(n)) ⊂

G
ij
sai(n), we have the following implications:

SAI H⇒ LWSAI (RWSAI) H⇒ WSAI.

Furthermore, let (X1, · · · , Xn) be any exchangeable random vector. It is easy to verify that the exchangeable random
vector (X1, . . . , Xn) is SAI and thus is LWSAI, RWSAI, andWSAI. Moreover, there aremany nonexchangeable random vectors
that are SAI, LWSAI, RWSAI, andWSAI. For instance, Section 4 presents how to construct nonexchangeable LWSAI (and thus
WSAI) vectors. In addition, Theorem 2.15 of Shanthikumar and Yao [18] gives a sufficient condition for a bivariate normal
random vector to be SAI, which shows that nonexchangeable random vectors can be SAI.

In the following, we first prove that the sufficient condition given by Shanthikumar and Yao [18] is also necessary and
then derive a sufficient and necessary condition for a multivariate normal random vector to be SAI.

Lemma 2.6. Assume that (X1, X2) is a bivariate normal random vector. Then (X1, X2) is SAI if and only if Var(X1) = Var(X2)
and E(X1) ≤ E(X2).

Proof. Suppose that Var(X1) = Var(X2) and E(X1) ≤ E(X2). Then, (X1, X2) is SAI by Theorem 2.15 (ii) of Shanthikumar and
Yao [18].

Conversely, suppose that (X1, X2) is SAI. Let
√
Var(X1) = σ1,

√
Var(X2) = σ2, E(X1) = µ1, and E(X2) = µ2. According

to Proposition 5.1 and relation (4.2) of Cai and Wei [1], we know that X1 ≤st X2, which implies that P{X2 ≤ t} ≤ P{X1 ≤ t}
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or Φ(
t−µ2
σ2

) ≤ Φ(
t−µ1
σ1

) for all t ∈ R, where Φ(x) is the standard normal distribution function. Noting that Φ(x) is strictly
increasing, we have

t − µ2

σ2
≤

t − µ1

σ1
for all t ∈ R, (2.5)

which implies µ1 ≤ µ2 by setting t = µ2 in (2.5). Furthermore, (2.5) implies 1− µ2
t

σ2
≤

1− µ1
t

σ1
for t > 0 and 1− µ2

t
σ2

≥
1− µ1

t
σ1

for t < 0. Thus, by letting t → ∞ and t → −∞, we get σ1 ≤ σ2 and σ1 ≥ σ2 and thus σ1 = σ2. �

Note that if (X1, X2) is a bivariate normal randomvector, then (X1+α1, X2+α2) is a bivariate normal randomvector for any
constants α1 and α2. Furthermore, if (X1, X2) is an exchangeable bivariate random vector with E(X2

1 ) < ∞ and E(X2
2 ) < ∞,

then Var(X1) = Var(X2) and E(X1) = E(X2). Thus, by Lemma 2.6, we immediately obtain the following corollary.

Corollary 2.7. If (X1, X2) is an exchangeable bivariate normal random vector, then (X1 + α1, X2 + α2) is SAI for any constants
α1 ≤ α2. �

Proposition 2.8. Assume that a random vector (X1, . . . , Xn) follows a multivariate normal distribution with mean µ = (µ1,
. . . , µn). Denote Var[Xi] = σ 2

i for i = 1, . . . , n and Cov[Xi, Xj] = cij for 1 ≤ i ≠ j ≤ n. Then (X1, . . . , Xn) is SAI if and only if
the following three conditions hold: (i) µ1 ≤ · · · ≤ µn, (ii) σ1 = · · · = σn, and (iii) cij are equal for all 1 ≤ i ≠ j ≤ n.

Proof. Suppose that (X1, . . . , Xn) is SAI. According to Proposition 3.3(i) of Cai and Wei [1], we know that (Xi, Xj) and
(Xi, Xj, Xk) are SAI for all 1 ≤ i < j < k ≤ n. Therefore, we conclude that µ1 ≤ · · · ≤ µn and σ1 = · · · = σn from
Lemma 2.6. Denote σ = σ1 = · · · = σn. Now we consider (X1, X2, X3), which has a multivariate normal distribution as
well. For any given x3 ∈ R, by the property of the multivariate normal distribution, see, for example, Joe [10], we know that
(X1, X2) | X3 = x3 follows a bivariate normal distribution with the following mean

µ̂ = (µ1, µ2) + (x3 − µ3) ×
1
σ 2

× (c13, c23) =


µ1 +

c13
σ 2

(x3 − µ3), µ2 +
c23
σ 2

(x3 − µ3)


.

On the other hand, according to Proposition 3.4 of Cai and Wei [1], we know that (X1, X2)|X3 = x3 is SAI for any x3 ∈ R.
Therefore, from Lemma 2.6, we have

µ1 +
c13
σ 2

(x3 − µ3) ≤ µ2 +
c23
σ 2

(x3 − µ3), for all x3 ∈ R,

which implies that µ1
x3

+
c13
σ 2 (1 −

µ3
x3

) ≤
µ2
x3

+
c23
σ 2 (1 −

µ3
x3

) for x3 > 0 and µ1
x3

+
c13
σ 2 (1 −

µ3
x3

) ≥
µ2
x3

+
c23
σ 2 (1 −

µ3
x3

) for x3 < 0.
Thus, by letting x3 → ∞ and x3 → −∞, we get c13 ≤ c23 and c13 ≥ c23 and thus c13 = c23. By the same arguments, we
obtain that cij are equal for all 1 ≤ i ≠ j ≤ n.

Conversely, suppose that conditions (i), (ii), (iii) hold. Then (X1 −µ1, . . . , Xn −µn) follows an exchangeable multivariate
normal distribution. Hence,

(X1 − µ1, X2 − µ2) | (X3 − µ3, . . . , Xn − µn) = (x3 − µ3, . . . , xn − µn)

= (X1 − µ1, X2 − µ2) | (X3, . . . , Xn) = (x3, . . . , xn)

follows an exchangeable bivariate normal distribution for any (x3, . . . , xn) ∈ Rn−2. Thus, according to Corollary 2.7, we
know that

(X1, X2) | (X3, . . . , Xn) = (x3, . . . , xn)
= (X1 − µ1, X2 − µ2) | (X3, . . . , Xn) = (x3, . . . , xn) + (µ1, µ2)

is SAI. By the same arguments, we obtain that (Xi, Xj) |Xij = xij is SAI for any 1 ≤ i < j ≤ n and any xij ∈ Rn−2. This implies
that (X1, . . . , Xn) is SAI by Proposition 3.4 of Cai and Wei [1]. �

3. Properties of LWSAI and WSAI

In this section, we present some properties of the dependence notions of LWSAI and WSAI.

Proposition 3.1. A random vector (X1, . . . , Xn) is LWSAI if and only if (−Xn, . . . ,−X1) is RWSAI.

Proof. We first prove the ‘‘if’’ part. Assume (X1, . . . , Xn) is LWSAI. For any 1 ≤ i < j ≤ n, consider anymultivariate function
g(x1, . . . , xn) ∈ G

ij
rwsai(n), we want to show that

E[g(−Xn, . . . ,−X1)] ≥ E[g(πij(−Xn, . . . ,−X1))].
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Define h(x1, . . . , xn) = g(−xn, . . . ,−x1), it is easy to verify that h(x1, . . . , xn) ∈ G
n+1−j, n+1−i
lwsai (n). Therefore,

E[g(−Xn, . . . ,−X1)] = E[h(X1, . . . , Xn)]

≥ E[h(πn+1−j, n+1−i(X1, . . . , Xn))] = E[g(πij(−Xn, . . . ,−X1))].

The ‘‘only if’’ part can be similarly proved. �

Proposition 3.1 establishes a relation between the notions of LWSAI and RWSAI and thus it provides a shortcut to derive
some properties of LWSAI based on the properties of RWSAI developed in Cai and Wei [1].

Proposition 3.2. A random vector X = (X1, . . . , Xn) is LWSAI (WSAI) if and only if (Xi, Xj) |Xij = x
ij
is LWSAI (WSAI) for any

1 ≤ i < j ≤ n and x
ij

∈ S(Xij).

Proof. We give the proof only for the notion of WSAI. The proof for LWSAI is analogous.
First, assume that (X1, . . . , Xn) is WSAI. For any 1 ≤ i < j ≤ n and g(x, y) ∈ G12

wsai(2), denote h(x) = g(xi, xj) I{xij ∈ A}

for any A ∈ σ(Xij). It is easy to verify that h(x) ∈ G
ij
wsai(n). Since (X1, . . . , Xn) is WSAI, we have E[h(X)] ≥ E[h(πij(X))],

i.e., E[g(Xi, Xj) I{Xij ∈ A}] ≥ E[g(Xj, Xi) I{Xij ∈ A}] for any A ∈ σ(Xij), or equivalently, E[E[g(Xi, Xj) | Xij] I{Xij ∈

A}] ≥ E[E[g(Xj, Xi) | Xij] I{Xij ∈ A}] for any A ∈ σ(Xij). Recall Lemma 3.2 of Cai and Wei [1], which states that if
X = (X1, . . . , Xn) is a random vector defined on the probability space (Ω, F , P) and f (x) = f (x1, . . . , xn) is a multivariate
function satisfying E[f (X) I(A)] ≤ 0 for all A ∈ F , then f (X) ≤a.s. 0. Hence, according to Lemma 3.2 of Cai and Wei [1], we
have E[g(Xi, Xj) |Xij] ≥a.s. E[g(Xj, Xi) |Xij], which implies that (Xi, Xj) |Xij = x

ij
is WSAI.

Conversely, assume that (Xi, Xj) |Xij = x
ij
is WSAI for any 1 ≤ i < j ≤ n, consider any 1 ≤ i < j ≤ n and any function

g ∈ G
ij
wsai(n), we need to show E [g(X)] ≥ E [g(πij(X))]. Note that for any fixed x

ij
∈ S(Xij), g(x1, . . . , xn) ∈ G12

wsai(2) as a
bivariate function of (xi, xj). Since (Xi, Xj) |Xij = x

ij
is WSAI, we have E [g(X) |Xij = x

ij
] ≥ E [g(πij(X)) |Xij = x

ij
], which

implies E [g(X)] ≥ E [g(πij(X))]. �

LWSAI and WSAI random vectors can be constructed through special dependence structures, such as independence and
comonotonicity. As a matter of fact, following Proposition 5.5 of Cai andWei [1], a comonotonic random vector (X1, . . . , Xn)
withX1 ≤st · · · ≤st Xn is SAI and thus is LWSAI andWSAI. The following Proposition 3.3 shows how to constructWSAI random
vectors with independence.

Proposition 3.3. If X1, . . . , Xn are mutually independent and X1 ≤st · · · ≤st Xn, then (X1, . . . , Xn) is WSAI.

Proof. It follows from Theorem 4.3 of Shanthikumar and Yao [18] that, if X ≤st Y and X is independent of Y , then (X, Y )
is WSAI. Therefore, we have (Xi, Xj) |Xij = x

ij
is WSAI for any x

ij
∈ S(Xij), which implies that (X1, . . . , Xn) is WSAI by

Proposition 3.2. �

In the following, we develop some equivalent characterizations for the notion of LWSAI.

Theorem 3.4. Let (X, Y ) be a bivariate random vector. The following statements are equivalent.

(i) (X, Y ) is LWSAI;
(ii) P{X ≤ x, y < Y ≤ y + t} ≥ P{Y ≤ x, y < X ≤ y + t} for any x ≤ y and t > 0;
(iii) E[h(X) I{X ≤ x, y < Y ≤ y + t}] ≥ E[h(Y ) I{Y ≤ x, y < X ≤ y + t}] for any x ≤ y, t > 0, and nonnegative decreasing

function h(x).

Proof. (i) ⇒ (ii). This implication follows immediately from the fact that the indicator function I{(u, v) ∈ (−∞, x] × (y,
y + t]} belongs to the class G12

lwsai(2) for any x ≤ y and t > 0.
(ii) ⇒ (iii). It is easy to show by limiting arguments that (ii) implies

P{X < x, y < Y ≤ y + t} ≥ P{Y < x, y < X ≤ y + t},

for any x ≤ y and t > 0. Therefore, we conclude that

P{X ∈ I, y < Y ≤ y + t} ≥ P{Y ∈ I, y < X ≤ y + t}, (3.1)

for any t > 0 and interval I such that inf I = −∞ and sup I ≤ y.
Recalling that E[Z] =


∞

0 P{Z > z}dz for any nonnegative random variable Z , we have

E[h(X) I{X ≤ x, y < Y ≤ y + t}] =


∞

0
P

h(X) I{X ≤ x, y < Y ≤ y + t} > z


dz

=


∞

0
P{h(X) > z, X ≤ x, y < Y ≤ y + t}dz =


∞

0
P{X ∈ Iz, y < Y ≤ y + t}dz

≥


∞

0
P{Y ∈ Iz, y < X ≤ y + t}dz = E[h(Y ) I{Y ≤ x, y < X ≤ y + t}],
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where Iz = h−1((z, ∞)) ∩ (−∞, x] and the inequality holds because Iz is either an empty set or an interval satisfying the
condition for (3.1) to hold.

(iii)⇒ (i). Consider any g(x, y) ∈ G12
lwsai(2), wewant to show thatE[g(X, Y )] ≥ E[g(X, Y )], orE[∆12g(X, Y )] ≥ 0. Noting

that ∆12g(x, y) = −∆12g(y, x) and ∆12g(x, y) = 0 if x = y, we have

E[∆12g(X, Y )] = E[∆12g(X, Y ) I{X < Y }] + E[∆12g(X, Y ) I{X > Y }]

= E[∆12g(X, Y ) I{X < Y }] − E[∆12g(Y , X) I{Y < X}]. (3.2)

For a fixed positive integer n, define

hn,i(x) = inf
s∈[ i 2−n, (i+1) 2−n)

∆12g(x, s) × I

x ≤

i
2n


, −n2n

≤ i < n2n
− 1.

The infimum always exists since ∆12g(x, y) ≥ 0 for any x ≤ y. Recalling that ∆12g(x, y) is decreasing in x ∈ (−∞, y], we
conclude that hn,i(x) is decreasing in x. Therefore, according to (iii), we have

E

hn,i(X) I


i
2n

< Y ≤
i + 1
2n


= E


hn,i(X) I


X ≤

i
2n

,
i
2n

< Y ≤
i + 1
2n


≥ E


hn,i(Y ) I


Y ≤

i
2n

,
i
2n

< X ≤
i + 1
2n


= E


hn,i(Y ) I


i
2n

< X ≤
i + 1
2n


.

Furthermore, define

Hn(x, y) =

n2n−1
i=−n2n

hn,i(x) × I


i
2n

< y ≤
i + 1
2n


.

Then,

E[Hn(X, Y )] =

n2n−1
i=−n2n

E

hn,i(X) I


i
2n

< Y ≤
i + 1
2n



≥

n2n−1
i=−n2n

E

hn,i(Y ) I


i
2n

< X ≤
i + 1
2n


= E[Hn(Y , X)].

On the other hand, it is easy to verify that {Hn(x, y), n = 1, 2, . . .} is an increasing sequence and limn→∞ Hn(x, y) =

∆12g(x, y) × I{x < y}. According to the monotone convergence theorem, we have

E[∆12g(X, Y ) I{X < Y }] = lim
n→∞

E[Hn(X, Y )]

≥ lim
n→∞

E[Hn(Y , X)] = E[∆12g(Y , X) I{Y < X}],

which implies that E[∆12g(X, Y )] ≥ 0 from (3.2). �

Proposition 3.5. A random vector X = (X1, . . . , Xn) is LWSAI if and only if

P{Xi ≤ xi, xj < Xj ≤ xj + t, Xij ∈ Aij} ≥ P{Xj ≤ xi, xj < Xi ≤ xj + t, Xij ∈ Aij}, (3.3)

for any 1 ≤ i < j ≤ n, xi ≤ xj, t > 0, and Aij ∈ σ(Xij).

Proof. The ‘‘only if’’ part is obvious by noting that I{yi ≤ xi, xj < yj ≤ xj + t, yij ∈ Aij} ∈ G
ij
lwsai(n).

For the ‘‘if’’ part, we first rewrite (3.3) as

E[E[I{Xi ≤ xi, xj < Xj ≤ xj + t} |Xij ] I{Xij ∈ Aij}] ≥ E[E[I{Xj ≤ xi, xj < Xi ≤ xj + t} |Xij ] I{Xij ∈ Aij}].

As in the proof of Proposition 3.2, according to Lemma 3.2 of Cai and Wei [1], we have

E[I{Xi ≤ xi, xj < Xj ≤ xj + t} |Xij] ≥a.s. E[I{Xj ≤ xi, xj < Xi ≤ xj + t} |Xij],

or

P{Xi ≤ xi, xj < Xj ≤ xj + t |Xij = xij} ≥ P{Xj ≤ xi, xj < Xi ≤ xj + t |Xij = xij},

for any 1 ≤ i < j ≤ n, xi ≤ xj, and xij ∈ S(Xij).
From Theorem 3.4 (ii), we know that the (conditional) distribution of (Xi, Xj) |Xij = xij is LWSAI for any 1 ≤ i < j ≤ n

and xij ∈ σ(Xij), which implies that (X1, . . . , Xn) is LWSAI by Proposition 3.2. �
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Based on Proposition 3.1, we can easily derive an analogue to Proposition 3.5 for the notion of RWSAI. The proof is
straightforward and is thus omitted.

Proposition 3.6. A random vector X = (X1, . . . , Xn) is RWSAI if and only if

P{xi − t < Xi ≤ xi, Xj > xj, Xij ∈ Aij} ≥ P{xi − t < Xj ≤ xi, Xi > xj, Xij ∈ Aij},

for any 1 ≤ i < j ≤ n, xi ≤ xj, t > 0, and Aij ∈ σ(Xij). �

Propositions 3.5 and 3.6 provide an easy way to verify the notions of LWSAI and RWSAI, especially in the absence of joint
density functions. The application of Proposition 3.5 will be given in next section.

On the other hand, if the joint density function exists, we have the following characterization of the notion of LWSAI.

Proposition 3.7. Assume a random vector (X1, . . . , Xn) has a joint density function. Then (X1, . . . , Xn) is LWSAI if and only if

∂

∂xj
P{Xi ≤ xi, Xj ≤ xj |Xij = x

ij
} ≥

∂

∂xj
P{Xi ≤ xj, Xj ≤ xi |Xij = x

ij
}, (3.4)

for any 1 ≤ i < j ≤ n, xi ≤ xj, and x
ij

∈ S(Xij).

Proof. We first give the proof for the case that n = 2. Assume random vector (X, Y ) has a joint density function, we want
to show that (X, Y ) is LWSAI if and only if

∂

∂y
P{X ≤ x, Y ≤ y} ≥

∂

∂y
P{X ≤ y, Y ≤ x}, ∀x ≤ y. (3.5)

By Proposition 3.1 of this section and Theorem 3.14 of Cai and Wei [1], we see that (X, Y ) is LWSAI ⇐⇒ (−Y , −X) is
RWSAI ⇐⇒

∂

∂u
P{−Y > u, −X > v} ≤

∂

∂u
P{−Y > v, −X > u}, ∀u ≤ v. (3.6)

Note that X and Y have the joint density function, (3.6) is equivalent to

∂

∂u
P{Y ≤ −u, X ≤ −v} ≤

∂

∂u
P{Y ≤ −v, X ≤ −u}, ∀u ≤ v,

which is equivalent to (3.5) by letting −u = y and −v = x.
The proof for the case that n ≥ 3 follows from Proposition 3.2. �

You and Li [19] proposed the notion of LTPD for random vectors with joint density functions. Proposition 3.7 shows that
the notion of LWSAI is reduced to LTPD if the joint density function of a random vector exists.

4. Construction of LWSAI random vectors

In this section, we show how to construct LWSAI random vectors through Archimedean copulas and certain marginal
distributions. We first recall the definition of an Archimedean copula. Let Ψ : (0, 1] → [0, ∞) be continuous, strictly
decreasing and satisfy: (i) Ψ (1) = 0, limx↓0 Ψ (x) = ∞, and (ii) Λ(x) is completely monotonic, namely (−1)kΛ(k)(x) =

(−1)k dk

dxk
Λ(x) ≥ 0 for all k = 0, 1, . . . , where Λ(x) = Ψ −1(x). Define

C(u1, . . . , un) = Λ


n

k=1

Ψ (uk)


, u1, . . . , un ∈ [0, 1]. (4.1)

Then C(u1, . . . , un) is an Archimedean copula.
Assume that the random vector (X1, . . . , Xn) has joint distribution function F(x1, . . . , xn) and marginal distribution

functions Fk(x), k = 1, . . . , n. Then (X1, . . . , Xn) is said to be linked by an Archimedean copula given by (4.1) if

F(x1, . . . , xn) = Λ


n

k=1

Ψ (Fk(xk))


. (4.2)

Proposition 4.1. Assume a random vector (X1, . . . , Xn) is linked by an Archimedean copula given by (4.1) with positive joint
density functions. If X1 ≤rh · · · ≤rh Xn, then (X1, . . . , Xn) is LWSAI.
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Proof. By combining Theorem 5.7 of Cai and Wei [1] and Proposition 3.1, we know that Proposition 4.1 holds if xΨ ′(x) is
increasing in x ∈ (0, 1). (We point that the condition ‘‘xΨ ′(x) is increasing in x ∈ [0, 1]’’ in Theorem 5.7 of Cai and Wei [1]
can be reduced to ‘‘xΨ ′(x) is increasing in x ∈ (0, 1)’’.) In the following, we shall show that xΨ ′(x) is increasing in x ∈ (0, 1)
under the assumption of the Archimedean copula defined by (4.1).

Note that Ψ : (0, 1] → [0, ∞) is continuous, strictly decreasing and satisfies Ψ (1) = 0 and limx↓0 Ψ (x) = ∞. Thus,
Λ(t) = Ψ −1(t) ≠ 0 andΛ′(t) =

d
dt Ψ

−1(t) = (Ψ ′(Ψ −1(t)))−1
≠ 0 for any t ∈ (0, ∞). Furthermore, note that the generator

Λ of the Archimedean copula is completely monotonic. Hence, by Theorem 2.14 of Müller and Scarsini [16], we know that
Λ(t) is log-convex in t ∈ (0, ∞), namely, log(Λ(t)) is convex in t ∈ (0, ∞), which implies that (log(Λ(t)))′ =

Λ′(t)
Λ(t) is

increasing in t ∈ (0, ∞) and thus Λ(t)
Λ′(t) is decreasing in t ∈ (0, ∞). Therefore, Λ(Ψ (x))

Λ′(Ψ (x)) = xΨ ′(x) is increasing in x ∈ (0, 1)
since Ψ (x) is decreasing in x ∈ (0, 1) and 0 < Ψ (x) < ∞ for x ∈ (0, 1). �

With the assumption of the existence of density functions, Hennessy and Lapan [7] introduced the following dependence
structure. They defined

sk(x) = Ψ ′(Fk(x))fk(x), k = 1, . . . , n, (4.3)

where fk(x) is the probability density function of Xk, andmodeled dependence of (X1, . . . , Xn) by assuming that si(x) ≥ sj(x)
for any 1 ≤ i < j ≤ n. In the following, we show that this dependence structure is a special case of the LWSAI notion.

Proposition 4.2. Assume a random vector (X1, . . . , Xn) is linked by an Archimedean copula given by (4.1)with marginal density
functions. If s1(x) ≥ · · · ≥ sn(x), then (X1, . . . , Xn) is LWSAI.

Proof. For any 1 ≤ i < j ≤ n and xi ≤ xj, we have

Ψ (Fj(xj)) − Ψ (Fj(xi)) =

 xj

xi
sj(t)dt,

Ψ (Fi(xj)) − Ψ (Fi(xi)) =

 xj

xi
si(t)dt,

then

Ψ (Fj(xj)) − Ψ (Fj(xi)) ≤ Ψ (Fi(xj)) − Ψ (Fi(xi)),

or

Ψ (Fi(xi)) + Ψ (Fj(xj)) ≤ Ψ (Fi(xj)) + Ψ (Fj(xi)),

which implies that

Ψ (Fi(xi)) + Ψ (Fj(xj)) +


k≠i,j

Ψ (Fk(xk)) ≤ Ψ (Fi(xj)) + Ψ (Fj(xi)) +


k≠i,j

Ψ (Fk(xk)).

Recall that Λ is completely comonotonic, which means that (−1)n−1Λ(n−1)(x) is nonnegative and decreasing. Therefore,
by the similar arguments for (5.3) of Cai and Wei [1], it is not hard to see that

∂

∂xj
P{Xi ≤ xi, Xj ≤ xj |Xij = x

ij
}

= Λ(n−1)


k=1

Ψ (Fk(xk))


Ψ ′(Fj(xj))fj(xj)


k≠i,j

Ψ ′(Fk(xk))fk(xk)

= (−1)n−1Λ(n−1)


k=1

Ψ (Fk(xk))


(−sj(xj))


k≠i,j

(−sk(xk))

≥ (−1)n−1Λ(n−1)


Ψ (Fi(xj)) + Ψ (Fj(xi)) +


k≠i,j

Ψ (Fk(xk))


(−si(xj))


k≠i,j

(−sk(xk))

=
∂

∂xj
P{Xi ≤ xj, Xj ≤ xi |Xij = x

ij
}.

According to Proposition 3.7, we conclude that (X1, . . . , Xn) is LWSAI. �

We point out that the results of Proposition 4.2 have been also obtained in the discussion (i) right after Theorem 3.5 of
Li and You [14].
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5. Applications in optimal portfolio selections with dependent risks

In this section, we use the dependence notions of LWSAI, SAI, WSAI to model dependent return rates and restudy the
optimal portfolio selection problems (1.1)–(1.3). We also discuss a default risk model with threshold indicators. The results
of this section generalize the many existing results.

5.1. Optimal portfolio selections with dependent risks

Lemma 5.1. Let a = (a1, . . . , an) and x = (x1, . . . , xn) be real-valued vectors and a ≥ 0. Define h(x) = u(a · x), where
a · x = a1x1 + · · · + anxn. Then, for any 1 ≤ i < j ≤ n and ai ≤ aj, we have

(i) h(x) ∈ G
ij
sai(n) if u(z) is increasing;

(ii) h(x) ∈ G
ij
lwsai(n) if u(z) is increasing and concave;

(iii) h(x) ∈ G
ij
wsai(n) for x ≥ 0 if u(z) is increasing and concave, and zu′(z) is increasing.

Proof. (i) Note that ai ≤ aj and xi ≤ xj imply aixi + ajxj ≥ aixj + ajxi and thus a · x ≥ a · πij(x), and therefore
u(a · x) ≥ u(a · πij(x)) since u is increasing.

(ii) Noting that u is increasing and concave, the right derivative u′+(x) always exists and u′+(x) is nonnegative and
decreasing. Then 0 ≤ u′+(a · x) ≤ u′+(a · πij(x)) for any ai ≤ aj and xi ≤ xj. Therefore,

∂+

∂xi
∆ijh(x) = aiu′+(a · x) − aju′+(a · πij(x)) ≤ 0,

which implies that h(x) ∈ G
ij
lwsai(n).

(iii) Note that ∂
∂xj

∆ijh(x) = aju′(a · x) − aiu′(a · πij(x)).

If xi ≥ xj, we have a · x ≤ a · πij(x), and thus u′(a · x) ≥ u′(a · πij(x)) ≥ 0, which implies that ∂
∂xj

∆ijh(x) ≥ 0 since
aj ≥ ai ≥ 0 and u′+

≥ 0 is decreasing.
If xj > xi, we have a · x ≥ a · πij(x) and thus u′(a · x) ≤ u′(a · πij(x)). Denote c =


k≠i,j akxk, then c ≥ 0 since ak ≥ 0

and xk ≥ 0 for all k = 1, . . . , n. Therefore, we have

(aixi + c)u′(a · x) ≤ (ajxi + c)u′(a · πij(x)). (5.1)

On the other hand, recalling that zu′(z) is increasing, we have

(a · x) u′(a · x) ≥ (a · πij(x)) u′(a · πij(x)). (5.2)

Subtracting (5.1) from (5.2), we get ajxju′(a · x) ≥ aixju′(a · πij(x)), which implies that ∂
∂xj

∆ijh(x) ≥ 0 if xj > 0. Thus, we

conclude that h(x) ∈ G
ij
wsai(n). �

Theorem 5.2. The optimal solution (a∗

1, . . . , a
∗
n) to Problem (1.1) should satisfy a∗

1 ≤ · · · ≤ a∗
n if any of the following conditions

holds:

(i) (X1, . . . , Xn) is SAI and u(z) is increasing;
(ii) (X1, . . . , Xn) is LWSAI and u(z) is increasing and concave;
(iii) (X1, . . . , Xn) is nonnegative and WSAI, u(z) is increasing and concave, and zu′(z) is increasing.

Proof. It suffices to show that

E


u


n

k=1

akXk


≥ E


u


aiXj + ajXi +


k≠i,j

akXk


,

for any ai ≤ aj under each condition, which directly follows from Lemma 5.1 and the definitions of SAI, LWSAI and WSAI,
respectively. �

Hennessy and Lapan [7] studied Problem (1.1) with the dependence structure specified by the assumption of
Proposition 4.2. Hadar and Seo [6] studied Problem (1.1) with the assumption that X1, . . . , Xn are independent and
X1 ≤st · · · ≤st Xn.We point out that their studies are generalized by Theorem5.2 (ii) and (iii), since the dependence structures
used by Hennessy and Lapan [7] and Hadar and Seo [6] are LWSAI and WSAI, respectively. Theorem 5.2 (i) coincides with
Theorem 5 of Li and You [13], but is proved by a different approach.
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5.2. Default risk model with independent default indicators

In this subsection, we consider the default risk model and study Problem (1.2). In [3], the return rate random vector
(X1, . . . , Xn) is assumed to be exchangeable. In the following, we shall relax the assumption of exchangeability to the LWSAI
dependence.

In addition, Cheung and Yang [3] made some assumptions on the default indicator random vector I = (I1, . . . , In).
Specifically, they assumed that

P{Ii = 0, Ij = 1, Iij = iij} ≥ P{Ii = 1, Ij = 0, Iij = iij},

for any 1 ≤ i < j ≤ n and iij ∈ {0, 1}n−2. We point out that this assumption is equivalent to the conditions that (I1, . . . , In)
is LWSAI as shown by the following lemma.

Lemma 5.3. A multivariate Bernoulli random vector I is LWSAI if and only if

P{Ii = 0, Ij = 1, Iij = iij} ≥ P{Ii = 1, Ij = 0, Iij = iij}, (5.3)

for any 1 ≤ i < j ≤ n and iij ∈ {0, 1}n−2.

Proof. Without loss of generality, we give the proof only for the case that i = 1, j = 2. Also, we denote the joint probability
mass function of I by p(i) = p(i1, . . . , in) = P{I = i}, where i ∈ {0, 1}n. In particular, we denote p(i1, i2, i12) = P{I1 =

i1, I2 = i2, I12 = i12}.
‘‘⇐H’’ Let g(x1, . . . , xn) be defined on {0, 1}n. For any g(x1, . . . , xn) ∈ G12

lwsai(n), we have g(0, 1, i12) ≥ g(1, 0, i12) for
any i12 ∈ {0, 1}n−2. Therefore,

E[∆12 g(I1, . . . , In)] =


i12∈{0,1}n−2


p(0, 1, i12) − p(1, 0, i12)


×

g(0, 1, i12) − g(1, 0, i12)


≥ 0.

‘‘H⇒’’ For any i12 ∈ {0, 1}n−2, define g(x1, . . . , xn) = I{x1 < 1, x2 = 1} I{x12 = i12}. It is easy to verify that
g(x1, . . . , xn) ∈ G12

lwsai(n). Since (I1, . . . , In) is LWSAI, we have E[g(I1, I2, . . . , In)] ≥ E[g(I2, I1, . . . , In)], which implies that
p(0, 1, i12) ≥ p(1, 0, i12). �

It follows from Proposition 2.4 and Lemma 5.3 that, for a multivariate Bernoulli random vector, LWSAI is equivalent to
SAI.

Proposition 5.4. Let a random vector (X1, . . . , Xn) be nonnegative and independent of the multivariate Bernoulli random vector
(I1, . . . , In). If (X1, . . . , Xn) is WSAI and (I1, . . . , In) is LWSAI, then (X1I1, . . . , XnIn) is WSAI.

Proof. It suffices to show that

E[g(X1I1, . . . , XnIn)] ≥ E[g(πij(X1I1, . . . , XnIn))], (5.4)

for any 1 ≤ i < j ≤ n and g ∈ G
ij
wsai. Without loss of generality, we assume i = 1, j = 2.

Noting that

E[g(X1I1, . . . , XnIn)] =


i12∈{0,1}n−2


p(0, 0, i12) E[g(0, 0, X3i3, . . . , Xnin)] + p(0, 1, i12) E[g(0, X2, X3i3, . . . , Xnin)]

+ p(1, 0, i12) E[g(X1, 0, X3i3, . . . , Xnin)] + p(1, 1, i12) E[g(X1, X2, X3i3, . . . , Xnin)]

. (5.5)

Similarly,

E[g(X2I2, X1I1, . . . , XnIn)] =


i12∈{0,1}n−2


p(0, 0, i12) E[g(0, 0, X3i3, . . . , Xnin)]

+ p(0, 1, i12) E[g(X2, 0, X3i3, . . . , Xnin)]
+ p(1, 0, i12) E[g(0, X1, X3i3, . . . , Xnin)]

+ p(1, 1, i12) E[g(X2, X1, X3i3, . . . , Xnin)]

. (5.6)

Recalling that (X1, . . . , Xn) is WSAI and g(x1, x2, x3i3, . . . , xnin) ∈ G12
wsai(n) for any i12 ∈ {0, 1}n−2, we have

E[g(X1, X2, X3i3, . . . , Xnin)] ≥ E[g(X2, X1, X3i3, . . . , Xnin)], (5.7)

for any i12 ∈ {0, 1}n−2.
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Denote l(x1, . . . , xn) = g(0, x2, x3i3, . . . , xnin) + g(x1, 0, x3i3, . . . , xnin). It is easy to verify that ∆12l(x1, . . . , xn) is
increasing in x2, i.e., l ∈ G12

wsai(n). Recalling that (X1, . . . , Xn) is WSAI, we have E[l(X1, X2, . . . , Xn)] ≥ E[l(X2, X1, . . . , Xn)],
which implies

E[g(0, X2, X3i3, . . . , Xnin)] − E[g(X2, 0, X3i3, . . . , Xnin)]
≥ E[g(0, X1, X3i3, . . . , Xnin)] − E[g(X1, 0, X3i3, . . . , Xnin)]. (5.8)

Note that both sides of (5.8) are nonnegative since X1, X2 ≥ 0 and g ∈ G12
wsai(n) ⊂ G12

sai(n). Recalling that p(0, 1, i12) ≥

p(1, 0, i12) ≥ 0 since (I1, . . . , In) is LWSAI, we have

p(0, 1, i12)

E[g(0, X2, X3i3, . . . , Xnin)] − E[g(X2, 0, X3i3, . . . , Xnin)]


≥ p(1, 0, i12)


E[g(0, X1, X3i3, . . . , Xnin)] − E[g(X1, 0, X3i3, . . . , Xnin)]


,

or

p(0, 1, i12) E[g(0, X2, X3i3, . . . , Xnin)] + p(1, 0, i12) E[g(X1, 0, X3i3, . . . , Xnin)]

≥ p(0, 1, i12) E[g(X2, 0, X3i3, . . . , Xnin)] + p(1, 0, i12) E[g(0, X1, X3i3, . . . , Xnin)]. (5.9)

A combination of (5.7) and (5.9) implies that the right side of (5.5) is no less than that of (5.6), which means that (5.4)
holds. �

Combining Theorem 5.2(iii) and Proposition 5.4, we immediately get the following result.

Corollary 5.5. Assume that a random vector (X1, . . . , Xn) is nonnegative and WSAI, and the multivariate Bernoulli random
vector (I1, . . . , In) is LWSAI and independent of (X1, . . . , Xn). The optimal solution (a∗

1, . . . , a
∗
n) to Problem (1.2) should satisfy

a∗

1 ≤ · · · ≤ a∗
n for any increasing concave utility function u(z) such that zu′(z) is increasing. �

Corollary 5.5 generalizes Theorem 3.1(1) of Chen and Hu [2]. Furthermore, many utility functions satisfy the condition
that zu′(z) is increasing. For example, the power utility function u(z) = zθ with 0 < θ ≤ 1, the log utility function
u(z) = log z, the exponential utility function u(z) = 1 − e−γ z, γ > 0 with z ≤

1
γ
.

Proposition 5.6. Let a random vector (X1, . . . , Xn) be independent of the multivariate Bernoulli random vector (I1, . . . , In). If
(X1, . . . , Xn) is exchangeable and (I1, . . . , In) is LWSAI, then (X1I1, . . . , XnIn) is LWSAI.

Proof. It suffices to show that

E[g(X1I1, X2I2, . . . , XnIn)] ≥ E[g(X2I2, X1I1, . . . , XnIn)], (5.10)

for any g ∈ G12
lwsai(n).

The proof is the same as the proof of Proposition 5.4 except that the condition g ∈ G12
wsai(n) is now replaced by

g ∈ G12
lwsai(n). Note that the exchangeability of (X1, . . . , Xn) implies that (X1, . . . , Xn) is LWSAI and also implies that (5.8)

holds with equality. �

Proposition 5.6 together with Theorem 5.2 (ii) implies Corollary 2 of Cheung and Yang [3].

5.3. Default risk model with threshold default indicators

In this subsection, we consider the default riskmodel, butwith a different type of default indicators.We assume that each
return rate is not realized until the rate reaches a certain threshold, otherwise the actual return rate is 0. Specifically, denote
the actual return rates as Xact

k , k = 1, . . . , n, thus Xact
k = Xk I{Xk > lk}, k = 1, . . . , n, where l1, . . . , ln are predetermined

thresholds. Then the investor’s objective is tomaximize the expected utility of the total return rate, i.e., to study the following
optimal selection problem:

max
(a1,...,an)∈An

E


u


n

k=1

akXk I{Xk > lk}


, (5.11)

for some utility function u.

Proposition 5.7. Let l1, . . . , ln be real numbers such that l1 ≥ · · · ≥ ln. If a random vector (X1, . . . , Xn) is nonnegative and
LWSAI, then (X1 I{X1 > l1}, . . . , Xn I{Xn > ln}) is LWSAI.
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Proof. Denote Y = (Y1, . . . , Yn) = (X1 I{X1 > l1}, . . . , Xn I{Xn > ln}). Without loss of generality, it suffices to show that

P{Y1 ≤ x1, x2 < Y2 ≤ x2 + t, Y12 ∈ B12} ≥ P{Y2 ≤ x1, x2 < Y1 ≤ x2 + t, Y12 ∈ B12}, (5.12)

for any x1 ≤ x2, t > 0, and B12 ∈ σ(Y12). We only consider the case that x1 ≥ 0. Otherwise, if x1 < 0, both sides of (5.12)
are equal to 0.

When x1 ≥ 0, we see that Y1 ≤ x1 is equivalent to X1 ≤ x1 ∨ l1, where x1 ∨ l1 = max{x1, l1}. Then (5.12) is equivalent to

P{X1 ∈ (−∞, x1 ∨ l1], X2 ∈ (x2, x2 + t] ∩ (l2, ∞), X12 ∈ A12}

≥ P{X2 ∈ (−∞, x1 ∨ l2], X1 ∈ (x2, x2 + t] ∩ (l1, ∞), X12 ∈ A12}, (5.13)

where A12 ∈ σ(X12) is such that X12 ∈ A12 ⇐⇒ Y12 ∈ B12.
On the other hand, (5.13) follows from

P{X1 ∈ (−∞, x1 ∨ l1], X2 ∈ (x2, x2 + t] ∩ (l2, ∞), X12 ∈ A12}

≥ P{X1 ∈ (−∞, x1 ∨ l2], X2 ∈ (x2, x2 + t] ∩ (l1, ∞), X12 ∈ A12}

≥ P{X2 ∈ (−∞, x1 ∨ l2], X1 ∈ (x2, x2 + t] ∩ (l1, ∞), X12 ∈ A12},

where the first inequality holds because x1 ∨ l1 ≥ x1 ∨ l2 and (x2, x2 + t]∩(l2, ∞) ⊃ (x2, x2 + t]∩(l1, ∞) for l1 > l2, and the
second inequality is due to Proposition 3.5 and the fact that sup{(−∞, x1∨l2]} = x1∨l2 ≤ x2∨l1 = inf{(x2, x2+t]∩(l1, ∞)}
for x1 ≤ x2 and l1 > l2. In the case of (x2, x2 + t] ∩ (l1, ∞) = ∅, the second inequality holds with equality. �

Combining Proposition 5.7 and Theorem5.2, we draw the following conclusion on the optimal solution to Problem (5.11).

Proposition 5.8. Assume l1 ≥ · · · ≥ ln. If the random vector (X1, . . . , Xn) in (5.11) is nonnegative and LWSAI, then the optimal
solution (a∗

1, . . . , a
∗
n) to Problem (5.11) should satisfy a∗

1 ≤ · · · ≤ a∗
n for any increasing concave utility function u. �

Proposition 5.8 generalizes Theorem 1 of Cheung and Yang [3].

5.4. Mixture risk model with fundamental risks

In this subsection,we consider themixture riskmodel and study Problem (1.3). Cheung andYang [4] first studied Problem
(1.3), for J = {1, . . . ,m}, their assumptions on the dependence structures of risks are reduced to the following:

(a) (X1, . . . , Xm) is independent of (M1, . . . ,Mn).
(b) X1, . . . , Xm are comonotonic with X1 ≤st · · · ≤st Xm.
(c) M1, . . . ,Mn are mutually independent withM1 ≤lr · · · ≤lr Mn.

In the following, we relax the assumption (c) and restudy Problem (1.3).

Lemma 5.9. Let f be a nondecreasing univariate function. If (X1, . . . , Xn) is SAI/LWSAI/RWSAI/WSAI, then (f (X1), . . . , f (Xn)) is
SAI/LWSAI/RWSAI/WSAI.

Proof. The proof is straightforward by noting that

g(x1, . . . , xn) ∈ G
ij
sai(n) (G

ij
lwsai(n), G

ij
rwsai(n), G

ij
wsai(n))

implies that g(f (x1), . . . , f (xn)) ∈ G
ij
sai(n) (G

ij
lwsai(n), G

ij
rwsai(n), G

ij
wsai(n)) for any nondecreasing f and 1 ≤ i < j ≤ n. �

Theorem 5.10. Let (X1, . . . , Xm) and (M1, . . . ,Mn) be two independent random vectors with Mi taking values in {1, . . . ,m} for
i = 1, . . . , n. Assume that (X1, . . . , Xn) is comonotonic and X1 ≤st · · · ≤st Xm. If (M1, . . . ,Mn) is SAI/LWSAI/RWSAI/WSAI, then
(XM1 , . . . , XMn) is also SAI/LWSAI/RWSAI/WSAI.

Proof. We only provide the proof for the LWSAI case. The proofs for the other cases are similar.
Consider any real-valued vector (x1, . . . , xm) such that x1 ≤ · · · ≤ xm. Let f be a function defined on {1, . . . ,m} with

f (j) = xj for any j ∈ {1, 2, . . . ,m}. Then f is nondecreasing. Assume that (M1, . . . ,Mn) is LWSAI, following Lemma 5.9, we
know that (xM1 , . . . , xMn) is LWSAI. Recalling Lemma 5.3 of Cai and Wei [1], we have X1 ≤a.s. · · · ≤a.s. Xm. Therefore, for any
1 ≤ i < j ≤ n and g ∈ G

ij
lwsai(n), we have

E [ g(XM1 , . . . , XMn) ] = E [ E [ g(XM1 , . . . , XMn) | (X1, . . . , Xm) ] ]

≥ E [ E [ g(πij((XM1 , . . . , XMn))) | (X1, . . . , Xm) ] ] = E [ g(πij((XM1 , . . . , XMn))) ],

which implies that (XM1 , . . . , XMn) is LWSAI. �
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From Theorems 5.2 and 5.10, we immediately get the following result.

Proposition 5.11. Let (X1, . . . , Xm) be comonotonic and X1 ≤st · · · ≤st Xm. Let (M1, . . . ,Mn) be independent of (X1, . . . , Xm).
The optimal solution (a∗

1, . . . , a
∗
n) to Problem (1.3) satisfies a∗

1 ≤ · · · ≤ a∗
n if any of the following conditions holds:

(i) (M1, . . . ,Mn) is SAI and u(z) is increasing;
(ii) (M1, . . . ,Mn) is LWSAI and u(z) is increasing and concave;
(iii) (M1, . . . ,Mn) is WSAI, Xi ≥ 0 for all i = 1, . . . ,m, u(z) is increasing and concave, and zu′(z) is increasing. �

It follows from Propositions 5.4 and 5.5 of Cai andWei [1] that assumption (c) implies that (M1, . . . ,Mn) is SAI. Therefore,
we conclude that Theorem 1 of Cheung and Yang [4] is a special case of Proposition 5.11(i) for the case of J = {1, . . . ,m}.

Moreover, Hu and Wang [8] applied the mixture risk model, together with assumptions (a), (b), and (c), to study the
optimal allocation of deductibles for insurance companies. We point out that, with the help of Theorem 5.10, their results
can be also generalized as well.

6. Concluding remarks

In this paper, we propose the new dependence notions of LWSAI and WSAI. These dependence notions of LWSAI and
WSAI are characterized by the joint distribution function of a random vector and are the complementary to the dependence
notions RWSAI and SAI, which are proposed by Cai andWei [1], in the sense that the dependence notions of Cai andWei [1]
are characterized by the joint survival function of a random vector. We apply the notions of LWSAI and WSAI to study the
optimal portfolio selections with more general dependent risks and generalize many existing studies in this field including
those of Hadar and Seo [6], Hennessy and Lapan [7], Cheung and Yang [3], Chen and Hu [2], and Cheung and Yang [4].
Furthermore,wepoint out that the notions of LWSAI andWSAI allowpotential applications in other fields such as scheduling,
insurance, and so on. We will present more applications of these notions of dependence in our future research.
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