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a b s t r a c t

In this paper, we propose two new classes of joint stochastic orders, namely joint (reversed) hazard order
of degree n and joint n-increasing convex/concave order, and establish their theoretical properties. These
new orders substantially generalize the existing class of joint stochastic orders, and incorporate them in
one general framework. We also explore the applications of these orders in portfolio selections and unify
similar studies on this problem.
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1. Introduction

Stochastic orders arewell-established tools to compare random
variables. The standard literature in this area includes Müller and
Stoyan (2002) and Shaked and Shanthikumar (2007). However,
traditional stochastic orders compare only marginal distributions
and thus do not concern dependence structures of random vari-
ables in comparison. To address this limitation, Shanthikumar and
Yao (1991) were among the first to incorporate dependence struc-
tures into stochastic comparisons. Specifically, they proposed a few
concepts of joint stochastic orders:≤lr:j,≤hr:j,≤rh:j and≤st:j, which
are dependent versions of ≤lr , ≤hr , ≤rh and ≤st , respectively. The
joint stochastic orders show wide applications in different areas.
Shanthikumar and Yao (1991) themselves gave applications in
operations research immediately after proposing these concepts.
Later on, Kijima and Ohnishi (1996) employed the joint likelihood
ratio order≤lr:j to study portfolio selections and therebymotivated
a sequence of similar studies in finance.

Note that the above joint stochastic orders do not possess
transitivity. For example, X≤lr:jY and Y≤lr:jZ do not necessarily
imply X≤lr:jZ . The lack of transitivity makes it difficult to extend
the stochastic comparison to multiple random variables. Moti-
vated by this limitation, Cai and Wei (2014, 2015) proposed the
notions of SAI, RWSAI and LWSAI, which are essentially multi-
variate generalizations of ≤lr:j, ≤hr:j, and ≤rh:j. They established
different characterizations of these notions and constructed typical
examples of these notions. Recent applications of these notions in
finance and insurance can be found in Pan et al. (2015) and You
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and Li (2016). Applications in reliability theory are discussed in
Li and Li (2016).

All the above joint stochastic orders, including the multivari-
ate generalizations, imply the usual stochastic order ≤st between
marginal distributions.Wepoint out that the usual stochastic order
is a very strong order and thus limits the applications of these joint
stochastic orders inmodeling random quantities in real-life. In this
paper, we propose to generalize the existing joint stochastic orders
tomore flexible orders, which on one hand still incorporate depen-
dence structures, and one the other hand relax the requirement
on marginal distributions. In doing so, the new orders are more
flexible in modeling reality.

The rest of the paper is organized as follows. Section 2 recalls
definitions of some classical stochastic orders and introduces some
useful notations. Section 3 proposes new orders ≤n-hr:j and ≤n-rh:j,
which are essentially high degree generalizations of≤hr:j and≤rh:j.
Section 3 also establishes theoretical properties of the new or-
ders. Section 4 defines another sequence of new stochastic orders:
≤n-icx:j and ≤n-icv:j, and thus incorporates dependence structures
into the classical high degree stochastic dominance. In this sec-
tion, examples with typical dependence structures have been con-
structed. Section 5 discusses applications of new stochastic orders
in finance. Section 6 gives concluding remarks.

2. Preliminaries

We first recall from Shaked and Shanthikumar (2007) defini-
tions of four commonly used stochastic orders.
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Definition 2.1. Let X and Y be two random variables with distri-
bution functions FX and FY . Denote their survival functions by F̄X
and F̄Y , respectively.

(i)X is said to be smaller thanY inusual stochastic order, denoted
as X≤stY , if F̄X (x) ≤ F̄Y (x) for all x ∈ R.

(ii) X is said to be smaller than Y in hazard rate order, denoted
as X≤hrY , if F̄Y (x)/F̄X (x) is increasing in x ∈ {x : F̄X (x) > 0}.

(iii) X is said to be smaller than Y in reverse hazard rate order,
denoted as X≤rhY , if FY (x)/FX (x) is increasing in x ∈ {x : FX (x) > 0}.

(iv) Assume X and Y have density functions fX and fY . X is said
to be smaller than Y in likelihood ratio order, denoted as X≤lrY , if
fY (x)/fX (x) is increasing in x ∈ {x : fX (x) > 0}.

It is well known that these orders have the following implica-
tions: ≤lr ⇒ ≤hr (≤rh) ⇒ ≤st . In addition, the latter three orders
can be characterized by the following classes of bivariate functions,
respectively:

Glr = {g : ∆g(x, y) ≥ 0 for all y ≥ x},
Ghr = {g : ∆g(x, y) is increasing in y ∈ [x, ∞)},
Grh = {g : ∆g(x, y) is decreasing in y ∈ (−∞, x]},

where ∆g(x, y) = g(x, y) − g(y, x).

Theorem 2.2. X≤lrY (respectively X≤hr , X≤rh) if and only if
E[g(X ′, Y ′)] ≥ E[g(Y ′, X ′)] for any g ∈ Glr (respectively g ∈ Ghr ,
g ∈ Grh), where X ′ d

= X, Y ′ d
= Y , and X ′ is independent of Y ′.

The proof of Theorem2.2 can be found in the classical literature,
for example, Shaked and Shanthikumar (2007) and Shanthikumar
and Yao (1991) among others.

Note that the above orders are defined through only marginal
distributions and thus do not involve dependence structure. Based
on the bivariate characterization in Theorem 2.2, Shanthikumar
and Yao (1991) proposed the concepts of joint likelihood ratio
orders, joint hazard rate order and joint reversed hazard rate
order, which incorporate dependence structure into comparison of
random variables. These orders are defined as follows.

Definition 2.3. Random variable X is said to be smaller than Y
in joint likelihood ratio order (respectively, joint hazard rate order,
joint reversed hazard rate order), denoted as X≤lr:jY (respectively,
X≤hr:jY , X≤rh:jY ), if E[g(X, Y )] ≥ E[g(Y , X)] for any g ∈ Glr
(respectively g ∈ Ghr , g ∈ Grh).

For advanced properties regarding these joint stochastic orders,
readers are referred to Shanthikumar and Yao (1991) and Righter
and Shanthikumar (1992). Cai andWei (2014, 2015) have general-
ized these orders to multivariate random variables and discussed
their applications in finance and insurance. For more applications,
see Li and You (2015), and You and Li (2016).

For positive integer n, define

Un-icx =

{
u :

dk

dzk
u(z) is increasing in z

for all k = 0, 1, . . . , n − 1
}
,

Un-icv =

{
u : (−1)k−1 dk

dzk
u(z) is decreasing in z

for all k = 0, 1, . . . , n − 1
}
.

Definition 2.4. Random variable X is said to be less than random
variable Y in the n-increasing convex (concave) order, denoted as
X≤n-icxY (X≤n-icvY ), ifE[u(X)] ≤ E[u(Y )] for any function u ∈ Un-icx
(u ∈ Un-icv) such that the expectations exist.

There are different versions of definitions for ≤n-icx and ≤n-icv .
Definition 2.4 is taken from Müller and Stoyan (2002, Definition
1.6.2). Readers are referred to Shaked and Shanthikumar (2007) for
a comprehensive review on different variations of this definition.
We point that function classes Un-icx and Un-icv can be definedmore
generally by removing differentiability assumptions, see Müller
and Stoyan (2002) or Shaked and Wong (1995). In this paper, we
keep differentiability assumptions to avoid technical discussions.
However, to slightly enlarge the classes ofUn-icx andUn-icv , we allow
the notation d

dz u(z) to represent the left derivative when two sided
derivatives do not coincide. Under this convention, U2−icx denotes
the collection of all increasing and convex functions.

We remark that ≤1-icx or ≤1-icv is the usual stochastic order ≤st ,
and ≤2-icx (≤2-icv) is the regular increasing convex (concave) order.
Clearly, X≤n1-icxY implies X≤n2-icxY for any n1 ≤ n2.

At the end of the section, we present some general assumptions
and notations thatwill be used throughout the paper. For a random
vector (X, Y ), unless otherwise specified, we assume the joint
density function, denoted as fXY (x, y), exists and is continuous. Its
marginal density functions are denoted as fX (x) and fY (x), respec-
tively. Consider a bivariate function g(x, y). Whenever its cross
partial derivatives exist, we assume they are commutable, that
is, ∂ i+j

∂xi∂yj
g(x, y) =

∂ i+j

∂yj∂xi
g(x, y). For notional convenience, denote

g (i,j)(x, y) =
∂ i+j

∂xi∂yj
g(x, y). The notation ∆g(x, y) has been used to

denote g(x, y) − g(y, x). Clearly, ∆g(x, x) = 0 and ∆g(x, y) =

−∆g(y, x). Furthermore, denote ∆(i,j)g(x, y) =
∂ i+j

∂xi∂yj
∆g(x, y).

It is important to note the difference between ∆(i,j)g(x, y) and
∆g (i,j)(x, y). The former operation takes difference first and then
takes derivatives, while the latter one operates in an opposite
order. For example, ∆(0,1)g(x, y) = g (0,1)(x, y) − g (1,0)(y, x), while
∆g (0,1)(x, y) = g (0,1)(x, y)− g (0,1)(y, x). This paper involves the use
of only the former notation.

3. Generalization of ≤lr:j, ≤hr:j, ≤rh:j to high degrees

In this section, we shall generalize the joint stochastic orders
≤lr:j, ≤hr:j, ≤rh:j to higher degrees. In doing so, we define two
classes of bivariate functions. For a positive integer n, define

Gn-rh = {g : ∆g(x, y) ∈ Un-icv as a function of y on (−∞, x]} , (3.1)
Gn-hr = {g : ∆g(x, y) ∈ Un-icx as a function of y on [x, ∞)} . (3.2)

Clearly, G1-rh = Grh and G1-hr = Ghr . Furthermore, with the
convention U0-icx = U0-icv = {u(x), u(x) ≥ 0}, both G0-hr and G0-rh
reduce to Glr . A trivial example belonging to the class Gn-rh (Gn-hr )
is g(x, y) = u(y) with u ∈ Un-icv (Un-icx). As illustrated in Section 5,
g(x, y) = u(ax + by) with a ≤ b and certain assumptions on u also
belongs to Gn-rh.

Definition 3.1. Random variable X is said to be smaller than Y
in the joint reversed hazard rate order of degree n (joint hazard rate
order of degree n), denoted as X≤n-rh:jY (X≤n-hr:jY ), if E[g(X, Y )] ≥

E[g(Y , X)] for all g ∈ Gn-rh (g ∈ Gn-hr ) such that the expectations
exist.

We note that ≤0-rh:j, ≤1-rh:j and ≤1-hr:j correspond to ≤lr:j, ≤rh:j
and ≤hr:j (see Section 2), respectively. It is easy to see that, ≤n1-rh:j
(≤n1-hr:j) implies ≤n2-rh:j (≤n2-hr:j) for any n1 ≤ n2. In this section,
we shall focus on the new orders (with n ≥ 2) and establish their
properties.

First of all, there is a close relationship between ≤n-rh:j and
≤n-hr:j.

Proposition 3.2. X≤n-rh:jY if and only if −Y≤n-hr:j − X.
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Proof. For any bivariate function g(x, y), denote h(x, y) =

−g(−x, −y). Then ∆h(x, y) = −∆g(−x, −y) = ∆g(−y, −x). It is
easy to verify that h ∈ Un-rh if and only if g ∈ Un-hr . Then the proof
is completed by applying the definitions of ≤n-rh:j and ≤n-hr:j. □

Proposition 3.2 indicates that ≤n-rh:j and ≤n-hr:j are a pair of
dual notions. Therefore, they share many similar properties. In the
following, we shall focus on developing properties of the order
≤n-rh:j and briefly mention their analogues for ≤n-hr:j.

In order to characterize the orders ≤n-rh:j and ≤n-hr:j from a dif-
ferent perspective, we introduce two sequences of functions. For a
random vector (X, Y ) and a positive integer n, assume E[|X |

n−1
] <

∞ and E[|Y |
n−1

] < ∞. Define

M [0]
XY (x, y) = fXY (x, y),

M [n]
XY (x, y) =

1
(n − 1)!

∫ x

−∞

(x − s)n−1fXY (s, y)ds,
(3.3)

N [0]
XY (x, y) = fXY (x, y),

N [n]
XY (x, y) =

1
(n − 1)!

∫
∞

y
(t − y)n−1fXY (x, t)dt.

(3.4)

It is easy to verify that for k = 1, 2, . . . , n − 1,

M [k+1]
XY (x, y) =

∫ x

−∞

M [k]
XY (s, y)ds and

N [k+1]
XY (x, y) =

∫
∞

y
N [k]

XY (x, t)dt.

For n ≥ 2, these functions admit the following representations in
terms of expectations.

M [n]
XY (x, y) =

1
(n − 1)!

fY (y)E[(x − X)n−1
+

|Y = y],

N [n]
XY (x, y) =

1
(n − 1)!

fX (x)E[(Y − y)n−1
+

|X = x],

where fX (x) and fY (y) denote the pdf’s of X and Y , respectively, and
x+ = max{x, 0}.

Theorem 3.3. Assume E[|X |
n−1

] < ∞ and E[|Y |
n−1

] < ∞.
X≤n-rh:jY if and only if M [k]

XY (x, x) ≥ M [k]
YX (x, x) for any x and k =

1, 2, . . . , n − 1, and M [n]
XY (x, y) ≥ M [n]

YX (x, y) for any x ≤ y.

Proof. The ‘‘if’’ part. Noting that ∆g(x, x) = 0 and ∆g(x, y) =

−∆g(y, x), one obtains that ∆g(x, y) = ∆g(x, y)I{y ≤ x} −

∆g(y, x)I{x ≤ y}. It suffices to show that E[∆g(X, Y )] ≥ 0, or
E[∆g(X, Y )I{Y ≤ X}] ≥ E[∆g(Y , X)I{X ≤ Y }] for any g ∈ Gn-rh.

For simplicity, assume ∆(0,k)g(x, y), k = 1, 2, . . . , n all exist.
Then g ∈ Gn-rh implies (−1)k−1∆(0,k)g(x, y) ≥ 0 for all x ≥ y and
k = 1, 2, . . . , n − 1. Using integration by parts, one gets∫

∞

−∞

∫ x

−∞

∆(0,k)g(x, y)M [k]
YX (y, x)dydx

= −

∫
∞

−∞

∆(0,k)g(x, x)M [k+1]
YX (x, x)dx

+

∫
∞

−∞

∫ x

−∞

∆(0,k+1)g(x, y)M [k+1]
YX (y, x)dydx.

Applying this formula recursively, one obtains

E[∆g(X, Y )I{Y ≤ X}]

=

∫
∞

−∞

∫ x

−∞

∆g(x, y)fXY (x, y)dydx

=

∫
∞

−∞

∫ x

−∞

∆(0,0)g(x, y)M [0,0]
YX (y, x)dydx

=

n−1∑
k=0

∫
∞

−∞

(−1)k∆(0,k)g(x, x)M [k+1]
YX (x, x)dx

+

∫
∞

−∞

∫ x

−∞

(−1)n∆(0,n)g(x, y)M [n]
YX (y, x)dydx.

Interchanging the position of X and Y , one gets

E[∆g(Y , X)I{X ≤ Y }]

=

n−1∑
k=0

∫
∞

−∞

(−1)k∆(0,k)g(x, x)M [k+1]
XY (x, x)dx

+

∫
∞

−∞

∫ x

−∞

(−1)n∆(0,n)g(x, y)M [n]
XY (y, x)dydx.

Noting ∆(0,0)g(x, x) = 0, the inequality E[∆g(X, Y )I{Y ≤ X}] ≥

E[∆g(Y , X)I{X ≤ Y }] follows from the assumptions and the fact
that (−1)k−1∆(0,k)g(x, y) ≥ 0 for any x ≥ y and k = 1, 2, . . . , n.

The ‘‘only if’’ part. Define a bivariate function gϵ(s, t) = (x −

s)n−1
+ I{t ∈ [y, y + ϵ)} with ϵ > 0. Since E[|X |

n−1
] < ∞,

then E[|gϵ(X, Y )|] ≤ E[|x − X |
n−1

] < ∞. Thus, E[gϵ(X, Y )] =∫ y+ϵ

y

∫ x
−∞

(x − s)n−1fXY (s, t)dsdt . Therefore, limϵ↓0
E[gϵ (X,Y )]

ϵ
=∫ x

−∞
(x − s)n−1fXY (s, y)ds = M [n]

XY (x, y). Similarly, E[|Y |
n−1

] < ∞

implies limϵ↓0
E[gϵ (Y ,X)]

ϵ
= M [n]

YX (x, y). On the other hand, it is easy
to verify that gϵ ∈ Gn-rh. Therefore, E[gϵ(X, Y )] ≥ E[gϵ(Y , X)] and
thusM [n]

XY (x, y) ≥ M [n]
YX (x, y) for any x ≤ y.

For any k = 1, 2, . . . , n − 1, define hϵ(s, t) = (t − s)k−1
+ I{t ∈

[x, x + ϵ)} with ϵ > 0. Noting that E[hϵ(X, Y )] =
∫ x+ϵ

x

∫ t
−∞

(t −

s)n−1fXY (s, t)dsdt , one obtains that limϵ↓0
E[hϵ (X,Y )]

ϵ
= M [k]

XY (x, x).
Similarly, limϵ↓0

E[hϵ (Y ,X)]
ϵ

= M [k]
YX (x, x). For any s ≥ t , it is easy to see

that hϵ(s, t) = 0, and thus ∆hϵ(s, t) = −(s − t)k−1I{s ∈ [x, x + ϵ)}
belongs toUn-icv as a function of t . This implies hϵ ∈ Gn-rh. Therefore,
E[hϵ(X, Y )] ≥ E[hϵ(Y , X)] and thus M [k]

XY (x, x) ≥ M [k]
YX (x, x) for

any x. □

When n = 0, the order ≤0-rh:j reduces to ≤lr:j. When n = 1, the
order ≤1-rh:j reduces to ≤rh:j. Therefore, the characterization pro-
vided by Theorem 3.3 covers Theorems 2.12(a) in Shanthikumar
and Yao (1991), and Proposition 3.7 (bivariate version) in Cai and
Wei (2015) as special cases.

For a random pair (X, Y ) following certain order, applications
usually call for the comparison of E[g1(X, Y )] and E[g2(X, Y )] for
two different functions g1, g2. The following two theorems pro-
vides a tool for such comparison.

Theorem 3.4. X≤n-rh:jY if and only if E[g2(X, Y )] ≥ E[g1(X, Y )] for
any bivariate functions g1, g2 such that

(i) g2(x, y) − g1(x, y) ∈ Un-icv as a function of y on (−∞, x],
(ii) g2(x, y) + g2(y, x) ≥ g1(x, y) + g1(y, x) for any x and y, with

equality at y = x.

Proof. The ‘‘if’’ part. For any g ∈ Gn-rh, define g2(x, y) = g(x, y) and
g1(x, y) = g(y, x). It is easy to verify that g1, g2 satisfy Conditions (i)
and (ii). Therefore, E [g2(X, Y )] ≥ E [g1(X, Y )], which implies that
E [g(X, Y )] ≥ E [g(Y , X)].

The ‘‘only if’’ part. For any g1, g2 satisfying Conditions (i) and
(ii), define h(x, y) = (g2(x, y) − g1(x, y)) × I{x ≥ y}. Noting
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that g1(x, x) = g2(x, x) from (ii), one concludes that ∆h(x, y) =

g2(x, y)− g1(x, y) for any x ≥ y and thus belongs to Gn-rh. It follows
from X≤n-rh:jY that E [h(X, Y )] ≥ E [h(Y , X)], i.e.,

E [(g2(X, Y ) − g1(X, Y )) I{X ≥ Y }]

≥ E [(g2(Y , X) − g1(Y , X)) I{Y ≥ X}]. (3.5)

Recalling Condition (ii), one obtains g2(Y , X)−g1(Y , X)≥a.s.g1(X, Y )
− g2(X, Y ), and thus (g2(Y , X)− g1(Y , X)) I{Y ≥ X}≥a.s.(g1(X, Y )−
g2(X, Y )) I{Y ≥ X}, which implies

E [(g2(Y , X) − g1(Y , X)) I{Y ≥ X}]

≥ E [(g1(X, Y ) − g2(X, Y )) I{Y ≥ X}]. (3.6)

From (3.5), (3.6), and the equality in Condition (ii), one gets
E[g2(X, Y )] ≥ E[g1(X, Y )]. □

Theorem 3.4 covers Theorem 1(i) of Righter and Shanthikumar
(1992) and Theorem 6.1 of Cai andWei (2014) as special cases, and
generalize those results to joint stochastic orders of high degrees.
We remark that the equality in Condition (ii) is not necessarywhen
n = 0 or n = 1 (corresponding to the orders ≤lr:j and ≤rh:j),
since the continuity of ∆g(x, y) is not required in these cases. An
applications of Theorem 3.4 is illustrated in Section 5.

It is worth mentioning that, by using Proposition 3.2, it is easy
to develop analogues of Theorems 3.3 and 3.4 for the order ≤n-hr:j.
Those results would be useful in solving stochastic scheduling
problems and reliability analysis.

4. Incorporate dependence into ≤n-icx and ≤n-icv

In this section, we propose some new orders to incorporate de-
pendence structure into the nth degree increasing convex/concave
orders. Define

Gicx =
{
g(x, y)

⏐⏐∆g(x, y) is increasing and convex in y
}

Gicv =
{
g(x, y)

⏐⏐∆g(x, y) is increasing and concave in y
}
.

Shanthikumar and Yao (1991) provide a bivariate characteri-
zation of the increasing convex order by using Gicx without proof.
Below we cite their result and present a proof.

Theorem 4.1. X≤icxY if and only if there exist X ′ d
= X and Y ′ d

= Y
such that X ′ is independent of Y ′ and E[g(X ′, Y ′)] ≥ E[g(Y ′, X ′)] for
all g ∈ Gicx.

Proof. For the ‘‘if’’ part, consider any increasing convex function
u. Define g(x, y) = u(y) − u(x). It is easy to verify that g ∈ Gicx.
Therefore, E[u(Y ′) − u(X ′)] ≥ E[u(X ′) − u(Y ′)], which implies that
E[u(Y ′)] ≥ E[u(X ′)] and thus E[u(Y )] ≥ E[u(X)].

For the ‘‘only if’’ part, assume X is independent of Y for nota-
tional convenience. Let random variable Z be such that Z d

= X
and Z is independent of X and Y . For any g ∈ Gicx, it holds
that E[∆g(X, Y )] ≥ E[∆g(X, Z)], since Y≥icxZ and ∆g(x, y) is
increasing and convex in y.

Recall that X and Z are independent and have the same distri-
bution, and thus are exchangeable. It follows that E[g(X, Z)] =

E[g(Z, X)], i.e., E[∆g(X, Z)] = 0. Therefore, it holds that
E[∆g(X, Y )] ≥ 0, or E[g(X, Y )] ≥ E[g(Y , X)]. □

Based on the bivariate characterization, Shanthikumar and Yao
(1991) proposed the concept of joint increasing convex order≤icx:j.
In this section, we shall propose a sequence of joint n-increasing
convex/concave order and develop their theoretical properties.

For a positive integer n, define

Gn-icx = {g(x, y) | ∆g(x, y) ∈ Un-icx as a function of y for any x} ,

Gn-icv = {g(x, y) | ∆g(x, y) ∈ Un-icv as a function of y for any x} .

Clearly, Gn2-icx ⊂ Gn1-icx and Gn2-icv ⊂ Gn1-icv for any n1 ≤ n2.

Definition 4.2. Random variable X is said to be less than random
variable Y in the joint n-increasing convex (concave) order, denoted
as X≤n-icx:jY (X≤n-icv:jY ), if E[g(X, Y )] ≥ E[g(Y , X)] for any g ∈

Gn-icx (g ∈ Gn-icv) provided the expectations exist.

When n = 1, ≤1-icx:j and ≤1-icv:j both reduce to ≤st:j (Shan-
thikumar and Yao, 1991), which is also the bivariate version of
WSAI (Cai and Wei, 2015). When n = 2, ≤2-icx:j and ≤2-icv:j
are simply denoted as ≤icx:j and ≤icv:j. Note that ≤icx:j is the one
proposed by Shanthikumar and Yao (1991). It is easy to see that
X≤n1-icx:jY implies X≤n2-icx:jY and X≤n1-icv:jY implies X≤n2-icv:jY for
any n1 ≤ n2.

Similarly as Proposition 3.2, there is a close relationship be-
tween ≤n-icx:j and ≤n-icv:j.

Proposition 4.3. X≤n-icx:jY if and only if −Y≤n-icv:j − X.

In the rest of this section, we shall develop more properties
of the orders ≤n-icx:j and ≤n-icv:j. Since they are dual orders, we
will state properties of only ≤n-icx:j. It should be kept in mind
that analogues of the other order ≤n-icv:j can be easily obtained by
applying Proposition 4.3.

Proposition 4.4. The following statements are true:

(i) If ≤n-hr:j Y , then X≤n-icx:jY ;
(ii) If X≤n-icx:jY , then X≤n-icxY .

Proof. The first statement follows from the fact that Gn-icx ⊂ Gn-hr .
The second statement can be verified by taking g(x, y) = u(y) with
u ∈ Un-icx. □

Proposition 4.5. Assume X and Y are independent. X≤n-icx:jY if and
only if X≤n-icxY .

Proof. The statement for ≤2−icx:j, i.e., ≤icx:j, directly follows from
the proof of Theorem 4.1. The statements for other cases can be
proved similarly. □

Lemma 4.6. Let X, Y , Z be comonotonic and Z ≥ 0. If X≤icxY , then
E[XZ] ≤ E[YZ].

Proof. There exists X ′ such that X≤stX ′
≤cxY . Furthermore, X ′ can

be constructed in such a way that X, X ′, Y are comonotonic. Fol-
lowing from Lemma 3.12.13 ofMüller and Stoyan (2002),E[X ′Z] ≤

E[YZ].
According to Lemma 5.3 of Cai and Wei (2014), X and X ′

comonotonic together with X≤stX ′ implies X≤asX ′. Since Z ≥ 0,
then E[XZ] ≤ E[X ′Z] and thus E[XZ] ≤ E[YZ]. □

The following theoremprovides a sufficient conditions that lead
to the order ≤icx:j.

Theorem4.7. If E[Y |X = x] is increasing in x andE[Y |X]≥icxX, then
X≤icx:jY .

Proof. Consider any function g ∈ Gicx. It suffices to show that
E[∆g(X, Y )] ≥ 0.

Since∆g(x, y) = g(x, y)−g(y, x) is increasing and convex in y, it
follows that∆g(X, Y ) ≥ ∆(0,1)g(X, X)(Y−X) = f (X)(Y−X), where
f (x) = ∆(0,1)g(x, x). Note that f (x) ≥ 0 and f ′(x) = ∆(0,2)g(x, x)
≥ 0.

Denote h(x) = E[Y |X = x]. Since h and f are both increasing
function, then f (X), X, h(X) are comonotonic. Noting thatX≤icxh(X)
and f (X) ≥ 0, it follows from Lemma 4.6 that E[f (X)X] ≤

E[f (X)h(X)] = E[f (X)Y ], which implies E[∆g(X, Y )] ≥ 0. □

Proposition 4.8. Assume X and Y are comonotonic. X≤icx:jY if and
only if X≤icxY .
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Proof. The proof is similar to that of Theorem 4.7, and thus is
omitted. □

The following proposition presents a closure property of the
joint orders, which allows to construct new random vectors sat-
isfying certain order ≤n-icx:j from known ones.

Proposition 4.9. The order ≤n-icx:j has the following properties:

(i) Let h ∈ Un-icx. X≤n-icx:jY implies h(X)≤n-icx:jh(Y )
(ii) Let Y≤a.s.Z. X≤n-icx:j Y implies X≤n-icx:j Z.

Proof. (i). It is straightforward by verifying that g(h(x), h(y)) ∈

Gn-icx for any g ∈ Gn-icx and h ∈ Un-icx.
(ii) For any g ∈ Gn-icx, ∆g(x, y) is increasing in y. Therefore,

∆g(X, Z)≥a.s.∆g(X, Y ), which implies E[∆g(X, Z)] ≥ E[∆g(X, Y )]
≥ 0 for any g ∈ Gn-icx. □

Corollary 4.10. If X≤n-icx:jY , then

(i) µ1 + X≤n-icx:jµ2 + Y for any µ1 ≤ µ2,
(ii) aX≤n-icx:jaY for any a > 0.

Proof. It directly follows from Proposition 4.9. □

Propositions 4.5 and 4.8 show how to construct joint increasing
convex and concave orders under two special dependence struc-
tures: independence and comonotonicity. The following proposi-
tion shows the construction of those orders for bivariate normal
random vectors.

Proposition 4.11. Let (X, Y ) ∼ BVN(µ1, µ2; σ1, σ2, ρ) with ρ ≥ 0
and n ≥ 2. X≤n-icx:jY if and only if µ1 ≤ µ2, σ1 ≤ σ2.

Proof. The ‘‘only if’’ part. According to Proposition 4.4, X≤n-icx:jY
implies X≤n-icxY , that is, E[u(X)] ≤ E[u(Y )] for any u ∈ Un-icx.
Setting u(z) = z immediately yields E[X] ≤ E[Y ], i.e., µ1 ≤

µ2. Setting u(z) = esz yield E[esX ] ≤ E[esY ], i.e., eµ1s+
1
2 σ2

1 s
2

≤

eµ2s+
1
2 σ2

2 s
2
for any s > 0, which implies that σ1 ≤ σ2.

The ‘‘if’’ part. If suffices to show X≤icx:jY , since X≤icx:jY implies
X≤n-icx:jY for all n ≥ 3, according to the remark below Defini-
tion 4.2.We shall focus on the proof for the special caseµ1 = µ2 =

0 and σ1 = 1 ≤ σ2. The general case immediately follows from
Corollary 4.10.

Denote Y ′
= Y/σ2, then (X, Y ′) is exchangeable and thus

E[g(X, Y ′)] = E[g(Y ′, X)], i.e., E[∆g(X, Y ′)] = 0. Recalling that
∆g(x, y) is increasing and convex in y, it follows that

∆g(X, σ2Y ′) − ∆g(X, Y ′) ≥ (σ2Y ′
− Y ′)∆(0,1)g(X, Y ′)

= (σ2 − 1)Y ′∆(0,1)g(X, Y ′). (4.1)

Since (X, Y ′) ∼ BVN(0, 0; 1, 1, ρ) with ρ ≥ 0, there exist
U, V ,W

i.i.d.
∼ N(0, 1) such that X =

√
1 − ρ U +

√
ρ W and

Y ′
=

√
1 − ρ V +

√
ρ W . Denote h(u, v, w) = ∆(0,1)g(

√
1 − ρ u +

√
ρ w,

√
1 − ρ v +

√
ρ w). Note that ∆(0,1)g(X, Y ′) = h(U, V ,W ).

Recalling that g ∈ Gicx, i.e., ∆(0,1)g(x, y) is nonnegative and in-
creasing in y, one observes that h(u, v, w) is increasing in v. Thus,√
1 − ρV and h(U, V ,W ) are positively correlated since U,W are

independent of V . Therefore,

E[

√
1 − ρ V ∆(0,1)g(X, Y ′)] = E[

√
1 − ρ V h(U, V ,W )]

≥ E[

√
1 − ρ V ] × E[h(U, V ,W )] = 0. (4.2)

On the other hand,
∂

∂w
h(u, v, w) = ∆(0,2)g(

√
1 − ρ u +

√
ρ w,

√
1 − ρ v +

√
ρ w)

+ ∆(1,1)g(
√
1 − ρ u +

√
ρ w,

√
1 − ρ v +

√
ρ w).

Note that ∆(0,2)g(x, y) ≥ 0 for any g ∈ Gicx and ∆g (1,1)(x, y)
= −∆g (1,1)(y, x). Since U and V are exchangeable, then
E[∆(1,1)g(

√
1 − ρ U +

√
ρ w,

√
1 − ρ V +

√
ρ w)] = 0. Therefore,

E[
∂

∂w
h(U, V , w)] ≥ 0 and thus E[h(U, V , w)] is increasing in w.

Similar as (4.2), one obtains that

E[
√

ρ W ∆(0,1)g(X, Y ′)] = E[
√

ρ W h(U, V ,W )]
= E[

√
ρ W E[h(U, V ,W )|(U, V )]] ≥ 0,

which, together with (4.1) and (4.2), implies E[∆g(X, Y )] ≥ 0 and
thus X≤icx:jY . □

Remark 4.12. For a bivariate normal random vector with nonneg-
ative correlation coefficient, the orders ≤n-icx:j, n = 2, 3, . . . are all
equivalent, and they are further equivalent to ≤icx.

To close this section, we establish equivalent characterizations
for by using two different bivariate functions. This result is analo-
gous to Theorem 3.4.

Theorem 4.13. X≤icv:jY if and only if E[g2(X, Y )] ≥ E[g1(X, Y )] for
any bivariate functions g1, g2 such that

(i) g2(x, y) − g1(x, y) ∈ Uicv as a function of y on (−∞, x],
(ii) g1(x, y) − g2(x, y) ∈ Uicv as a function of x on [y, ∞),
(iii) g2(x, y) + g2(y, x) ≥ g1(x, y) + g1(y, x) for any x and y, with

equality at y = x.

Proof. The ‘‘if’’ part. For any g ∈ Gicv ,∆g(x, y) = g(x, y)−g(y, x) ∈

Uicv for any fixed x. Define g2(x, y) = g(x, y) and g1(x, y) = g(y, x).
Then it is easy to verify that g1, g2 satisfy Conditions (i) and (iii).
Noting that g1(x, y) − g2(x, y) = −∆g(x, y) = ∆g(y, x) ∈ Uicv as
a function of x for any y, Condition (ii) is also verified. Therefore,
E [g2(X, Y )] ≥ E [g1(X, Y )], which implies that E [g(X, Y )] ≥

E [g(Y , X)].
The ‘‘only if’’ part. For any g1, g2 satisfying Conditions (i), (ii) and

(iii), define h(x, y) = (g2(x, y)−g1(x, y))×I{x ≥ y}. Then∆h(x, y) =

g2(x, y) − g1(x, y) if y ≤ x, and ∆h(x, y) = g1(y, x) − g2(y, x) if
y ≥ x. The equality in Condition (iii) yields g2(x, x) = g1(x, x),
which implies that ∆h(x, y) is continuous at y = x. Furthermore,
differentiating g2(x, x) = g1(x, x) yields g

(0,1)
2 (x, x) + g (1,0)

2 (x, x) =

g (0,1)
1 (x, x)+ g (1,0)

1 (x, x), and implies that the two-sided derivatives
of ∆h with respect to y coincide at y = x. Combining Conditions
(i) and (ii), one concludes that ∆h(x, y) ∈ Uicv for any fixed x,
i.e., h ∈ Gicv . It follows from X≤icv:jY that E [h(X, Y )] ≥ E [h(Y , X)].
The rest proof is the same as that of Theorem 3.4. □

We remark that, for high degree orders, i.e., ≤n-icv:j and ≤n-icx:j
with n ≥ 3, more assumptions on g1, g2 are needed to make the
function ∆h (constructed in Theorem 4.13) smooth enough to fall
into Un-icv .

5. Applications in portfolio selections

A typical application of the above proposed orders is to study
the optimal portfolio selections. The classical problem of optimal
portfolio selections concerning two risky assets is formulated as
follows.

max
a, b

E[u(aX + bY )]. (5.1)

In (5.1), X, Y denote the stochastic return rates of two risky assets,
which are usually assumed to be nonnegative. Real numbers a and
b are investment weights on two assets and thus satisfy: a+ b = 1
and a, b ≥ 0. The function u belongs to certain class of utility
functions. Typical choices of utility function classes are U1−icv and
U2−icv . In those cases, the optimization problem is interpreted as:
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maximizing the expected utility of total return in the sense of the
first or second stochastic dominance.

In the early literature, Problem (5.1) has been studied mainly
under special dependence structures, namely, independence and
comonotonicity. See Hadar and Seo (1988) and Landsberger and
Meilijson (1990) among others. Later on, dependence structures
has been introduced to themodel through different joint stochastic
orders, see for example, Kijima and Ohnishi (1996) and Hennessy
and Lapan (2002). Recent studies can be found in Cai and Wei
(2015), Li and You (2015), You and Li (2016), and Li and Li (2016),
where the joint reversed hazard order and its multivariate gener-
alizations are used. In a different stream, Cheung and Yang (2004)
and Chen and Hu (2008) study the problem with default risks.

In the following,we shall study this problemby using the orders
≤n-rh:j and ≤n-icv:j and thus unify the existing studies in a general
framework.

5.1. Applications of ≤n-rh:j

Theorem 5.1. Let (a1, b1) and (a2, b2) be two real vectors satisfying
a1 ≥ b1 ≥ 0, a1 + b1 = a2 + b2, and b1 ≤ min{a2, b2}. If X≤n-rh:jY ,
then a2X + b2Y≥(n+1)-icva1X + b1Y .

Proof. It suffices to show that E[u(a2X + b2Y )] ≥ E[u(a1X + b1Y )]
for any u ∈ U(n+1)-icv . Denote g1(x, y) = u(a1x+ b1y) and g2(x, y) =

u(a2x + b2y). We shall show that g1, g2 satisfy Conditions (i) and
(ii) in Theorem 3.4 and thus complete the proof.

Taking partial derivative of g2 − g1, one gets

∂k

∂yk
(g2(x, y) − g1(x, y)) = bk2u

(k)(a2x + b2y) − bk1u
(k)(a1x + b1y).

Since (a2, b2)≤m(a1, b1), then a1 + b1 = a2 + b2, and thus (a2x +

b2y) − (a1x + b1y) = −(a1 − a2)(x − y) ≤ 0 for any x ≥ y.
Recalling that (−1)k−1u(k)(z) is nonnegative and decreasing, one
obtains (−1)(k−1)u(k)(a2x + b2y) ≥ (−1)(k−1)u(k)(a1x + b1y) ≥ 0.
Since b2 ≥ b1 ≥ 0, then (−1)(k−1) ∂k

∂yk
(g2(x, y) − g1(x, y)) ≥ 0 for

any x ≥ y and k = 1, 2, . . . , n. This verifies Condition (i).
In order to verify Condition (ii), assume x ≤ y without loss of

generality. Note that

g2(x, y) + g2(y, x) − g1(x, y) − g1(y, x)
= u(a2x + b2y) + u(a2y + b2x) − u(a1x + b1y) − u(a1y + b1x)

=

∫ a2x+b2y

a1x+b1y
u′(z)dz −

∫ a1y+b1x

a2y+b2x
u′(z)dz.

Since (a2x+b2y)− (a1x+b1y) = (a1y+b1x)− (a2y+b2x) ≥ 0 and
(a2x + b2y) ≤ (a1y + b1x), then the inequality

∫ a2x+b2y
a1x+b1y

u′(z)dz −∫ a1y+b1x
a2y+b2x

u′(z)dz ≥ 0 follows from the fact that u ∈ U(n+1)-icv is
increasing and concave. This verifies g2(x, y)+g2(y, x) ≥ g1(x, y)+
g1(y, x). The equality at y = x follows from the fact that a2 + b2 =

a1 + b1. □

Theorem1 ofHua andCheung (2008) and Theorem2of You and
Li (2016) derive similar inequalities by using (multivariate version
of) ≤lr:j and ≤rh:j, respectively. Those results in bivariate case are
covered by Theorem 5.1 as a special case by setting n = 2.

The implication of Theorem 5.1 is, a portfolio with more invest-
ment on the asset with smaller return rate can be always improved
by transferring a portion of investment to the asset with higher
return rate. In some circumstances of practice, the investment on
certain asset is restricted. For example, an insurance company is
to construct a portfolio consisting of a low risk bond and a stock
with higher return, with the investment weight on stock market
restricted (by the regulator) to below certain level q ≤

1
2 . Under

this constraint, Theorem 5.1 suggests that the insurance company
should invest on the stock as much as allowed. In other words,

(1− q, q) is the best portfolio, since the vectors (a, b) and (1− q, q)
satisfy the conditions of Theorem 5.1 for any a + b = 1 and
0 ≤ b ≤ q.

Corollary 5.2. If X≤n-rh:jY , then aX + bY≥(n+1)-icvaY + bX for any
0 ≤ a ≤ b.

Corollary 5.2 is a direct corollary of Theorem5.1. The intuition is
very clear. One should invest more on the asset with larger return
rate and less on the one with smaller return rate to maximize the
expected utility. This intuition agrees with many existing studies,
see for example, Hadar and Seo (1988), Hennessy and Lapan (2002),
and Cai and Wei (2015). Compared to those results, the words
‘‘smaller’’ and ‘‘larger’’ here are in a more general sense.

5.2. Applications of ≤n-icv:j

In this subsection, we use the order ≤n-icv:j to study the port-
folio selections. Since ≤n-icv:j is an order weaker than ≤n-rh:j, we
anticipate more assumptions on the utility function if we want
to reach the same conclusion as in Section 5.1. We first introduce
the concept of absolute risk aversion and use it to describe utility
functions.

Let u be a utility function in U(n+1)-icv . Define

a(k)u (z) = −
u(k+1)(z)
u(k)(z)

, k = 1, 2, . . . , n.

a(k)u (z) is called the kth degree index of the absolute risk aversion
of u. This concept is widely used in economics to describe risk
preference. In particular, a(1)u is the Arrow index of absolute risk
aversion, a(2)u is theKimball index of absolute risk prudence, and a(3)u
is the index of absolute temperance. Readers are referred to Denuit
and Eeckhoudt (2010) for a literature review on these indices.

Theorem 5.3. Let (a1, b1) and (a2, b2) be two real vectors satisfying
a1 ≥ b1 ≥ 0, a1 + b1 = a2 + b2, and b1 ≤ min{a2, b2}. If
X ≥ 0, Y ≥ 0, and X≤icv:jY , thenE[u(a2X+b2Y )] ≥ E[u(a1Y+b1X)]
for any u ∈ U3−icv such that (−1)k−1zku(k)(z) is increasing in z for
k = 1, 2.

Proof. Denote g2(x, y) = u(a2x+ b2y) and g1(x, y) = u(a1x+ b1y).
It suffices to verify that g1 and g2 satisfy Conditions (i), (ii) and (iii)
in Theorem 4.13.

Conditions (i) and (iii) can be verified similarly as in Theo-
rem 5.1.

In order to verify Condition (ii), one needs to show

(−1)k−1ak1u
(k)(a1x + b1y)

≥ (−1)k−1ak2u
(k)(a2x + b2y), k = 1, 2, (5.2)

for any x ≥ y.
For any x ≥ y, a1x + b1y ≥ a2x + b2y, and thus

(−1)(k−1)u(k)(a1x + b1y)
≤ (−1)(k−1)u(k)(a2x + b2y) k = 1, 2. (5.3)

The increasing property of (−1)k−1zku(k)(z) implies

(−1)(k−1)(a1x + b1y)ku(k)(a1x + b1y)
≥ (−1)(k−1)(a2x + b2y)ku(k)(a2x + b2y) k = 1, 2. (5.4)

Noting that 0 ≤ b1 ≤ b2 and 0 ≤ a1b1 ≤ a2b2 algebraic
manipulations of (5.3) and (5.4) yield (5.2). □

Theorem 5.3 makes it possible for the comparison between the
portfolios (a2, b2) and (a1, b1) with a1 + b1 = a2 + b2. When it
comes to the comparison between portfolios (a, b) and (b, a), the
utility function can be more general.
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Theorem 5.4. Assume X, Y ≥ 0. If X≤n-icv:jY , then E[u(aX +bY )] ≥

E[u(aY + bX)] for any 0 ≤ a ≤ b and u ∈ U(n+1)-icv satisfying the
following conditions:

(i) a(k)u (z) ≤
k
z for k = 1, 2, . . . , n;

(ii) a(k)u (z) is decreasing in z for k = 1, 2, . . . , n.

Proof. It suffices to verify u(ax + by) ∈ Gn-rh, or

(−1)k−1bku(k)(ax + by)
≥ (−1)k−1aku(k)(ay + bx), k = 1, 2, . . . , n, (5.5)

for any x and y. Noting that u ∈ U(n+1)-icv implies (−1)(k−1)u(k)(z) is
nonnegative and decreasing in z, inequalities in (5.5) immediately
follow for all x > y since ax + by ≤ ay + bx when x > y.

Now consider x ≤ y. For any integer k ≥ 3, denote h(z) =

log(−1)(k−1)u(k)(z). Noting that h′(z) = −a(k)u (z) and a(k)u (z), one
concludes that h(z) is decreasing and convex. It follows from ay ≤

by and ax ≥ bx that h(by) − h(ax + by) ≤ h(ay) − h(ay + bx), or

(−1)(k−1)u(k)(by)
(−1)(k−1)u(k)(ax + by)

≤
(−1)(k−1)u(k)(ay)

(−1)(k−1)u(k)(ay + bx)
.

On the other hand, Condition (i) implies (−1)(k−1)zku(k)(z) is in-
creasing in z, and thus (−1)k−1(by)ku(k)(by) ≥ (−1)k−1(ay)ku(k)(ay)
for all y ≥ 0. Taking ratio of these two inequalities yields the
required inequalities in (5.5). □

Wepoint out that the assumptions of decreasing property of a(1)u
and a(2)u in Condition (ii) can be dropped. Without these assump-
tions, equality (5.5) with k = 1, 2 still holds since it is implied by
(5.2). By setting n = 1, Theorem 5.4 covers Theorem 5 of Li and
You (2015) and Theorem 5.2(ii) of Cai and Wei (2015).

We remark that Condition (i) in Theorem 5.4 is equivalent to
‘‘(−1)(k−1)zku(k)(z) is increasing for k = 1, 2, . . . , n’’. The condition
‘‘zu′(z) increasing in z’’ has been commonly used in the literature.
When u is concave, Kijima and Ohnishi (1996) prove this condition
equivalent to ‘‘zu′(z + b) increasing in z for any b ≥ 0’’ (see
their Lemma A.2). In addition, they employ the index of relative
risk aversion, defined to be −

zu′′(z)
u′(z) , to explain the intuition of this

condition. Belowwe interpret Conditions (i) and (ii) of Theorem5.4
from a different perspective.

Define v(z) = log z. Clearly, v belongs to Un-icv for any n and
thus can be viewed as a utility function. Noting that a(k)v (z) =

k
z ,

Condition (i) requires the first n degree indices of absolute risk
aversion ofu to be dominated by those of v, respectively. Recall that
a(1)u ≤ a(1)v is interpreted as ‘‘v is more risk-averse than u’’ (Arrow,
1971; Pratt, 1964), and a(2)u ≤ a(2)v is interpreted as ‘‘v is more
prudent than u’’ (Kimball, 1990). Following these interpretations,
we generally interpret Condition (i) as ‘‘u is less conservative than
v, the logarithm utility function, with respect to indices of absolute
risk aversion of all degrees up to n’’.

For a utility function u, if a(1)u (z) is decreasing in z, u is said to
exhibit decreasing absolute risk aversion, or DARA. DARA property
is frequently used in the economic literature, see for example
Vickson (1974). In this sense, Condition (ii) is an extension of the
DARA property to indices of absolute risk aversion of all degrees up
to n. Caballé and Pomansky (1996) show that, if u ∈ Un-icv for all n
(referred to as mixed risk aversion), the u satisfies Condition (ii).

An example of utility function satisfying Conditions (i) and (ii)
is zγ with 0 < γ < 1.

6. Concluding remarks

In this paper, we propose two new classes of joint stochas-
tic orders: ≤n-icx:j(≤n-icv:j) and ≤n-hr:j(≤n-rh:j). These two classes
substantially generalize the existing joint orders (such as ≤st:j,

≤icx:j, ≤lr:j, ≤hr:j, ≤rh:j) and put them into a unified framework.
Apart from their theoretical interests, these orders also provide
new tools in studying optimization problems in the field of finance.

For the orders ≤n-rh:j and ≤n-hr:j, we establish equivalent char-
acterizations from different perspectives and thus lay down a
solid theoretical foundation. The distributional characterizations
(Theorem 3.3) enhance our understanding on the new orders. The
general functional characterization (Theorem 3.4), on the other
hand, demonstrates its power in applications. For the orders≤n-rh:j
and ≤n-hr:j, we construct some examples with typical dependence
structures. Furthermore, we develop general functional charac-
terization (Theorem 4.13), and also establish closure properties
(Proposition 4.9).

In this paper, all the orders are defined for two random vari-
ables. We point out that these notions and their properties can ex-
tend to multiple random variables, by using a similar conditioning
treatment as in Cai and Wei (2014, 2015).

At the end, we would like to mention two notions: CLOAI and
WCLOAI. Definitions and applications of the two notions can be
found in Li and Li (2016). We point out that these two notions are
closely related to the order ≤n-rh:j proposed in this paper. Indeed,
the structure of their definitions (bivariate version) shares com-
monalities with that of the distributional characterization (Theo-
rem 3.3) for ≤n-rh:j. In addition, when it comes to applications to
portfolio selections, the orders ≤2-rh:j, and ≤3-rh:j yield the same
outcomes as CLOAI and WCLOAI, respectively (see Corollary 5.2 in
this paper and Theorems 3.2 and 3.3 of Li and Li, 2016). On the
other hand, we remark that the notions of ≤2-rh:j and ≤3-rh:j are
different from CLOAI and WCLOAI. There is no necessary implica-
tion between them. In an upcoming paper, we shall propose amore
general framework to unify these notions.
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