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a b s t r a c t

Dependence structures of multiple risks play an important role in optimal allocation problems for
insurance, quantitative risk management, and finance. However, in many existing studies on these
problems, risks or losses are often assumed to be independent or comonotonic or exchangeable.
In this paper, we propose several new notions of dependence to model dependent risks and give
their characterizations through the probability measures or distributions of the risks or through
the expectations of the transformed risks. These characterizations are related to the properties of
arrangement increasing functions and the proposed notions of dependence incorporate many typical
dependence structures studied in the literature for optimal allocation problems. We also develop the
properties of these dependence structures. We illustrate the applications of these notions in the optimal
allocation problems of deductibles and policy limits and in capital reserves problems. These applications
extend many existing researches to more general dependent risks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optimal allocation problems appear in many fields such as
insurance, quantitative risk management, finance, and so on. In
the study of insurance, Cheung (2007) considered some interesting
questions and models for optimal allocations of deductibles and
policy limits. The models and questions of Cheung (2007) have
been further generalized and studied in Hua and Cheung (2008),
Zhuang et al. (2009), Hu and Wang (2010), Lu and Meng (2011), Li
and You (2012), and references therein. The questions and models
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for optimal allocations of deductibles and policy limits can be
formulated as follows.

Let X1, . . . , Xn be n losses/risks to be incurred by a policyholder
in his n policies and Ti be the occurrence time of loss Xi. The losses
vector (X1, . . . , Xn) is assumed to be independent of the occurrence
times vector (T1, . . . , Tn). Through an insurance arrangement of
deductibles (policy limits) with an insurer, the policyholder is
granted a total deductible (limit) of d > 0 over the n policies
and the policyholder is allowed to allocate an arbitrary deductible
(limit) of di with 0  di  d on riskXi. If d1, . . . , dn are the allocated
deductibles (limits), then di � 0 for all i = 1, . . . , n and d1 +
· · · + dn = d. Denote all the admissible allocations of deductibles
or limits by Dn, namely, Dn = {(d1, . . . , dn)|d1 + · · · + dn =
d, di � 0, i = 1, . . . , n}. Thus, with the insurance arrangements
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of deductibles and policy limits, the total discounted retained loss
of the policyholder is

Pn
i=1 e

��Ti(Xi ^ di) and
Pn

i=1 e
��Ti(Xi �

di)+, respectively, where � � 0 is the force of interest. One
interesting question is what the optimal deductibles or limits
(d⇤

1, . . . , d
⇤
n) 2 Dn are for the policyholder. The policyholder may

choose the optimal deductibles or limits (d⇤
1, . . . , d

⇤
n) to maximize

his expected utility of the discounted wealth, namely
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, (1.2)

and the policyholder may also choose the optimal deductibles
or limits (d⇤

1, . . . , d
⇤
n) to minimize his expected discounted total

retained loss, namely

min
(d1,..., dn)2Dn

E

"
nX

i=1

e��Ti(Xi ^ di)

#

(1.3)

or

min
(d1,..., dn)2Dn

E

"
nX

i=1

e��Ti(Xi � di)+

#

, (1.4)

where! is the initialwealth of the policyholder after premiums are
paid, and u is an increasing and/or concave utility function. Note
that if u(x) is increasing and/or concave, then u⇤(x) = �u(! �
x) is increasing and/or convex. Therefore, the optimal allocation
problems (1.1)–(1.4) are reduced to the following two types of
optimal allocation problems:

min
(d1,...,dn)2Dn

E

"

u

 
nX
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e��Ti(Xi ^ di)
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, (1.5)

min
(d1,...,dn)2Dn
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nX
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e��Ti(Xi � di)+

!#

, (1.6)

where u is an increasing and/or convex function.
In the existing study of the optimal allocation problems (1.5)

and (1.6) such as Cheung (2007), Hua and Cheung (2008), Zhuang
et al. (2009), Hu and Wang (2010), Lu and Meng (2011), and
references therein, the losses X1, . . . , Xn were often assumed
to have the following independent or comonotonic structures:
(i) X1, . . . , Xn are mutually independent and X1 hr · · · hr Xn
or X1 lr · · · lr Xn, and (ii) X1, . . . , Xn are comonotonic and
X1 st · · · st Xn, where the stochastic orders of st , hr , and lr
are defined in Section 2. The similar assumptions on the losses
occurrence times T1, . . . , Tn were made as well. Recently, Li and
You (2012) have studied the optimal allocation problems (1.5)
and (1.6) under the same comonotonicity assumptions on the
losses X1, . . . ., Xn as before but a dependence assumption on the
losses occurrence times T1, . . . , Tn. They assumed that (T1, . . . , Tn)
is linked by a certain Archimedean copula, which implies that
the discounted vector (e��T1 , . . . , e��Tn) has an arrangement
increasing joint density function, where the definition of an
arrangement function will be given in Section 2. These special
dependence structures, togetherwith exchangeable losses, are also
assumed in other optimal allocation problems such as Cheung
and Yang (2004). These restrictions on dependence structures for
losses or risks motivate us to consider more general dependence
structures.

To determine an optimal allocation, we use the criterion of
minimizing the traditional convex risk measure in this paper. For

a comprehensive review of other criteria for capital allocations,
readers are referred to Dhaene et al. (2012). Recent applications
of these allocation principles can be seen in Cheung et al. (2013)
and Zaks and Tsanakas (2013).

This paper aims to developmore general dependence structures
and to study their applications in optimal allocation problemswith
dependent risks. The rest of the paper is organized as follows.
In Section 2, we present some preliminaries on arrangement
increasing functions and stochastic orders. In Section 3, we define
the dependence notions of SAI and RWSAI and develop the
properties and equivalent characterizations of the two notions.
In Section 4, we introduce the dependence notions of UOAI and
CUOAI and derive their properties. We conclude that these notions
have the implications of SAI H) RWSAI H) CUOAI H) UOAI.
In Section 5, we present the properties of marginal distributions
of the random vectors with the dependence structures proposed
in this paper. We also show how to construct dependent random
vectors with these dependence structures through copulas. As
applications of these notions of dependence, in Section 6, we
consider the optimal allocation problems (1.5) and (1.6) with
dependent losses and dependent losses occurrence times. These
applications generalize the studies of Cheung (2007), Zhuang et al.
(2009), Li and You (2012) to more general dependent risks. Many
of their results are special cases of these applications. We also give
an application in the allocation problem of capital reserves with
RWSAI dependent risks. Section 7 gives some concluding remarks.

2. Preliminaries

In this section, we recall the concept of arrangement increasing
functions and the definitions of some stochastic orders, which will
be used in this paper.

Throughout the paper, we refer an n-dimensional real-valued
vector (x1, . . . , xn) as x and an n-dimensional random vector
(X1, . . . , Xn) asX. Accordingly,X > (<) xmeans Xi > (<) xi for all
i = 1, . . . , n. For any set K = {i1, . . . , ik} ⇢ {1, . . . , n} where 1 
i1 < · · · < ik  n and k = 1, . . . , n, we denote xK = (xi1 , . . . , xik)
and XK = (Xi1 , . . . , Xik). For the sake of convenience, we refer the
vector x as (xK , x

K̄
) and X as (XK ,XK̄ ), where K̄ = {1, . . . , n} \K is

the complement of the set K . In particular, for any 1  i < j  n,
if K = {i, j}, we write ij = {1, . . . , n} \ {i, j}, XK = Xij, XK̄ = Xij,
xK = xij , and x

K̄
= x

ij
. For example, X12 = (X1, X2) and X12 =

(X3, . . . , Xn).
Let ⇡ = (⇡(1), . . . ,⇡(n)) be any permutation of {1, . . . , n},

we define ⇡(x) = (x⇡(1), . . . , x⇡(n)). For any 1  i 6= j 
n, we denote the special permutation of transposition by ⇡ij =
(⇡ij(1), . . . ,⇡ij(n)), where ⇡ij(k) = k for k 6= i, j and ⇡ij(i) = j,
⇡(j) = i.

Furthermore, throughout the paper, ‘increasing (decreasing)’
means ‘non-decreasing (non-increasing)’; all random variables are
defined on the common probability space (⌦, F , P); expectations
under P are assumed to be finite whenever we write them;
the notation of ‘a.s.(�a.s.)’ means the inequality ‘ (�)’ holds
almost surely on the common probability space (⌦, F , P); and
the notation of ‘=d’ means the equality holds in distribution. In
addition, we denote the supports of a random variable X and a
random vector X by S(X) and S(X), respectively.

Definition 2.1. A multivariate function f (x) = f (x1, . . . , xn) is
said to be arrangement increasing (AI) if f (x) � f (⇡ij(x)) for any
x 2 Rn and any 1  i < j  n such that xi  xj. ⇤

Note that a multivariate function f (x) = f (x1, . . . , xn) is
arrangement increasing if and only if (xi � xj)[f (x1, . . . , xi, . . . , xj,
. . . , xn) � f (x1, . . . , xj, . . . , xi, . . . , xn)]  0 for any 1  i <
j  n and that the arrangement increasing property is preserved
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under marginalization as stated below. More properties about
arrangement increasing functions can be found in Marshall and
Oklin (1979).

Remark 2.2. If f (x) = f (x1, . . . , xn) is arrangement increasing,
then g(xK ) := f (xK , x

K̄
) with |K | � 2 is arrangement increasing

for any fixed x
K̄

2 R n�|K |. ⇤

In the following, we recall the definitions of some stochastic
orders, which will be used in this paper. A detailed study on
these orders and other stochastic orders is given by Shaked
and Shanthikumar (2007). Applications of stochastic orders in
insurance can be found in Denuit et al. (2006).

Definition 2.3. Let X and Y be two random variables with survival
functions F̄X (x) = P{X > x} and F̄Y (y) = P{Y > y}, and distribu-
tion functions FX (x) = P{X  x} and FY (y) = P{Y  y}.

(i) We say that X is smaller than Y in usual stochastic order, de-
noted as X st Y , if F̄X (x)  F̄Y (x) for all x 2 R.

(ii) We say that X is smaller than Y in hazard rate order, denoted
as X hr Y , if F̄Y (x)/F̄X (x) is increasing in x 2 {x : F̄X (x) > 0} or
equivalently X hr Y if F̄Y (x) F̄X (y)  F̄Y (y) F̄X (x) for all�1 < x <
y < 1.

(iii) We say that X is smaller than Y in reverse hazard rate order,
denoted as X rh Y , if FY (x)/FX (x) is increasing in x 2 {x : FX (x)
> 0}.

(iv) We say that X is smaller than Y in likelihood ratio order, de-
noted as X lr Y , if

P{X 2 A} P{Y 2 B} � P{X 2 B} P{Y 2 A}
for all A, B 2 B(R) such that sup A  inf B. ⇤

These stochastic orders are defined by their distributions of
random variables. Each of the stochastic orders has a functional
characterization by the expectations of transformations of random
variables.

For any bivariate function g(x, y), denote�g(x, y) = g(x, y) �
g(y, x). Define two classes of functions by

Glr = {g(x, y) : �g(x, y) � 0 for any y � x},
Ghr = {g(x, y) : �g(x, y) is increasing in y for any y � x}.

The following functional characterizations of hr , and lr can
be found in Shaked and Shanthikumar (2007).

Proposition 2.4. For two random variables X and Y , let (X⇤, Y ⇤) be
the independent copy of (X, Y ), namely X⇤ =d X, Y ⇤ =d Y and X⇤ is
independent of Y ⇤, then

(i) X hr Y if and only if E[g(X⇤, Y ⇤)] � E[g(Y ⇤, X⇤)] for all
g 2 Ghr ,

(ii) X lr Y if and only if E[g(X⇤, Y ⇤)] � E[g(Y ⇤, X⇤)] for all
g 2 Glr . ⇤

Remark 2.5. These orders have the implications of X lr Y H)
X hr Y (X rh Y ) H) X st Y . Furthermore,X hr Y () �Y rh
�X and if X and Y have density functions fX (x), fY (x), then X lr Y
if and only if fY (x)/fX (x) is increasing in x 2 {x : fX (x) > 0}.

3. Dependence notions of SAI and RWSAI

For a random vector X = (X1, . . . , Xn), there are two common
ways to define or describe its dependence notion. One way is
to characterize the expectations of the transformations of the
random vector and the other is to characterize the distribution or
probability measure of the random vector. Shanthikumar and Yao
(1991) has described the dependence of a bivariate random vector

(X, Y ) by characterizing the expectation of g(X, Y ) with g 2 Glr or
Ghr .

Motivated by Proposition 2.4 and the work of Shanthikumar
and Yao (1991), in this section, we first define two classes of
multivariate functions and use them to define the notions of
dependence for multi-dimensional random vectors.

For any 1  i < j  n, define

Gij
sai(n) = {g(x1, . . . , xn) : �ijg(x1, . . . , xn) � 0 for any xj � xi},

Gij
rwsai(n) = {g(x1, . . . , xn) : �ijg(x1, . . . , xn)
is increasing in xj for any xj � xi},

where �ijg(x) = g(x) � g(⇡ij(x)) for a multivariate function
g(x1, . . . , xn).

It is easy to verify thatGij
sai(n) ⇢ Gij

rwsai(n) and thatGij
sai(2) = Glr

and Gij
rwsai(2) = Ghr . We then revisit the notion of dependence

of a random vector considered by Shanthikumar and Yao (1991)
using the proposed functional classes Gij

sai(n) and name the notion
as the stochastically arrangement increasing (SAI) notion in next
subsection. We also give the distributional characterization of SAI
and many new properties of SAI. Then, we introduce a weaker
notion of dependence, called RWSAI notion, by the functional
class Gij

rwsai(n) and consider the properties of RWSAI and its
distributional characterization as well.

3.1. Dependence notion of SAI and its properties

Definition 3.1. A random vector X = (X1, . . . , Xn) or its joint
distribution is said to be stochastically arrangement increasing
(SAI) if E [g(X)] � E [g(⇡ij(X))] for any 1  i < j  n and any
g(x1, . . . , xn) 2 Gij

sai(n) such that the expectations exist. ⇤

The following Proposition 3.3 shows that the SAI property
is preserved under marginalization, conditioning, and increasing
transformation. To prove the proposition, we need the following
lemma.

Lemma 3.2. Let X = (X1, . . . , Xn) be a random vector defined on
the probability space (⌦, F , P) and f (x) = f (x1, . . . , xn) be a
multivariate function. If E[f (X) I(A)]  0 for all A 2 F , then
f (X) a.s. 0.

Proof. Define A = {! 2 ⌦ : f (X(!)) > 0}, we want to show
that P(A) = 0. Otherwise, assume P(A) > 0. Denote An = {! 2
⌦ : f (X(!)) � 1/n}, then the sets sequence {An, n = 1, 2, . . .} is
increasing and converges to the set A, therefore limn!1 P(An) =
P(A) > 0. Then there exists N 2 N+ such that P(AN) > 0, and thus
E[f (X(!)) I{! 2 AN}] � E

⇥ 1
N I{! 2 AN}⇤ = 1

N P(AN) > 0, which
contradicts the fact that E[f (X) I(A)]  0 for all A 2 F . ⇤

Proposition 3.3. If random vector X = (X1, . . . , Xn) is SAI, then
(i) XK = (Xk, k 2 K) is SAI for any K ✓ {1, . . . , n} with |K | � 2,
(ii) the conditional distribution of XK given XK̄ = xK̄ or XK |XK̄= xK̄ is SAI for any K ⇢ {1, . . . , n}with |K | � 2 and any x

K̄
2 S(XK̄ ),

(iii) (f (X1), . . . , f (Xn)) is SAI for any increasing function f (x).

Proof. For (i) and (ii), without loss of generality, assume K = {1,
. . . , |K |}. For any 1  i < j  |K |, consider any function
g(x1, . . . , x|K |) : R |K | ! R such that g 2 Gij

sai(|K |). For (i), we
define function h(x) = h(x1, . . . , xn) ⌘ g(x1, . . . , x|K |), then it is
easy to verify that h(x) 2 Gij

sai(n) for any 1  i < j  |K |. Since
(X1, . . . , Xn) is SAI, we have E[g(XK )] = E[h(X)] � E[h(⇡ij(X))]
= E[g(⇡ij(XK ))] for any 1  i < j  |K |, which implies that
XK is SAI by Definition 3.1. For (ii), we define function h(x) =
g(x1, . . . , x|K |) I{(x|K |+1, . . . , xn) 2 A}, where A 2 � (X|K |+1, . . . ,

Xn). It is easy to verify that h(x) 2 Gij
sai(n) for any 1  i < j  |K |.
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Following the definition of SAI, we have E [h(X)] � E [h(⇡ij(X))],
namely E [g(XK ) I{XK̄ 2 A}] � E [g(⇡ij(XK )) I{(XK̄ ) 2 A}], which
is equivalent to E [E [g(XK )|XK̄ ]I{XK̄ 2 A}] � E [E [g(⇡ij(XK ))|XK̄ ]
I{XK̄ 2 A}] by the property of conditional expectations. Therefore,
by Lemma3.2,wehaveE [g(XK )|XK̄ ] �a.s. E [g(⇡ij(XK ))|XK̄ ], which
means that XK |XK̄ = x

K̄
is SAI for any x

K̄
2 S(XK̄ ).

(iii) For any 1  i < j  n, consider any function g(x1, . . . ,
xn) 2 Gij

sai(n). Since f (x) is increasing, we have h(x1, . . . , xn) =
g(f (x1), . . . , f (xn)) 2 Gij

sai(n). Thus, by the definition of SAI, we
have E [h(X1, . . . , Xn)] � E [h(⇡ij(X1, . . . , Xn))] or equivalently
E [g(f (X1), . . . , f (Xn))] � E [g(⇡ij(f (X1), . . . , f (Xn)))], which
implies that (f (X1), . . . , f (Xn)) is SAI. ⇤

Proposition 3.4. A random vector X = (X1, . . . , Xn) is SAI if and
only if the conditional distribution of (Xi, Xj) given Xij = xij or
(Xi, Xj)|Xij = xij is SAI for any 1  i < j  n and any xij 2 S(Xij).

Proof. IfX is SAI, then (Xi, Xj)|Xij = x
ij
is SAI by Proposition 3.3(ii).

Conversely, assume that (Xi, Xj)|Xij = x
ij
is SAI for any 1  i <

j  n, consider any 1  i < j  n and any function g 2 Gij
sai(n),

we need to show E [g(X)] � E [g(⇡ij(X))]. Note that for any fixed
x
ij

2 S(Xij), g(x1, . . . , xn) 2 G12
sai(2) as a bivariate function of

(xi, xj). Since (Xi, Xj)|Xij = xij is SAI, we have E [g(X)|Xij = x
ij
] �

E [g(⇡ij(X))|Xij = xij], which implies E [g(X)] � E [g(⇡ij(X))] by
taking expectation on both sides of the above inequality. ⇤

The following theorem gives the distributional characteriza-
tions of a bivariate SAI random vector.

Theorem 3.5. For a bivariate random vector (X, Y ), the following
statements are equivalent.
(i) (X, Y ) is SAI.
(ii) P{(X, Y ) 2 I ⇥ J} � P{(X, Y ) 2 J ⇥ I} for all measurable sets

I, J ⇢ R such that sup I  inf J .
(iii) P{(X, Y ) 2 A} � P{(Y , X) 2 A} for any measurable A ✓

{(x, y)|x  y}.
Proof. The proof of (i)H) (iii) is obvious since h(x, y) = I{(x, y) 2
A} is arrangement increasing for any measurable A ⇢ {(x, y)|x
 y}.

The proof of (iii) H) (ii) is straightforward since I ⇥ J ✓
{(x, y)|x  y} for all measurable sets I, J ⇢ R such that sup I 
inf J .

For the proof of (ii) H) (i), consider any arrangement increas-
ing function g(x, y), we first assume g(x, y) � 0. For positive inte-
ger n, define

An =
⇢

i
2n

,
i + 1
2n

◆
⇥


j
2n

,
j + 1
2n

◆
, i, j 2 Z and

� n2n  j < i  n2n � 1
�

and gn(x, y) = P
A2An

inf(s,t)2A g(s, t)⇥I{(x, y) 2 A},where the in-
fimum inf(x,y)2A g(x, y) always exists since g(x, y) � 0. It is easy to
see that {gn(x, y)} is an increasing series and converges to g(x, y)⇥
I{x > y} as n ! 1. Therefore, by the monotone convergence the-
orem, we have E [g(X, Y ) I{X > Y }] = limn!1 E [gn(X, Y )].

For any set A ⇢ R 2, define its symmetric set as As = {(y, x)|
(x, y) 2 A}. Furthermore, define Bn = {As|A 2 An} and hn(x, y) =P

B2Bn
inf(s,t)2B g(s, t)⇥I{(x, y) 2 B}, thenE [g(X, Y ) I{X < Y }] =

limn!1 E [hn(X, Y )]. Therefore,
E [g(X, Y )] = lim

n!1 E [gn(X, Y ) + hn(X, Y )]
+ E [g(X, X) I{X = Y }], (3.1)

E [g(Y , X)] = lim
n!1 E [gn(Y , X) + hn(Y , X)]
+ E [g(X, X) I{X = Y }]. (3.2)

In order to show E [g(X, Y )] � E [g(Y , X)], it is sufficient to show
that for all n � 1,

E [gn(X, Y ) + hn(X, Y )] � E [gn(Y , X) + hn(Y , X)]. (3.3)

We have

E [gn(X, Y )] =
X

A2An

inf
(x,y)2A

g(x, y) ⇥ P{(X, Y ) 2 A};

E [hn(X, Y )] =
X

A2An

inf
(x,y)2As

g(x, y) ⇥ P{(X, Y ) 2 As};

E [gn(Y , X)] =
X

A2An

inf
(x,y)2A

g(x, y) ⇥ P{(X, Y ) 2 As};

E [hn(Y , X)] =
X

A2An

inf
(x,y)2As

g(x, y) ⇥ P{(X, Y ) 2 A}.

Note that for any A 2 An, A has the form of J ⇥ I with I, J ⇢ R
and sup I  inf J , and its symmetric set As has the form of I ⇥ J . By
(ii), we have P{(X, Y ) 2 A}  P{(X, Y ) 2 As} for any A 2 An. Re-
call that g(x, y)  g(y, x) since g is arrangement increasing, then
inf(x,y)2A g(x, y)  inf(x,y)2A g(y, x) = inf(x,y)2As g(x, y). Thus, re-
call that the inequality ab + cd � ad + bc holds for any constants
a, b, c, d such that a  c and b  d, we have

inf
(x,y)2A

g(x, y) ⇥ P{(X, Y ) 2 A} + inf
(x,y)2As

g(x, y) ⇥ P{(X, Y ) 2 As}
� inf

(x,y)2A
g(x, y) ⇥ P{(X, Y ) 2 As}

+ inf
(x,y)2As

g(x, y) ⇥ P{(X, Y ) 2 A},

which implies (3.3) immediately.
In the case that g(x, y)  0, define f (x, y) = �g(y, x), then

f (x, y) is nonnegative and arrangement increasing. According to
the above conclusion, we have E[f (X, Y )] � E[f (Y , X)], i.e.
E[g(X, Y )] � E[g(Y , X)].

For a general arrangement increasing function g(x, y), denote
g+(x, y) = max{g(x, y), 0} and g�(x, y) = min{g(x, y), 0}. Then
g+(x, y) and g�(x, y) are both arrangement increasing, and g(x, y)
= g+(x, y) + g�(x, y). According to the above result, we have
E [g+(X, Y )] � E [g+(Y , X)] and E [g�(X, Y )] � E [g�(Y , X)],
which imply E [g(X, Y )] � E [g(Y , X)]. ⇤

Based on Proposition 3.4 and Theorem 3.5, we derive a distri-
butional characterization of SAI for a multivariate random vector.

Theorem 3.6. A random vector X = (X1, . . . , Xn) is SAI if and only
if

P{X 2 A} � P{⇡ij(X) 2 A}, (3.4)

for any 1  i < j  n and any set A ⇢ {(x1, . . . , xn)|xi  xj}.
Proof. The proof of ‘‘H)’’ is straightforward by noting that the
function h(x) = I{x 2 A} 2 Gij

sai(n) for any 1  i < j  n.
For the proof of ‘‘(H’’, assume (3.4) holds. First let i = 1 and

j = 2, consider any set A12 ⇢ {(x1, x2)|x1  x2} and any set A12 ⇢
Rn�2. Then A = A12 ⇥ A12 ⇢ {(x1, . . . , xn)|x1  x2}. By (3.4), we
have P{(X1, X2) 2 A12,X12 2 A12} � P{(X2, X1) 2 A12,X12 2 A12},
which can be rewritten as

E [E [I{(X1, X2) 2 A12}|X12] ⇥ I{X12 2 A12}]
� E [E [I{(X2, X1) 2 A12}|X12] ⇥ I{X12 2 A12}].

Thus, combining this inequality with Lemma 3.2, we have E [I{(Xi,
Xj) 2 A12}|X12] a.s. E [I{(Xj, Xi) 2 A12}|X12]. Then, (X1, X2)|X12 =
x
12
is SAI according to Theorem3.5(iii). Similarly,we can prove that

(Xi, Xj)|Xij = x
ij
is SAI for any 1  i < j  n and any x

ij
2 S(Xij).

Therefore X is SAI by Proposition 3.4. ⇤
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Remark 3.7. Assume that X has a joint density function f (x) =
f (x1, . . . , xn), we can prove that X is SAI if and only if f (x) is
arrangement increasing. Indeed, this fact has been pointed out by
Shanthikumar and Yao (1991).

3.2. Dependence notion of RWSAI and its properties

Note that Gij
sai(n) ⇢ Gij

rwsai(n). It is natural to define a weaker
notion of dependence than SAI by the functional class Gij

rwsai.

Definition 3.8. Random vector X = (X1, . . . , Xn) or its joint dis-
tribution is said to be weakly stochastic arrangement increasing
through right tail probability (RWSAI) if E [g(X)] � E [g(⇡ij(X))]
for any 1  i < j  n and any g(x1, . . . , xn) 2 Gij

rwsai(n) such that
the expectations exist. ⇤

It follows from Gij
sai(n) ⇢ Gij

rwsai(n) that SAI H) RWSAI.
Furthermore, by the definition of RWSAI and the same arguments
used in the proofs for Propositions 3.3 and 3.4, we can show
that the RWSAI property is preserved under marginalization,
conditioning, increasing transformation and that a random vector
is RWSAI if and only if the joint conditional distribution of any pair
of the random vector conditioning on the rest of the random vector
is RWSAI. We omit the proofs of the following two propositions
since their proofs are similar to the proofs of Propositions 3.3 and
3.4.

Proposition 3.9. If random vector X = (X1, . . . , Xn) is RWSAI, then

(i) XK = (Xk, k 2 K) is RWSAI for any K ✓ {1, . . . , n} with
|K | � 2,

(ii) the conditional distribution of XK givenXK̄ = x
K̄
or XK |XK̄ = x

K̄
is RWSAI for any K ✓ {1, . . . , n} with |K | � 2 and any x

K̄
2

S(XK̄ ),
(iii) (f (X1), . . . , f (Xn)) is RWSAI for any increasing function f (x). ⇤

Proposition 3.10. A random vector X = (X1, . . . , Xn) is RWSAI if
and only if the conditional distribution of (Xi, Xj) given Xij = x

ij

or (Xi, Xj)|Xij = x
ij
is RWSAI for any 1  i < j  n and any

x
ij

2 S(Xij). ⇤

Now, we consider the distributional characterization of RWSAI.
In doing so, we give the following definition.

Definition 3.11. A subset A of R n is said to be an upper set if the
indicator function I{(x1, . . . , xn) 2 A} is increasing in x1, . . . , xn
and is said to be a partial upper set with respect to a non-empty
subset K ⇢ {1, . . . , n}, or to be a K -upper set, if I{(x1, . . . , xn) 2 A}
is increasing in xk for all k 2 K . ⇤

Theorem 3.12. A bivariate random vector (X, Y ) is RWSAI if and
only if

P{(X, Y ) 2 A} � P{(Y , X) 2 A} (3.5)

for all {2}-upper set A ⇢ {(x, y)|x  y}.
Proof. First, by the definition of RWSAI and the fact Gij

rwsai(2) =
Ghr , we have that (X, Y ) is RWSAI if and only if E[g(X, Y )] �
E[g(Y , X)] for all g(x, y) 2 Ghr . Thus, assume that (X, Y ) is RWSAI,
for any {2}-upper set A ⇢ {(x, y)|x  y}, consider the indicator
function h(x, y) = I{(x, y) 2 A}. Obviously, h(x, y) in increasing
in y since A is a {2}-upper set. Note that �h(x, y) = h(x, y) if
y > x, and �h(x, y) = 0 if y = x, then �h(x, y) = h(x, y) is
increasing in y � x. Therefore h(x, y) 2 Ghr , which implies that
P{(X, Y ) 2 A} = E[h(X, Y )] � E[h(Y , X)] = P{(Y , X) 2 A}.

Conversely, consider any function g(x, y) 2 Ghr . Note that
�g(y, x) = ��g(x, y) and�g(x, y) = 0 if x = y, we have

E[�g(X, Y )] = E[�g(X, Y ) I{Y � X}] + E[�g(X, Y ) I{Y  X}]
= E[�g(X, Y ) I{Y � X}] � E[�g(Y , X) I{X � Y }].

(3.6)

Since�g(X, Y ) I{Y � X} � 0, we have

E[�g(X, Y ) I{Y � X}] =
Z 1

0
P{�g(X, Y ) I{Y � X} > z}d z

=
Z 1

0
P{�g(X, Y ) > z, Y � X}dz

=
Z 1

0
P{(X, Y ) 2 Az}d z, (3.7)

where Az = {(x, y)|�g(x, y) > z, y � x}. Similarly,

E[�g(Y , X) I{X � Y }] =
Z 1

0
P{(Y , X) 2 Az}dz. (3.8)

Recall that g(x, y) 2 Ghr , it is easy to verify that Az ⇢ {(x, y)|x  y}
and Az is a {2}-upper set for any fixed z � 0, thus P{(X, Y ) 2 Az} �
P{(Y , X) 2 Az} for any z � 0. Combining with (3.7) and (3.8),
we have E[�g(X, Y ) I{Y � X}] � E[�g(Y , X) I{X � Y }], which
impliesE[g(X, Y )] � E[g(Y , X)] according to (3.6) and thus (X, Y )
is RWSAI. ⇤

For general multivariate random vectors, we have the following
distributional characterization for RWSAI.

Theorem 3.13. A random vector X = (X1, . . . , Xn) is RWSAI if and
only if

P{X 2 A} � P{⇡ij(X) 2 A} (3.9)

for any 1  i < j  n and any {j}-upper set A ⇢ {(x1, . . . , xn)|xi 
xj}.
Proof. Assume that X = (X1, . . . , Xn) is RWSAI. For any 1  i < j
 n and any {j}-upper set A ⇢ {(x1, . . . , xn)|xi  xj}, define
h(x1, . . . , xn) = I{(x1, . . . , xn) 2 A}. It is easy to verify that h(x1,
. . . , xn) 2 Gij

rwsai(n). Then P{X 2 A} = E[h(X)] � E[h(⇡ij(X))]
= P{⇡ij(X) 2 A}.

Conversely, assume that (3.9) holds. Following similar argu-
ments used in the proof of Theorem 3.12, we can prove that
E [g(X)] � E [g(⇡ij(X))] for any 1  i < j  n and any g(x1,
. . . , xn) 2 Gij

rwsai(n). ⇤

Notice from Remark 3.7 that if a random vector has a joint
density function, then the SAI property can be characterized
through its density function. For RWSAI, if a random vector has
a joint density function, we can derive a characterization of
RWSAI through the partial derivatives of joint conditional survival
functions of any pair of the random vector conditioning on the rest
of the random vector.

Theorem 3.14. Assume random vector (X1, . . . , Xn) has a joint
density function. Then (X1, . . . , Xn) is RWSAI if and only if

@

@xi
P{Xi > xi, Xj > xj|Xij = x

ij
}

 @

@xi
P{Xi > xj, Xj > xi|Xij = x

ij
}, (3.10)

for any 1  i < j  n and xi  xj, and any x
ij

2 S(Xij).
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Proof. Assume (X1, . . . , Xn) is RWSAI. To prove (3.10), without
loss of generality, it is sufficient to show that

@

@x1
P{X1 > x1, X2 > x2|X12 = x

12
}

 @

@x1
P{X1 > x2, X2 > x1|X12 = x

12
}, (3.11)

for any x1  x2 and any fixed x
12

2 S(X12).
For any x1  x2, define At = (x1 � t, x1] ⇥ (x2, 1) ⇥ A12,

where t > 0 and A12 2 � (X12). Then At is a {2}-upper set and
At ⇢ {(x1, . . . , xn) 2 R n|x1  x2}. Therefore, P{(X1, X2, . . . , Xn) 2
At} � P{(X2, X1, . . . , Xn) 2 At} or
P{x1 � t < X1  x1, X2 > x2,X12 2 A12}

� P{x1 � t < X2  x1, X1 > x2,X12 2 A12},
which is equivalent to

E[E[I{x1 � t < X1  x1, X2 > x2}|X12] ⇥ I{X12 2 A12}]
� E[E[I{x1 � t < X2  x1, X1 > x2}|X12] ⇥ I{X12 2 A12}].

According to Lemma 3.2, we have

E[I{x1 � t < X1  x1, X2 > x2}|X12]
�a.s. E[I{x1 � t < X2  x1, X1 > x2}|X12]

or

P{x1 � t < X1  x1, X2 > x2|X12 = x
12

}
� P{x1 � t < X2  x1, X1 > x2|X12 = x

12
},

for any x
12

2 S(X12).
By dividing t > 0 on both sides of the above inequality and

letting t & 0, we have

@

@x1
P{X1 > x1, X2 > x2|X12 = x

12
}

 @

@x1
P{X1 > x2, X2 > x1|X12 = x

12
},

which implies (3.11).
Conversely, assume (3.10) holds, we want to show that (X1,

. . . , Xn) is RWSAI. The proof for the case of n = 2 follows from
Theorem 3.17 of Shanthikumar and Yao (1991). As for the case
of n � 3, according to the result on the case of n = 2, (3.10)
implies that the conditional distribution of (Xi, Xj) given Xij = x

ij

or (Xi, Xj)|Xij = x
ij
is RWSAI for any 1  i < j  n and any fixed

x
ij

2 S(Xij), which means that (X1, . . . , Xn) is RWSAI according to
Proposition 3.10. ⇤

4. Dependence notions of UOAI and CUOAI

In Section 3, we defined the SAI and RWSAI notions of
dependence by the functional classes and give their distributional
characterizations aswell. If randomvectors have density functions,
the SAI and RWSAI notions of dependence can be characterized
by their density functions and the partial derivatives of the
conditional survival functions, respectively. However, in general,
the density functions or the partial derivatives of conditional
survival functions of random vectors may not exist. This fact
motivates us to consider if we can define weaker notions of
dependence by the joint survival functions or the joint conditional
survival functions of random vectors, which always hold for any
random vectors. In this section, we define two weaker notions of
dependence, called UOAI and CUOAI, through the joint survival
functions or the joint conditional survival functions of random
vectors.

Definition 4.1. Random vector X = (X1, . . . , Xn) or its joint
distribution is said to be upper orthant arrangement increasing
(UOAI) if its joint survival function F̄(x1, . . . , xn) = P{X1 > x1,
. . . , Xn > xn} is arrangement increasing. ⇤

Definition 4.2. Random vector X = (X1, . . . , Xn) or its joint
distribution is said to be conditionally upper orthant arrangement
increasing (CUOAI) if the conditional distribution of (Xi, Xj) given
Xij = x

ij
or (Xi, Xj)|Xij = x

ij
is UOAI for any 1  i < j  n and any

fixed x
ij

2 S(Xij). ⇤

The followingproposition shows the implications of RWSAI H)
CUOAI H) UOAI.

Proposition 4.3. (i) If random vector X = (X1, . . . , Xn) is CUOAI,
then (X1, . . . , Xn) is UOAI. (ii) If random vector X = (X1, . . . , Xn) is
RWSAI, then (X1, . . . , Xn) is CUOAI.

Proof. (i) From Definition 4.2, for any 1  i < j  n and xi  xj,
we have, for any x

ij
2 S(Xij), P{Xi > xi, Xj > xj|Xij = x

ij
} �

P{Xi > xj, Xj > xi|Xij = x
ij
}, which means E [I{Xi > xi, Xj >

xj}|Xij] �a.s. E [I{Xi > xj, Xj > xi}|Xij]. Therefore,
P{Xi > xi, Xj > xj,Xij > x

ij
} = E [I{Xi > xi, Xj > xj} ⇥ I{Xij > x

ij
}]

= E [E [I{Xi > xi, Xj > xj}|Xij] ⇥ I{Xij > x
ij
}]

� E [E [I{Xi > xj, Xj > xi}|Xij] ⇥ I{Xij > x
ij
}]

= P{Xi > xj, Xj > xi,Xij > x
ij
},

which means that X is UOAI.
(ii) Without loss of generality, it suffices to show that (X1, X2)|

X12 = x
12

is UOAI for any x
12

2 S(X12), or

P{X1 > x1, X2 > x2|X12 = x
12

}
� P{X1 > x2, X2 > x1|X12 = x

12
}, (4.1)

for any x1  x2 and any x12 2 S(X12).
For any fixed x1  x2 and any A12 2 � (X12), define function

h(y1, . . . , yn) = I{y1 > x1, y2 > x2} ⇥ I{y
12

2 A12}. It is
easy to verify that h(y1, . . . , yn) 2 G12

rwsai(n). Since (X1, . . . , Xn) is
RWSAI, we have E[h(X1, X2, . . . , Xn)] � E[h(X2, X1, . . . , Xn)], or
equivalently,

E[I{X1 > x1, X2 > x2} I{X12 2 A12}]
� E[I{X1 > x2, X2 > x1} I{X12 2 A12}],

for any A12 2 � (X12). By Lemma 3.2, we have E[I{X1 > x1, X2 >
x2}|X12] �a.s. E[I{X1 > x2, X2 > x1}|X12], which implies (4.1). ⇤

This proposition, together with SAI H) RWSAI, means that the
SAI, RWSAI, CUOAI, UOAI notions of dependencehave the following
implications:

SAI H) RWSAI H) CUOAI H) UOAI. (4.2)

We point out that all the above implications are strict. In other
words, any reverse of these implications does not hold. Here, we
give examples of UOAI 6H) CUOAI and CUOAI 6H) RWSAI.

Let (X1, X2, X3) be a discrete random vector with the following
joint probability mass function: P{(X1, X2, X3) = (1, 2, 3)} = p1,
P{(X1, X2, X3) = (2, 1, 4)} = p2, P{(X1, X2, X3) = (2, 3, 5)} = p3
with p1 + p2 + p3 = 1 and p1 > p2. Then it is easy to verify that
(X1, X2, X3) is UOAI. But (X1, X2)|X3 = 4 is not UOAI, which means
that (X1, X2, X3) is not CUOAI. Furthermore, let (X, Y ) be a discrete
random vector with the following joint probability mass function:
p00 = p11 = p22 = p01 = p10 = 0, p02 = 0.1, p12 = 0.4, p20 = 0.2,
and p21 = 0.3, where pij = P{X = i, Y = j} for i, j = 0, 1, 2. Then,
it is easy to verify that (X, Y ) is CUOAI but not RWSAI.
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It is not hard to show by the definition of UOAI that the UOAI
property is preserved under marginalization and increasing trans-
formation. The proof of the following proposition is straightfor-
ward but tedious and thus is omitted.

Proposition 4.4. If random vector X = (X1, . . . , Xn) is UOAI, then
(i) (Xi1 , . . . , Xik) is UOAI for any 1  i1 < · · · < ik  n and

2  k  n,
(ii) (f (X1), . . . , f (Xn)) is UOAI for any increasing function f (x). ⇤

5. Marginal distributions and constructions of SAI/RWSAI/
CUOAI/UOAI random vectors

Due to the arrangement increasing property of joint survival
functions of UOAI random vectors, it is expected that marginal dis-
tributions of UOAI randomvectors can be ordered in some stochas-
tic orders. In this section, we show that marginal distributions of
UOAI random vectors can be ordered in the stochastic order ofst ,
independent SAI random vectors are characterized by the stochas-
tic order of lr , independent RWSAI/CUOAI/UOAI random vectors
are characterized by the stochastic order of hr , and comonotonic
SAI/RWSAI/CUOAI/UOAI random vectors are characterized by the
stochastic order of st . Furthermore, we illustrate that the class of
UOAI is a large class of dependent random vectors in the sense that
UOAI random vectors can be constructed by a class of copulas.

Proposition 5.1. If random vector (X1, . . . , Xn) is UOAI, then Xi st
Xi+1 for all 1  i  n � 1.

Proof. We only give the proof for X1 st X2, other cases can be
similarly proved. Consider any x 2 R, since (X1, . . . , Xn) is UOAI,
we have F̄(y, x, x3, . . . , x3) � F̄(x, y, x3, . . . , xn) for any y < x and
any x3, . . . , xn. Let y ! �1, x3 ! �1, . . . , xn ! �1, we get
F̄2(x) � F̄1(x) or X1 st X2. ⇤

Proposition 5.2. Assume X = (X1, . . . , Xn) is mutually indepen-
dent. Then (X1, . . . , Xn) is SAI if and only if Xi lr Xi+1 for all i =
1, . . . , n � 1.

Proof. If (X1, . . . , Xn) is mutually independent, by Proposition 3.4,
we know that (X1, . . . , Xn) is SAI () (Xi, Xj)|Xij = x

ij
is SAI for

any 1  i < j  n and any x
ij

2 S(Xij) () (Xi, Xj) is SAI for any
1  i < j  n, which is equivalent to Xi lr Xj for any 1  i < j  n
by Proposition 2.4(ii). ⇤

Lemma 5.3. If X and Y are comonotonic and X st Y , then X a.s. Y .

Proof. Since X and Y are comonotonic, for any x, we have P{X 
x, Y  x} = min{P{X  x}, P{Y  x}}, which, together with
X st Y , implies that P{X  x, Y  x} = P{Y  x}. Therefore,
P{X > x, Y  x} = 0 for any x, which means X a.s. Y . ⇤

Proposition 5.4. Assume random vector (X1, . . . , Xn) is mutually
independent. Then the following statements are equivalent: (i) X1 hr· · · hr Xn; (ii) (X1, . . . , Xn) is UOAI; (iii) (X1, . . . , Xn) is CUOAI; (iv)
(X1, . . . , Xn) is RWSAI.

Proof. ‘‘(i) ) (iv)’’. According to Proposition 3.10, if suffices to
show that (Xi, Xj)|Xij = x

ij
is RWSAI for any 1  i < j  n and any

x
ij

2 S(Xij), or equivalently (Xi, Xj) is RWSAI for any 1  i < j  n,
which holds from Proposition 2.4(i).

The implications of ‘‘(iv) ) (iii) ) (ii)’’ are obvious from (4.2).
‘‘(ii) ) (i)’’. From Proposition 4.4, we know that (Xi, Xi+1) is

UOAI for any 1  i  n � 1. Then, for any xi  xi+1, we have

F̄i(xi)F̄i+1(xi+1) = P{Xi > xi, Xi+1 > xi+1}
� P{Xi > xi+1, Xi+1 > xi} = F̄i(xi+1)F̄i+1(xi),

which means Xi hr Xi+1. ⇤

Proposition 5.5. Assume random vector (X1, . . . , Xn) is comono-
tonic. Then the following statements are equivalent: (i) X1 st · · · st
Xn; (ii) (X1, . . . , Xn) is UOAI; (iii) (X1, . . . , Xn) is CUOAI; (iv) (X1, . . . ,
Xn) is RWSAI; (v) (X1, . . . , Xn) is SAI.

Proof. The implications of ‘‘(v) ) (iv) ) (iii)) (ii)’’ are obvious
from (4.2). ‘‘(ii) ) (i)’’ holds from Proposition 5.1. It suffices to
show (i) ) (v).

Since (X1, . . . , Xn) is comonotonic, according to Lemma 5.3,
X1 st · · · st Xn implies Xi a.s. Xi+1 for i = 1, . . . , n�1. Therefore,
we have g(X1, . . . , Xn) �a.s. g(⇡ij(X1, . . . , Xn)) for any 1  i <

j  n and any g 2 Gij
sai(n). Taking expectations on both sides, we

have E[g(X1, . . . , Xn)] � E[g(⇡ij(X1, . . . , Xn))], which means that
(X1, . . . , Xn) is SAI. ⇤

Propositions 5.4 and 5.5 indicate that the special dependence
structures of the losses vector (X1, . . . , Xn) studied in Cheung
(2007), Zhuang et al. (2009), and Li and You (2012) are the special
cases of SAI or RWSAI. Furthermore, it is easy to see from the
definition of SAI that an exchangeable random vector is SAI.

At the end of this section, we point out that it is possible to
construct continuous UOAI random vectors by a class of copulas.
Recall the implications of SAI H) RWSAI H) CUOAI H) UOAI.
It is sufficient to construct continuous SAI randomvectors by a class
of copulas. Indeed, Li and You (2012) have constructed continuous
SAI random vectors by the class of Archimedean copulas under
some assumptions on Archimedean copulas. In the following
Theorem 5.7, under weaker assumptions on Archimedean copulas,
we construct continuous RWSAI random vectors. We point out
that under more general copulas with certain conditions, we can
construct continuous UOAI random vectors. Here, we omit the
detailed discussions about how to construct continuous UOAI
random vectors under more general copulas.

An Archimedean copula function is defined by

C(u1, . . . , un) = ⇤

 
nX

k=1

 (uk)

!

, u1, . . . , un 2 [0, 1], (5.1)

where  : (0, 1] ! [0, 1) is invertible and satisfies that (i)
 (1) = 0, limx#0  (x) = 1, and (ii)⇤(x) =  �1(x) is completely
monotonic, namely, (�1)k⇤(k)(x) = (�1)k dk

dxk
⇤(x) � 0 for all

k = 0, 1, . . . .

Remark 5.6. From the complete monotonicity of ⇤(x), one con-
cludes that (�1)k⇤(k)(x) is decreasing for all k = 1, 2, . . . , since
(�1)k⇤(k+1)(x) = �(�1)k+1⇤(k+1)(x)  0. ⇤

Theorem 5.7. Assume random vector (X1, . . . , Xn) has a positive
joint density function and X1 hr · · · hr Xn. If the joint survival
function of (X1, . . . , Xn) is linked by an Archimedean copula
C(u1, . . . , un) =  �1(

Pn
k=1  (uk)) and x 0(x) is increasing in

x 2 [0, 1], then (X1, . . . , Xn) is RWSAI.

Proof. By Theorem 3.13, without loss of generality, it suffices to
show that
@

@x1
P{X1 > x1, X2 > x2|X12 = x

12
}

 @

@x1
P{X1 > x2, X2 > x1|X12 = x

12
}, (5.2)

for any x1  x2.
Let F̄(x1, . . . , xn) be the joint survival function of (X1, . . . , Xn),

f(X3,...,Xn)(x3, . . . , xn) be the joint density function of (X3, . . . , Xn),
and fk(xk)be themarginal density function ofXk. Then F̄(x1, . . . , xn)
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=  �1
�Pn

k=1  (F̄k(xk))
�
and

Pn
k=1  (F̄k(xk)) =  (F̄(x1, . . . ,

xn)). Note that

f (x1, . . . , xn) = (�1)n
@n

@x1 . . . @xn
F̄(x1, . . . , xn).

Then,

P{X1 > x1, X2 > x2|X12 = x
12

}

=
Z 1

x1

Z 1

x2

(�1)n @n

@y1@y2@x3...@xn
F̄(y1, y2, x3, . . . , xn)

f(X3,...,Xn)(x3, . . . , xn)
dy1dy2

= (�1)n�2 @n�2

@x3 . . . @xn
F̄(x1, . . . , xn) ⇥ 1

f(X3,...,Xn)(x3, . . . , xn)

= (�1)n�2⇤(n�2)

 
nX

k=1

 (F̄k(xk))

!

⇥
nY

k=3

(� 0(F̄k(xk)))

⇥

nQ
k=3

fk(xk)

f(X3,...,Xn)(x3, . . . , xn)

= (�1)n�2⇤(n�2) � (F̄(x1, . . . , xn))
�⇥ h(x3, . . . , xn),

where h(x3, . . . , xn) = Qn
k=3(� 0(F̄k(xk)))⇥

Qn
k=3 fk(xk)

f(X3,...,Xn)(x3,...,xn)
� 0.

Therefore,

� @

@x1
P{X1 > x1, X2 > x2|X12 = x

12
}

= (�1)n�1⇤(n�1) � (F̄(x1, x2, . . . , xn))
�

⇥ 0(F̄1(x1))(�f1(x1)) ⇥ h(x3, . . . , xn) (5.3)

and

� @

@x1
P{X1 > x2, X2 > x1|X12 = x

12
}

= (�1)n�1⇤(n�1) � (F̄(x2, x1, . . . , xn))
�

⇥ 0(F̄2(x1))(�f2(x1)) ⇥ h(x3, . . . , xn). (5.4)

Recall that  0(x)x is increasing and F̄1(s)  F̄2(s), we have

� F̄1(s) ⇥  0(F̄1(s)) � �F̄2(s) ⇥  0(F̄2(s)). (5.5)

Note that X1 hr X2, we have f1(s)/F̄1(s) � f2(s)/F̄2(s). Combining
with (5.5), we get

 0(F̄1(s))(�f1(s)) �  0(F̄2(s))(�f2(s)). (5.6)

By (5.6),wehave (F̄1(x2))� (F̄1(x1)) = R x2
x1
 0(F̄1(s))(�f1(s))ds

� R x2
x1
 0(F̄2(s))(�f2(s))ds =  (F̄2(x2)) �  (F̄2(x1)), which im-

plies  (F̄1(x1)) +  (F̄2(x2))   (F̄1(x2)) +  (F̄2(x1)). Therefore,
 (F̄(x1, x2, . . . , xn)) =  (F̄1(x1))+ (F̄2(x2))+Pn

k=3  (F̄k(xk)) 
 (F̄1(x2))+ (F̄2(x1))+Pn

k=3  (F̄k(xk)) =  (F̄(x2, x1, . . . , xn)).
Note that (�1)n�1⇤(n�1)(x) is decreasing from Remark 5.6, we
have

(�1)n�1⇤(n�1) � (F̄(x1, x2, . . . , xn))
�

� (�1)n�1⇤(n�1) � (F̄(x2, x1, . . . , xn))
�
. (5.7)

Combining (5.3), (5.4), (5.6) and (5.7), we get (5.2). ⇤

We point out that there are many examples of Archimedean
copulas that satisfy the conditions of Theorem 5.7. For example,
Gumbel copulas with  (x) = (� log x)↵ , ↵ � 1 and Clayton
copulas with  (x) = x�✓ � 1, ✓ > 0. Furthermore, the conditions
of Theorem 5.7 are weaker than those of Theorem 1 of Li and You
(2012).

6. Applications in some allocations problems

As applications of the dependence notions studied in Sec-
tions 3–5, in this section, we will study the optimization problems
(1.5)–(1.6) and capital reserves problems with dependent risks. To
do so, we need to generalize some existing results from indepen-
dent or comonotonic risks to SAI/RWSAI/CUOAI/UOAI dependent
risks.

Theorem 6.1. A bivariate random vector (X, Y ) is SAI if and only if
E [g1(X, Y )]  E [g2(X, Y )] for any functions g1(x, y) and g2(x, y)
such that g2(x, y) � g1(x, y) for all x  y and x 2 S(X), y 2 S(Y ) and
g2(x, y) + g2(y, x) � g1(x, y) + g1(y, x) for all x  y and x 2 S(X),
y 2 S(Y ).

Proof. Without loss of generality, we assume S(X) = S(Y ) =
R. The proof of ‘‘H)’’. For any arrangement increasing function
g(x, y), let g1(x, y) = g(y, x) and g2(x, y) = g(x, y), then g2(x, y) �
g1(x, y) for all x  y and g2(x, y)+g2(y, x) = g1(x, y)+g1(y, x) for
all x  y. Therefore, E [g(X, Y )] = E [g2(X, Y )] � E [g1(X, Y )] =
E [g(Y , X)].

The proof of ‘‘(H’’. Define h(x, y) = (g2(x, y)�g1(x, y))⇥I{x <
y}, then h(y, x) = (g2(y, x) � g1(y, x)) ⇥ I{y < x}, thus h(x, y) �
0 = h(y, x) for all x  y, which means h(x, y) is arrangement
increasing. Since (X, Y ) is SAI, we have E [h(X, Y )] � E [h(Y , X)]
or

E [(g2(X, Y ) � g1(X, Y )) I{X < Y }]
� E [(g2(Y , X) � g1(Y , X)) I{Y < X}]. (6.1)

On the other hand, recall that g2(x, y) + g2(y, x) � g1(x, y) +
g1(y, x) for all x < y, or g2(x, y) � g1(x, y) � g1(y, x) � g2(y, x)
for all x < y. Therefore, we have (g2(Y , X) � g1(Y , X)) I{Y <
X} �a.s.(g1(X, Y ) � g2(X, Y )) I{Y < X}, which implies

E [(g2(Y , X) � g1(Y , X)) I{Y < X}]
� E [(g1(X, Y ) � g2(X, Y )) I{Y < X}]. (6.2)

Combining (6.1), (6.2) and the fact that E [(g2(X, Y ) � g1(X, Y )) ⇥
I{X = Y }] � 0, we get E [g2(X, Y )] � E [g1(X, Y )]. ⇤

Theorem 6.1 generalizes Theorem 1(i) of Righter and Shan-
thikumar (1992), in which they developed a functional character-
ization of X lr Y when X and Y are independent or a functional
characterization of an independent bivariate SAI random vector.
The following Lemma 6.2 is a generalization of Lemma 4.6 of
Zhuang et al. (2009), in which they assumed that random variables
X1 and X2 are independent and X1 lr X2. The proof of Lemma 6.2
follows from the properties of UOAI and SAI and the proof of
Lemma 4.6 of Zhuang et al. (2009) and is omitted here.

Lemma 6.2. Let (X1, X2) be a bivariate random vector and u(x) be
an increasing convex function. For any d1 � d2, define functions
g1(!1,!2) = E [u(!1(X1 ^ d1) + !2(X2 ^ d2))] and g2(!1,!2) =
E [u(!1(X1 ^ d2) + !2(X2 ^ d1))]. If (X1, X2) is nonnegative and
UOAI, then (i) g2(!1,!2) � g1(!1,!2) for all 0  !1  !2
and (ii) g2(!1,!2) + g2(!2,!1) � g1(!1,!2) + g1(!2,!1) for
all 0  !1  !2. If (X1, X2) is SAI, then (i) g2(!1,!2) � g1(!1,!2)
for all !1  !2 and (ii) g2(!1,!2) + g2(!2,!1) � g1(!1,!2) +
g1(!2,!1) for all !1  !2. ⇤

Theorem 6.3. In the optimal deductibles problem (1.5), if X =
(X1, . . . , Xn) is a nonnegative CUOAI random vector or a SAI random
vector, (e��T1 , . . . , e��Tn) is SAI, and u(x) is an increasing convex
function, then the optimal solutions to (1.5) satisfy d⇤

1 � · · · � d⇤
n.

Proof. Denote W = (W1, . . . ,Wn) = (e�� T1 , . . . , e�� Tn). We first
give the proof for the case that X is nonnegative and CUOAI and
n = 2. It is sufficient to show that
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E [u(W1(X1 ^ d1) + W2(X2 ^ d2))]
 E [u(W1(X1 ^ d2) + W2(X2 ^ d1))], (6.3)

holds for all d1 � d2.
Using the notations in Lemma 6.2, we have E [u(W1(X1 ^ d1) +

W2(X2 ^ d2))] = E [E [u(W1(X1 ^ d1) + W2(X2 ^ d2))]|(W1,W2)]
= E [g1(W1,W2)], and E [u(W1(X1 ^ d2) + W2(X2 ^ d1))] =
E [E [u(W1(X1 ^d2)+W2(X2 ^d1))]|(W1,W2)] = E [g2(W1,W2)].
Combining Lemma 6.2 and Theorem 6.1, we get E [g1(W1,W2)] 
E [g2(W1,W2)] or (6.3) holds.

As for the case n � 3, it is sufficient to show that
E [u(IX,W(d))]  E [u(IX,W(⇡ij(d)))] for any 1  i < j  n and
di � dj, where IX,W(d) = Pn

i=1 Wi(Xi ^ di) and d = (d1, . . . , dn).
Without loss of generality, assume i = 1, j = 2 and d1 � d2.

Note that

E [u(IX,W(d))] = E [E [u(IX,W(d))|(X12,W12)]]
= E [E [u(W1(X1 ^ d1) + W2(X2 ^ d2) + c)|(X12,W12)]], (6.4)

where c = Pn
k=3 Wk(Xk ^ dk).

Note that X is CUOAI, W is SAI, and X and W are independent.
Thus, it is easy to verify that for any fixed (x

12
,w

12
) 2 S(X12,W12),

(X1, X2)|(X12,W12) = (x
12

,w
12

) is CUOAI, (W1,W2)|(X12,W12)

= (x
12

,w
12

) is SAI. Consider the increasing convex function u1(x)
= u (x + c), by (6.3), we have E [u1(W1(X1 ^ d1) + W2(X2 ^
d2))|(X12,W12)] a.s. E [u1(W1(X1^d2)+W2(X2^d1))|(X12,W12)].
By taking expectation on both sides of the above inequality and
(6.4), we have E [u(IX,W(d))]  E [u(IX,W(⇡12(d)))].

The proof for the case that (X1, . . . , Xn) is SAI is similar and thus
is omitted. ⇤

The following Lemma 6.4 is a generalization of Lemma 4.2 of
Zhuang et al. (2009), in which they assumed that random variables
X1 and X2 are independent and X1 lr X2. The proof of Lemma 6.4
follows from the properties of SAI and the proof of Lemma 4.2 of
Zhuang et al. (2009) and thus is omitted here.

Lemma 6.4. Let (X1, X2) be a bivariate random vector and u(x) be
an increasing convex function. For any d1  d2, define functions
h1(!1,!2) = E [u(!1(X1�d1)++!2(X2�d2)+)] and h2(!1,!2) =
E [u(!1(X1 � d2)+ + !2(X2 � d1)+)]. If (X1, X2) is SAI, then
h2(!1,!2) � h1(!1,!2) for all !1  !2 and h2(!1,!2) +
h2(!2,!1) � h1(!1,!2) + h1(!2,!1) for all !1  !2. ⇤

Theorem 6.5. In the optimal limits problem (1.6), if X = (X1, . . . ,
Xn) is SAI, (e��T1 , . . . , e��Tn) is SAI, and u(x) is an increasing convex
function, then the optimal solutions to (1.6) satisfy d⇤

1  · · ·  d⇤
n.

Proof. Denote W = (W1, . . . ,Wn) = (e�� T1 , . . . , e�� Tn). We first
give the proof for the case n = 2. It is sufficient to show that

E [u(W1(X1 � d1)+ + W2(X2 � d2)+)]
 E [u(W1(X1 � d2) + W2(X2 � d1)+)], (6.5)

holds for all d1  d2.
Using the notations in Lemma 6.4, we haveE [u(W1(X1�d1)++

W2(X2 � d2)+)] = E [E [u(W1(X1 � d1)+ + W2(X2 � d2)+)]|
(W1,W2)] = E [h1(W1,W2)], and E [u(W1(X1 � d2)+ + W2(X2 �
d1)+)] = E [E [u(W1(X1 � d2)+ + W2(X2 � d1)+)]|(W1,W2)]
= E [h2(W1,W2)]. Combining Lemma 6.4 and Theorem 6.1, we get
E [h1(W1,W2)]  E [h2(W1,W2)] or (6.5) holds.

As for the case n � 3, the proof is similar to the proof of
Theorem 6.3 for the case n � 3 and thus is omitted. ⇤

Theorems 6.3 and 6.5 imply that in an insurance arrangement of
deductibles, the policyholder should allocate larger deductibles in
the polices with smaller losses, while in an insurance arrangement
of limits, the policyholder should allocate smaller limits in the

polices with smaller losses. Furthermore, Theorems 6.3 and 6.5
generalize the studies of Cheung (2007), Zhuang et al. (2009), and Li
and You (2012) from independent or comonotonic losses to more
general dependent losses. In particular, Theorems 4.7 and 4.3 of
Zhuang et al. (2009) are the special cases of Theorems 6.3 and 6.5,
respectively, and Theorem 2 of Li and You (2012) is the special case
of Theorem 6.5.

In addition, Theorems 4.4 and 4.8 of Zhuang et al. (2009)
studied problems (1.5) and (1.6) in the case that (X1, . . . , Xn) is
comonotonic with X1 st · · · st Xn and (T1, . . . , Tn) is mutually
independent with T1 �rh · · · �rh Tn. We point out that it is
easy to extend their results to more general dependent losses
occurrence times T1, . . . , Tn. The following theorem follows from
the properties of RWSAI and the proofs for Theorems 4.4 and 4.8 of
Zhuang et al. (2009) and thus are omitted here.

Theorem 6.6. In the optimal deductibles problems (1.5) and (1.6),
if X = (X1, . . . , Xn) is comonotonic with X1 st · · · st Xn,
(e��T1 , . . . , e��Tn) is RWSAI, and u(x) is an increasing convex
function, then the optimal solutions to (1.5) satisfy d⇤

1 � · · · � d⇤
n

and the optimal solutions to (1.6) satisfy d⇤
1  · · ·  d⇤

n. ⇤

Remark 6.7. Note from Remark 2.5 that if T1 �rh · · · �rh Tn, then�T1 hr · · · hr �Tn. Furthermore, if (T1, . . . , Tn) is independent,
then by Proposition 5.4, (�T1, . . . ,�Tn) is RWSAI, which implies
that (e��T1 , . . . , e��Tn) is RWSAI from Proposition 3.9 (iii). Hence,
Theorems 4.8 and 4.4 of Zhuang et al. (2009) are the special cases
of Theorem 6.6.

At the end of this section, we consider another application
of the dependence notions in the allocation problem of capitals
reserves. Let X1, . . . , Xn be n random variables, which represent
losses or profits from n lines of business of an investor. Under
certain regulations, the investor is required to reserve certain
amount of risk capitals to each line of business to cope with the
future uncertainty. A commonly used principle is Euler’s principle,
from which the risk capital for each line of business is determined
by ⇢i = E [Xi | S > VaR↵(S)] , i = 1, . . . , n, where S = Pn

k=1 Xk
is the aggregate losses and VaR↵(S) is the value at risk of S at
the confidence level ↵. However, it is difficult to calculate the
conditional expectations without full information about the joint
distribution of (X1, . . . , Xn). In this case, the qualitative analysis
on the capital reserves is needed. For example, Asimit et al.
(2011) have derived some asymptotic results about the capital
reserves under regular varying assumptions of the distribution of
(X1, . . . , Xn). Here, we order the risk capitals for different lines of
business under RWSAI dependence structures.

Proposition 6.8. If the risk vector (X1, . . . , Xn) is RWSAI, then ⇢1 
· · ·  ⇢n.

Proof. Define g(x1, . . . , xn) = xi ⇥ I{Pn
k=1 xk > s} for any fixed

s and j. Note that, for any 1  i < j  n, �gij(x1, . . . , xn) =
(xj � xi) ⇥ I{Pn

k=1 xk > s} is increasing in xj � xi, which means
g 2 Gij

rwsai(n). Therefore, by the definition of RWSAI, we have
E[g(X1, . . . , Xn)] � E[g(⇡ij(X1, . . . , Xn))] or E

⇥
Xj ⇥ I{S > s}⇤ �

E [Xi ⇥ I{S > s}]. Let s = VaR↵S, wehaveE
⇥
Xj ⇥ I{S > VaR↵S}

⇤ �
E
⇥
Xj ⇥ I{S > VaR↵S}

⇤
for any 1  i < j  n. Therefore, E[Xi | S >

VaR↵S]  E
⇥
Xj | S > VaR↵S

⇤
for any 1  i < j  n. ⇤

Note that for a RWSAI risk vector (X1, . . . , Xn), the losses are
ordered as X1 st · · · st Xn. Hence, the result of Proposition 6.8 is
consistent with the common sense that the more capitals should
be reserved for the riskier lines of business.

7. Concluding remarks

In this paper, we revisit the SAI dependence notion considered
by Shanthikumar and Yao (1991) and Righter and Shanthikumar
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(1992) and propose new dependence notions of RWSAI, COUAI,
UOAI. We consider the properties and relationships of these
dependence notions and discuss their applications in optimal
deductibles/policy limits and capital reserves problems. Our
applications generalize the studies of Cheung (2007), Zhuang et al.
(2009) and Li and You (2012) from independent or comonotonic
risks to more general dependent risks. The dependence notions
developed in this paper have potential applications in many
other fields and they are particularly useful for optimal allocation
problems. We will preset their applications in other optimal
allocation problems in coming researches. In this paper, we give
both functional and distributional characterizations of SAI and
RWSAI dependence notions. The UOAI and COUAI dependence
notions are defined through the properties of the joint distribution
of a random vector, in other words, they are characterized
by distributions or probability measures of random vectors.
However, we point out that it is difficult to give functional
characterizations of UOAI and COUAI dependence notions. We
leave the functional characterizations of UOAI and CUOAI as open
questions.
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