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a b s t r a c t

In the individual risk model, one is often concerned about positively dependent risks. Several notions
of positive dependence have been proposed to describe such dependent risks. In this paper, we assume
that the risks in the individual risk model are positively dependent through the stochastic ordering (PDS).
The PDS risks include independent, comonotonic, conditionally stochastically increasing (CI) risks, and
other interesting dependent risks. By proving the convolution preservation of the convex order for PDS
random vectors, we show that in individualized reinsurance treaties, to minimize certain risk measures
of the retained loss of an insurer, the excess-of-loss treaty is the optimal reinsurance form for an insurer
with PDS dependent risks among a general class of individualized reinsurance contracts. This extends the
study in Denuit and Vermandele (1998) on individualized reinsurance treaties to dependent risks. We
also derive the explicit expressions for the retentions in the optimal excess-of-loss treaty in a two-line
insurance business model.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Let {Xi, i ≥ 1} be random variables. Assume that an insurer
has n lines of business or the insurance portfolio of an insurer has
n policy holders. The loss or claim in line i or for policy holder i
is Xi, i = 1, . . . , n. Without reinsurance, the total loss/claim of
the insurer is Sn =

∑n
i=1 Xi, which is called the individual risk

model. However, each line of business or each policy holder may
produce a large claim. To protect from a potential huge loss, the
insurer applies reinsurance strategy Ii to the loss in line i. With the
reinsurance strategy Ii, the insurer retains the part of the loss in
line i, which is Ii(Xi), and a reinsurer covers the rest of the loss,
which is Xi − Ii(Xi), where the function Ii(x) is increasing in x ≥ 0
and satisfies 0 ≤ Ii(x) ≤ x for i = 1, 2, . . . , n. Thus, the total
retained loss of the insurer is S In = I1(X1) + I2(X2) + · · · + In(Xn)

and the total loss covered by the reinsurer is Sn − S In, where we use
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I = (I1, . . . , In) to denote the n-dimensional reinsurance policy.
Such a policy I is called an individualized reinsurance treaty.

In the reinsurance contract I , the insurer needs to pay
a reinsurance premium to the reinsurer. As in Denuit and
Vermandele (1998) and Van Heerwaarden et al. (1989), we assume
that the reinsurance premium is charged by the expected value
principle and is fixed to a constant $P , which means that the
reinsurance premium is equal to (1 + θR)E[Sn − S In] = P , where
θR > 0 is called the security loading of the reinsurer. In this
way, the insurer can control his cost or budget for the reinsurance
contract at the amount of P . Note that (1 + θR)E[Sn − S In] = P is
equivalent to assuming that E[S In] is fixed and equal to p = E[Sn]−
P/(1+θR) or that the expected retained loss of the insurer is fixed.
We are interested in the following class of admissible reinsurance
strategies:

Dp
n =

I = (I1, . . . , In)
 Ii(x) is increasing in x ≥ 0 with
0 ≤ Ii(x) ≤ x for i = 1, . . . , n
and E[S In] = p > 0

 . (1.1)

In particular, when Ii(x) = x ∧ di for i = 1, . . . , n, the reinsurance
I = (I1, . . . , In) is called the excess-of-loss treaty and (d1, . . . , dn)
is called the retention vector of the excess-of-loss treaty.

http://dx.doi.org/10.1016/j.insmatheco.2011.10.006
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In this paper, we will study what the optimal reinsurance
strategy I∗ = (I∗1 , . . . , I

∗
n ) ∈ D

p
n is for the insurer under certain

optimization criteria. We use a unified criterion and study the
following optimization problem:

inf
I∈D

p
n

E[u(S In)] (1.2)

for a convex function u.
This optimization criterion (1.2) includes the criteria of

minimizing the variance of the total retained loss of the insurer;
maximizing the expected exponential utility for the insurer;
maximizing the expected concave utility function for the insurer;
and so on.

When X1, . . . , Xn are exchangeable random variables, Denuit
and Vermandele (1998) showed that the optimal reinsurance
strategy for problem (1.2) is the excess-of-loss reinsurance with
the equal retention for each line of business. A further study of
Denuit and Vermandele (1998) about optimal reinsurance with
exchangeable risks can be found in Denuit and Vermandele (1999).

However, in individualized reinsurance treaties, one is often
concerned about dependent risks, and in particular positively
dependent risks. For example, in a two-line insurance business
with life insurance and non-life insurance, the property losses
and the numbers of dead people in earthquakes, tornadoes, and
hurricanes are usually positively dependent. Roughly speaking,
two risks are positively dependent if a large value of one risk will
result in a large value of the other. Several notions of positive
dependence have been proposed to describe such dependent risks
in the literature.

In this paper, we assume that the risks in the individual risk
model are positively dependent through the stochastic ordering
(PDS), which will be defined in Section 2. We show that when
X1, . . . , Xn are PDS dependent risks, the optimal reinsurance
strategy for problem (1.2) is the excess-of-loss reinsurance. To do
so, we denote D

p∗
n by all excess-of-loss treaties in D

p
n , namely

Dp∗
n =


Id = (Id1 , . . . , Idn) | Id ∈ Dp

n , I
di(x) = x ∧ di, di ≥ 0,

i = 1, . . . , n

.

This subclass D
p∗
n is determined uniquely by the retention vector

(d1, . . . , dn) and there is a one-to-one mapping between Dp∗
n and

Lpn that is defined as

Lpn =

(d1, . . . , dn) | di ≥ 0, i = 1, . . . , n and

E
 n−

i=1

(Xi ∧ di)


= p > 0

. (1.3)

We will show that for the PDS dependent risks X1, . . . , Xn and a
convex function u,

inf
I∈D

p
n

E[u(S In)] = inf
(d1,...,dn)∈Lpn

E

u
 n−

i=1

(Xi ∧ di)


, (1.4)

which means that the optimal strategies for problem (1.2)
are the excess-of-loss treaties and that the infinite-dimensional
optimization problem (1.2) is reduced to the feasible finite-
dimensional optimization problem:

inf
(d1,...,dn)∈Lpn

E

u
 n−

i=1

(Xi ∧ di)


. (1.5)

Throughout this paper, ‘increasing’ means ‘non-decreasing’ and
‘decreasing’ means ‘non-increasing’.

The rest of the paper is organized as follows. In Section 2, we
recall the notions of several positive dependence including the
stochastically increasing (SI) and the positive dependence through
the stochastic ordering (PDS). In Section 3, we first prove that
the convolution preservation of the convex order for PDS random
vectors. We then show when X1, . . . , Xn are PDS dependent risks,
for any I = (I1, . . . , In) ∈ D

p
n , there exists a retention

vector (d1, . . . , dn) ∈ Lpn such that
∑n

i=1(Xi ∧ di) ≤cx
∑n

i=1 Ii(Xi),
which means that (1.4) holds or the excess-of-loss treaty is the
optimal reinsurance form for the insurer with PDS dependent
risks. This extends the study in Denuit and Vermandele (1998) on
individualized reinsurance treaties to dependent risks. In Section 4,
we use a two-line insurance business model to illustrate how to
derive the explicit expressions for the retention vector (d∗

1, d
∗

2) ∈

Lp2 in the optimal excess-of-loss treaty such that E[u(X1 ∧d∗

1 +X2 ∧

d∗

2)] = inf(d1,d2)∈Lp2
E[u(X1 ∧ d1 + X2 ∧ d2)].

2. The notions of several positive dependence

In this section, we only recall the notions of SI and PDS, which
will be used in this paper. For other notions of positive dependence,
we refer to Colangelo et al. (2005, 2008), Denuit et al. (2005),
Müller and Stoyan (2002), Shaked and Shanthikumar (2007), and
references therein.

We recall that for a random variable Y , a support of Y , denoted
by S(Y ), is a Borel set of R such that P{Y ∈ S(Y )} = 1.

Definition 2.1. Random variable X is said to be stochastically
increasing (SI) in random variable Y , denoted as X↑SIY , if for any
x ∈ R, P{X > x | Y = y} is increasing in y ∈ S(Y ), or equivalently,
X↑SIY if and only if E[u(X)|Y = y] is increasing in y ∈ S(Y ) for all
increasing function u such that the expectation exists. �

Definition 2.2. Random vector (X1, . . . , Xn) is said to be stochasti-
cally increasing in randomvariable Y , denoted as (X1, . . . , Xn)↑SIY ,
if E[u(X1, . . . , Xn) | Y = y] is increasing in y ∈ S(Y ) for any in-
creasing function u : Rn

→ R such that the conditional expec-
tation exists. Furthermore, random vector (X1, . . . , Xn) is said to
be positively dependent through the stochastic ordering (PDS) if
(X1, . . . , Xi−1, Xi+1, . . . , Xn)↑SIXi for any i = 1, . . . , n. �

The notion of the PDS is interesting to model dependent risks.
The PDS risk includes independent, comonotonic, conditionally
stochastically increasing (CI) risks, and other interesting depen-
dent risks.

The following property will be used in Section 3.

Proposition 2.3. Let (X1, . . . , Xn) be random vector and Y be
random variable and assume (X1, . . . , Xn)↑SIY . Then the following
hold.

(1) (Y , X1, . . . , Xn)↑SIY .
(2) u(X1, . . . , Xn)↑SIY for any increasing function u : Rn

→ Rk

where k ∈ N.

Proof. (1) Denote X = (X1, . . . , Xn) and let u : Rn+1
→ R be an

increasing function. For any y1, y2 ∈ S(Y ) with y1 ≤ y2, we have

E[u(Y ,X)|Y = y1] = E[u(y1,X)|Y = y1]
≤ E[u(y2,X)|Y = y1]
≤ E[u(y2,X)|Y = y2] = E[u(Y ,X)|Y = y2],

where the second inequality holds since X↑SIY and u(y2, x1, . . . ,
xn) is an increasing function. Hence, (Y ,X)↑SIY by Definition 2.2.

(2) For any increasing function h : Rk
→ R, the function

h ◦ u : Rn
→ R is also increasing. By Definition 2.2, we know

that E[h ◦ u(X1, . . . , Xn) | Y = y] is increasing in y ∈ S(Y ), which
means u(X1, . . . , Xn)↑SIY . �

We refer to Block et al. (1985), Joe (1997), Lehmann (1966), and
Shaked (1977) for more properties of SI and PDS.
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3. Optimality of excess-of-loss reinsurance strategies with
dependent risks

In this section, we first prove that two convolution preservation
results of the convex order for SI and PDS random vectors in
Lemma 3.3 and Theorem 3.4. Then, we can determine the optimal
reinsurance formswith the PDSdependent risks in Propositions 3.7
and 3.8 for the individual risk model and the collective risk model,
respectively.

Definition 3.1. Random variable X is said to be smaller than
random variable Y in convex order, denoted as X ≤cx Y , if
E[u(X)] ≤ E[u(Y )] for any convex function u such that the
expectations exist. Furthermore, X is said to be smaller than Y in
stop-loss order, denoted as X ≤sl Y , if E[(X − t)+] ≤ E[(Y − t)+]

for all t ∈ R. �

The following result is a useful criterion for the convex order,
the proof can be found in Lemma 3 of Ohlin (1969).

Lemma 3.2. Let X be a random variable, h1 and h2 be increasing
functions such that E[h1(X)] = E[h2(X)]. If there exists α ∈ R ∪

{+∞} such that h1(x) ≥ h2(x) for all x < α and h1(x) ≤ h2(x) for
all x > α, then h1(X) ≤cx h2(X). �

Lemma 3.3. Let X and Y be randomvariables. If Y↑SIX, then h1(X)+
Y ≤cx h2(X) + Y for any increasing functions h1 and h2 such that
h1(X) ≤cx h2(X).
Proof. It is sufficient to show that h1(X) + Y ≤sl h2(X) + Y , or
equivalently, to show that E[(h1(X) + Y − t)+] ≤ E[(h2(X) +

Y − t)+] for any t ∈ R.
It is easy to verify that (x− t)+ − (y− t)+ ≤ I{x > t}× (x− y)

for any x, y, t ∈ R, then

E[(h1(X) + Y − t)+ − (h2(X) + Y − t)+]

≤ E[I{(h1(X) + Y ) > t} × (h1(X) − h2(X))]

= E[E[I{(h1(X) + Y ) > t}|X] × (h1(X) − h2(X))]

= E[pt(X)(h1(X) − h2(X))], (3.1)

where the function pt(x) = E[I{(h1(x) + Y ) > t} | X = x] ≥ 0 is
well defined since 0 ≤ I{x > t} ≤ 1.

From Proposition 2.3, we know that (Y , X)↑SIX and h1(X) +

Y↑SIX . Therefore, the function pt(x) = E[I{h1(x)+Y > t} | X = x]
is increasing in x since I{x > t} is increasing in x. Thus, both
(pt(X), h1(X)) and (pt(X), h2(X)) are comonotonic vectors. Hence,
by Lemma 3.12.13 of Müller and Stoyan (2002), we know that
E[φ(pt(X), h1(X))] ≤ E[φ(pt(X), h2(X))] holds for any directional
convex function φ(x, y) such that the expectations exist. Note
that φ(x, y) = xy is a directional convex function, we have
E[pt(X)h1(X)] ≤ E[pt(X)h2(X)], which completes the proof by
(3.1). �

Lemma 3.3 is an interesting result and will be used to prove
the following Theorem 3.4. Also, Lemma 3.3 generalizes Theorems
1 and 2 of Aboudi and Thon (1995), in which they presented the
optimal insurance policies when the insurance risk has positively
dependent relationships with the random initial wealth.

Theorem 3.4. Let (X1, . . . , Xn) be a PDS random vector, and fi, gi be
increasing functions such that fi(Xi) ≤cx gi(Xi) for i = 1, . . . , n. Then∑n

k=1 fk(Xk) ≤cx
∑n

k=1 gk(Xk).

Proof. According to Proposition 2.3, we have
∑k−1

i=1 fi(Xi) +∑n
i=k+1 gi(Xi)↑SIXk for any k = 1, . . . , n, where

∑j
k=i ak is defined

to be 0 for i > j. Applying Lemma3.3,we have for any k = 1, . . . , n,
k−1−
i=1

fi(Xi) +

n−
i=k+1

gi(Xi) + fk(Xk)

≤cx

k−1−
i=1

fi(Xi) +

n−
i=k+1

gi(Xi) + gk(Xk),
or equivalently,

k−
i=1

fi(Xi) +

n−
i=k+1

gi(Xi) ≤cx

k−1−
i=1

fi(Xi) +

n−
i=k

gi(Xi). (3.2)

By applying the relationship (3.2) repeatedly from k = n to k = 1
and using the transitive property of the convex order, we have
n−

i=1

fi(Xi) ≤cx

n−1−
i=1

fi(Xi) +

n−
i=n

gi(Xi)

≤cx

n−2−
i=1

fi(Xi) +

n−
i=n−1

gi(Xi)

≤cx · · · ≤cx

1−
i=1

fi(Xi) +

n−
i=2

gi(Xi) ≤cx

n−
i=1

gi(Xi).

It completes the proof. �

Using Theorem 3.4, we can prove the convolution preservation
of the convex order for two random vectors with the same PDS
copula in the following corollary.

Corollary 3.5. Assume that randomvectors (Y1, . . . ,Yn) and (Z1, . . .,
Zn) have the same PDS copula. If Yk ≤cx Zk for k = 1, . . . , n, then∑n

k=1 Yk ≤cx
∑n

k=1 Zk.

Proof. Let Fi and Gi be the distributions of Yi and Zi, respectively.
Let the common PDS copula be C(u1, . . . , un) = Pr{U1 ≤

u1, . . . ,Un ≤ un} for some uniform random vector (U1, . . . ,Un)
defined on [0, 1]n. Then, (U1, . . . ,Un) is a PDS randomvector. From
the last paragraph of the proof for Theorem 5.3 of McNeil et al.
(2005), we know that (Y1, . . . , Yn) =st(F−1

1 (U1), . . . , F−1
n (Un)) and

(Z1, . . . , Zn) =st(G−1
1 (U1), . . . ,G−1

n (Un)), where F−1
i and G−1

i are
the left-continuous generalized inverses of Fi and Gi and they are
increasing. Thus,

∑n
k=1 Yk ≤cx

∑n
k=1 Zk by Theorem 3.4. �

Remark 3.6. We point out that for all non-negative constants
α1, . . . , αn, (α1Y1, . . . , αnYn) and (Y1, . . . , Yn) have the same
copula, and (α1Z1, . . . , αnZn) and (Z1, . . . , Zn) have the same
copula. Thus, if (Y1, . . . , Yn) and (Z1, . . . , Zn) have the same PDS
copula, and Yk ≤cx Zk for k = 1, . . . , n, then by Corollary 3.5, we
have

∑n
k=1 αkYk ≤cx

∑n
k=1 αkZk since Yk ≤cx Zk H⇒ αkYk ≤cx αkZk

for k = 1, . . . , n. Hence, Corollary 3.5 extends Corollary 3.12.15
of Müller and Stoyan (2002) about the preservation of the convex
order under non-negative linear combinations of CI random
variables since CI H⇒ PDS. �

Then, using Theorem 3.4, we can show in the following
proposition that the optimal reinsurance for the optimization
problem (1.2) is the excess-of-loss treaty or the relationship (1.4)
holds.

Proposition 3.7. Assume random vector (X1, . . . , Xn) is PDS, then
for any reinsurance policy I = (I1, . . . , In) ∈ D

p
n , there exists

retention vector (d1, . . . , dn) ∈ Lpn such that
n−

i=1

(Xi ∧ di) ≤cx

n−
i=1

Ii(Xi),

where di is determined by E[Xi ∧ di] = E[Ii(Xi)], i = 1, . . . , n.

Proof. Since 0 ≤ E[Ik(Xk)] ≤ E[Xk] and the function g(x) =

E[Xk ∧x] is continuous and increasing in x ∈ [0, ∞)with g(0) = 0
and g(∞) = E[Xk], there exists dk ∈ [0, ∞] such that g(dk) =

E[Xk ∧ dk] = E[Ik(Xk)]. Note that 0 ≤ Ik(x) ≤ x for all x ≥ 0. Thus,
according to Lemma3.2,wehaveXk∧dk ≤cx Ik(Xk) for k = 1, . . . , n.
Therefore,

∑n
i=1(Xi ∧ di) ≤cx

∑n
i=1 Ii(Xi) from Theorem 3.4. �
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Now, we apply the above result to consider the optimal
reinsurance in a collective risk model. In this model, we assume
that the number of claims in the insurance portfolio of an insurer
is a counting randomvariableN and the amount of claim i is Xi, i =

1, 2, . . . and that the reinsurance strategy Ii is applied to claim i for
i = 1, 2, . . . , where Ii(x) satisfies the same conditions assumed in
the individual risk mode, namely Ii(x) is increasing in x ≥ 0 and
0 ≤ Ii(x) ≤ x for i = 1, 2, . . . . In this case, the total retained loss
for the insurer is

∑N
i=1 Ii(Xi).

Proposition 3.8. Let {X1, X2, . . .} be a sequence of random variables
and N be a counting random variable independent of {X1, X2, . . .}. If
for any n = 2, 3, . . ., the random vector (X1, . . . , Xn) is PDS, then for
any Ii(x), i = 1, 2, . . . , there exist di ∈ [0, ∞], i = 1, 2, . . . , such
that
N−
i=1

(Xi ∧ di) ≤cx

N−
i=1

Ii(Xi),

where di is determined by E[Xi ∧ di] = E[Ii(Xi)], i = 1, 2, . . . .

Proof. According to Proposition 3.7,
∑n

i=1(Xi ∧ di) ≤cx
∑n

i=1 Ii(Xi)
for any fixed n. Thus for any convex function u, we have

E


u


n−

i=1

(Xi ∧ di)


≤ E


u


n−

i=1

Ii(Xi)


.

Therefore,

E


u


N−
i=1

(Xi ∧ di)



=

∞−
n=0

P{N = n} E


u


n−

i=1

(Xi ∧ di)



≤

∞−
n=0

P{N = n} E


u


n−

i=1

Ii(Xi)


= E


u


N−
i=1

Ii(Xi)


,

which means
∑N

i=1(Xi ∧ di) ≤cx
∑N

i=1 Ii(Xi). �

If X1, X2, . . . are a sequence of independent random variables,
then for any n = 2, 3, . . . , the random vector (X1, X2, . . . , Xn)
is PDS. Furthermore, if X1, X2, . . . are a sequence of comonotonic
randomvariables or there exist a randomvariable Z and a sequence
of increasing functions {fi, i = 1, 2, . . .} such that Xi =

fi(Z), i = 1, 2, . . . , then for any n = 2, 3, . . . , the random vector
(X1, X2, . . . , Xn) is PDS. Propositions 3.7 and 3.8 mean that the
excess-of-loss reinsurance is the optimal strategy for an insurer to
minimize the certain risk measures of the retained loss.

4. Explicit expressions for the retentions in the optimal excess-
of-loss treaty

In this section, we illustrate how to derive the explicit
expressions for the retentions in the optimal excess-of-loss treaty.
In general, it is difficult to derive such expressions due to the
complexity of dependent risks. Here, we consider the bivariate
case and assume that the company has two lines of business or
n = 2 in the individual risk model. We assume that X1 and X2 are
nonnegative random variables with distribution functions F1 and
F2, respectively.

To avoid tedious arguments, throughout this section, we
assume F 1(d1) = 1 − F1(d1) > 0 and F 2(d2) = 1 − F2(d2) > 0
for any d1, d2 ∈ R. We will derive the explicit expressions for
(d∗

1, d
∗

2) ∈ L such that

E[u

X1 ∧ d∗

1 + X2 ∧ d∗

2


]

= inf
(d1,d2)∈L

E

u

X1 ∧ d1 + X2 ∧ d2


, (4.1)
where

L = Lp2 =


(d1, d2)

 ∫ d1

0
F 1(x)dx

+

∫ d2

0
F 2(x)dx = p > 0, d1, d2 ≥ 0


.

Moreover, we assume p < E[X1] + E[X2]. Otherwise, if p ≥

E[X1] + E[X2], then L = {(∞, ∞)} or L = ∅.
To derive the explicit solutions given in Theorems 4.4 and 4.5,

weneed the following Lemmas4.1–4.3. The proofs of these lemmas
are given in Appendix.

Lemma 4.1. On the set L, the mapping from d1 to d2 is one-to-
one. Denote the mapping as d2 = L(d1). Then, L(d1) is continuous,
differentiable and strictly decreasing in d1, with ∂d2

∂d1
= −

F1(d1)
F2(d2)

. �

Lemma 4.1 means that the set L is a continuous and strictly
decreasing curve in the first quadrant and the inverse function L−1

of L is also continuous, differentiable and strictly decreasing.
To avoid tedious discussion, in the following,we further assume

E[X1] < p and E[X2] < p. Thus, both limits of limd2→∞ L−1(d2)
and limd1→∞ L(d1) exist on the set L. We denote by d1 =

limd2→∞ L−1(d2) and d2 = limd1→∞ L(d1). Therefore, (d1, ∞) is
the domain of the function L(d1)with limd1↓d1 L(d1) = ∞ and d2 =

limd1→∞ L(d1). Furthermore, on the set L, d1 ↓ d1 ⇐⇒ d2 → ∞.
In the following, we denote

M(d1, d2) = E[u(X1 ∧ d1 + X2 ∧ d2)], (d1, d2) ∈ L.
Note that M(d1, d2) = M(d1, L(d1)) is a univariate function of d1
on the set L.

Lemma 4.2. Let function u be continuous and monotonic such that
E

|u(X1 +X2)|


< ∞. ThenM(d1, d2) = M(d1, L(d1)) is continuous

in d1 ∈ (d1, ∞) with

lim
d1→∞

M(d1, L(d1)) = M(∞, d2) = E[u(X1 + X2 ∧ d2)]

and

lim
d1↓d1

M(d1, L(d1)) = lim
d2→∞

M(L−1(d2), d2) = M(d1, ∞)

= E[u(X1 ∧ d1 + X2)]. �

Lemma 4.3. Assume u(x) ∈ C1(R), i.e. u′(x) is continuous onR. Then
∂+

∂d1
M(d1, d2) is right continuous in d1 ∈ (d1, ∞) and

∂+

∂d1
M(d1, d2) = F 1(d1)


E[u′(d1 + X2 ∧ d2) | X1 > d1]

− E[u′(d2 + X1 ∧ d1) | X2 > d2]

. � (4.2)

Now, applying the above preliminarily results, we can deter-
mine (d∗

1, d
∗

2) ∈ L such that

E

X1 ∧ d∗

1 + X2 ∧ d∗

2

2
= inf

(d1,d2)∈L
E[(Id1(X1) + Id2(X2))

2
], (4.3)

E

exp{s(X1 ∧ d∗

1 + X2 ∧ d∗

2)}


= inf
(d1,d2)∈L

E[exp{s(Id1(X1) + Id2(X2))}]. (4.4)

Theorem 4.4. Assume (X1, X2) is PDS and E

(X1 + X2)

2


< ∞. For
d1 ∈ (d1, ∞), define

C1(d1) = E[(X2 − L(d1)) ∧ 0 | X1 > d1]
− E[(X1 − d1) ∧ 0 | X2 > L(d1)].
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Denote r1 = sup{d1 | C1(d1) < 0} and r2 = inf{d1 | C1(d1) > 0}.
Then d1 < r1 ≤ r2 < ∞ and for any d∗

1 ∈ [r1, r2], the retention
vector (d∗

1, L(d∗

1)) is a solution to (4.3).

Proof. By setting u(x) = x2 in (4.2) and noticing d2 = L(d1), we
have

∂+M(d1, d2)
∂d1

= 2 F 1(d1)


E[(d1 + X2 ∧ d2) | X1 > d1]

− E[(d2 + X1 ∧ d1) | X2 > d2]


= 2 F 1(d1)


E[(d1 + X2 ∧ d2) − (d1 + d2) | X1 > d1]

− E[(d2 + X1 ∧ d1) − (d1 + d2) | X2 > d2]


= 2 F 1(d1)


E[(X2 − d2) ∧ 0 | X1 > d1]

− E[(X1 − d1) ∧ 0 | X2 > d2]


= 2 F 1(d1) C1(d1). (4.5)

Now we show that C1(d1) is an increasing function of d1 in
(d1, ∞). In doing so, let d1, d′

1 ∈ (d1, ∞) and d1 < d′

1. Since
X2↑SIX1, we have X2|(X1 > d1) ≤st X2|(X1 > d′

1), see, for example,
Barlow and Proschan (1981). Therefore, since (x − L(d1)) ∧ 0 is
increasing in x and L(d1) > L(d′

1), by the definition of ≤st, we have

E[(X2 − L(d1)) ∧ 0 | X1 > d1]

≤ E[(X2 − L(d1)) ∧ 0 | X1 > d′

1] (4.6)
≤ E[(X2 − L(d′

1)) ∧ 0 | X1 > d′

1],

which means that E[(X2 − L(d1))∧ 0 | X1 > d1] is increasing in d1.
Similarly, since (x− d1)∧0 is increasing in x and d′

1 > d1, we have

E[(X1 − d1) ∧ 0 | X2 > L(d1)] ≥ E[(X1 − d1) ∧ 0 | X2 > L(d′

1)]

≥ E[(X1 − d′

1) ∧ 0 | X2 > L(d′

1)].

Thus E[(X1 − d1) ∧ 0 | X2 > L(d1)] is decreasing in d1. Therefore
C1(d1) is increasing in d1 ∈ (d1, ∞).

In the following, we examine the limits of C1(d1) at two
endpoints d1 and ∞ of the interval (d1, ∞). For a fixed d > d1 >
d1, by (4.6), we have

E[(X2 − L(d1)) ∧ 0 | X1 > d1] ≤ E[(X2 − L(d1)) ∧ 0 | X1 > d].

Then by the monotone convergence theorem, we have

lim
d1↓d1

E[(X2 − L(d1)) ∧ 0 | X1 > d1]

≤ lim
d1↓d1

E[(X2 − L(d1)) ∧ 0 | X1 > d]

= E[ lim
d1↓d1

(X2 − L(d1)) ∧ 0 | X1 > d] = −∞, (4.7)

where, the first limit exists becauseE[(X2−L(d1))∧0 | X1 > d1] is
an increasing function of d1 and the last equality follows from the
fact that limd1↓d1 L(d1) = ∞.

Since X1 ≥ 0, we have E[(X1 − d1) ∧ 0 | X2 > L(d1)] ≥

E[(−d1) ∧ 0 | X2 > L(d1)] = −d1. Then, limd1↓d1 E[(X1 − d1) ∧ 0 |

X2 > L(d1)] ≥ limd1↓d1(−d1) = −d1, which, together with
(4.7) and the definition of C1(d1), implies limd1↓d1 C1(d1) = −∞.
Thus, there exists d1 > d1 such that C(d1) < 0, which implies
{d1 | C1(d1) < 0} ≠ ∅ and r1 = sup{d1 | C1(d1) < 0} > d1.

Similarly, we have limd1↑∞ E[(X2−L(d1))∧0 | X1 > d1] ≥ −d2
and limd1↑∞ E[(X1 − d1) ∧ 0 | X2 > L(d1)] ≤ −∞. Therefore,
limd1↑∞ C1(d1) = ∞ and thus {d1 | C1(d1) > 0} ≠ ∅ and
r2 = inf{d1 | C1(d1) > 0} < ∞.

Since C1(d1) is increasing in d1, for any x ∈ {d1 | C1(d1) <
0}, y ∈ {d1 | C1(d1) > 0}, we have x < y, thus r1 = sup{d1 |
C1(d1) < 0} ≤ inf{d1 | C1(d1) > 0} = r2. According to the
definitions of r1 and r2, we have C1(d1) < 0 for all d1 ∈ (d1, r1)
and C1(d1) > 0 for all d1 ∈ (r2, ∞). Moreover, if d1 > r1, then
C1(d1) ≥ 0; and if d1 < r2, then C1(d1) ≤ 0. Therefore, C1(d1) = 0
for all d1 ∈ (r1, r2).

By (4.5), we know that ∂+

∂d1
M(d1, L(d1)) = 2 F 1(d1) C(d1)

has the same sign as C1(d1) on (d1, ∞). Hence, M(d1, L(d1))
is strictly decreasing on (d1, r1), strictly increasing on (r2, ∞),
and a constant on (r1, r2) and thus a constant on [r1, r2] since
M(d1, L(d1)) is continuous. Therefore, infd1∈(d1,∞) M(d1, L(d1)) =

M(d∗

1, L(d
∗

1)) for any d∗

1 ∈ [r1, r2]. Notice that M(d1, L(d1)) is
continuous in d1 ∈ (d1, ∞), strictly decreasing on (d1, r1), and
strictly increasing on (r2, ∞). Thus, according to Lemma 4.2, for
any d∗

1 ∈ [r1, r2],M(d∗

1, L(d
∗

1)) < limd1→∞ M(d1, L(d1)) =

M(∞, d2) andM(d∗

1, L(d∗

1)) < limd1↓d1 M(d1, L(d1)) = M(d1, ∞).
Hence, infd1∈[d1, ∞] M(d1, L(d1)) = M(d∗

1, L(d
∗

1)) for any d∗

1 ∈

[r1, r2]. It completes the proof of the theorem. �

Theorem 4.5. Let s > 0 and assume (X1, X2) is PDS and
E[exp{s(X1 + X2)}] < ∞. For d1 ∈ (d1, ∞), let

C2(d1) = E[exp{s(X2 − L(d1)) ∧ 0} | X1 > d1]
− E[exp{s(X1 − d1) ∧ 0} | X2 > L(d1)].

Denote r1 = sup{d1 | C2(d1) < 0} and r2 = inf{d1 | C2(d1) > 0}.
Then d1 < r1 ≤ r2 < ∞ and for any d∗

1 ∈ [r1, r2], the retention
vector (d∗

1, L(d∗

1)) is a solution to (4.4).

Proof. By setting u(x) = esx in (4.2) and noticing d2 = L(d1), we
have

∂+M(d1, d2)
∂d1

= F 1(d1)

E[s exp{s(X2 ∧ d2)} | X1 > d1]

− E[s exp{s(X1 ∧ d1)} | X2 > d2]


= s es(d1+d2) F 1(d1)


E[exp{s(X2 − d2) ∧ 0} | X1 > d1]

− E[exp{s(X1 − d1) ∧ 0} | X2 > d2]


= s es(d1+d2) F 1(d1) C2(d1).

Then, using the same arguments as in Theorem 4.4, we complete
the proof. The same arguments are omitted. �
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Appendix

Proof of Lemma 4.1. To show that the mapping is one-to-one, it
suffices to show that for any (d1, d2) and (d′

1, d
′

2) ∈ L, d1 = d′

1 if
and only if d2 = d′

2. First assume d1 = d′

1, recall that∫ d′
1

0
F 1(x)dx +

∫ d′
2

0
F 2(x)dx

=

∫ d1

0
F 1(x)dx +

∫ d2

0
F 2(x)dx = p, (A.1)
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we have
 d′

2
0 F 2(x)dx =

 d2
0 F 2(x)dx, or

 d′
2

d2
F 2(x)dx = 0, which

implies d2 = d′

2 since F 2(s) > 0, ∀x ∈ R. Similarly, d2 = d′

2 implies
d1 = d′

1. Therefore, on L, there is a one-to-one mapping from d1
to d2.

Differentiating the second equation in (A.1) with respect to d1
on both sides, we have F 1(d1)+ F 2(d2)

∂d2
∂d1

= 0, which implies that
∂d2
∂d1

= −
F1(d1)
F2(d2)

< 0. Thus L(d1) is strictly decreasing. �

Proof of Lemma 4.2. Since u(x) is monotonic, and X1, X2 ≥ 0,
then |u(X1∧d1+X2∧d2)| is bounded from above by either |u(0)| or
|u(X1 + X2)|, both of which are integrable. Therefore, according to
Lebesgue dominated convergence theorem, for any d1 ∈ (d1, ∞),
we have

lim
s→d1

M(s, L(s)) = E[ lim
s→d1

u(X1 ∧ s + X2 ∧ L(s))]

= E[u(X1 ∧ d1 + X2 ∧ L(d1))] = M(d1, L(d1)),

which means thatM(s, L(s)) is continuous at d1.
Similarly,

lim
d1→∞

M(d1, L(d1))

= lim
d1→∞

E[u(X1 ∧ d1 + X2 ∧ L(d1))]

= E[ lim
d1→∞

u(X1 ∧ d1 + X2 ∧ L(d1))]

= E[u(X1 + X2 ∧ L(∞))] = E[u(X1 + X2 ∧ d2)],

and

lim
d1↓d1

M(d1, L(d1)) = lim
d2→∞

M(L−1(d2), d2)

= lim
d2→∞

E[u(X1 ∧ L−1(d2) + X2 ∧ d2)]

= E[ lim
d2→∞

u(X1 ∧ L−1(d2) + X2 ∧ d2)]

= E[u(X1 ∧ L−1(∞) + X2)]

= E[u(X1 ∧ d1 + X2)]. �

Proof of Lemma 4.3. Denote f (ω, s) = u(X1(ω)∧s+X2(ω)∧L(s)),
then M(d1, d2) = E[f (ω, d1)] =


Ω
f (ω, s)P(dω). Notice that for

any fixed ω ∈ Ω , the right derivative of f (ω, s) with respect to s
exists for any s ∈ (d1, ∞) and

∂+

∂s
f (ω, s) = u′(X1 ∧ s + X2 ∧ L(s))

×


I{X1 > s} + I{X2 > L(s)}

∂L(s)
∂s


.

Let [a, d1] ⊂ (d1, ∞), then for any (ω, s) ∈ Ω×[a, d1], we have
0 ≤ X1 ∧ s + X2 ∧ L(s) ≤ s + L(s) ≤ d1 + L(a) < ∞, since L(s) is
decreasing. Therefore u′(X1∧s+X2∧L(s)) is bounded onΩ×[a, d1]
since u′(x) is continuous and thus bounded on the closed interval
[0, d1 + L(a)]. Also, by Lemma 4.1, we haveI{X1 > s} + I{X2 > L(s)}

∂L(s)
∂s

 ≤ 1 +

∂L(s)∂s


= 1 +

F 1(s)

F 2(L(s))

≤ 1 +
F 1(a)

F 2(L(a))
< ∞.

Therefore, ∂+

∂s f (ω, s) is bounded on Ω × [a, d1]. Denote the bound
as A, then∫ d1

a
E
[∂+

∂s
f (ω, s)

] ds ≤ A (d1 − a) < ∞.
According to Fubini’s theorem, we could exchange the order of
integration and expectation:∫ d1

a
E
[

∂+

∂s
f (ω, s)

]
ds = E

[∫ d1

a

∂+

∂s
f (ω, s)ds

]
.

For any fixed ω ∈ Ω , it is easy to verify that u(x) and g(s) =

X1(ω) ∧ s + X2(ω) ∧ L(s) satisfies Lipschitz condition on [0, d1 +

L(a)] and on [a, d1] respectively. Therefore f (ω, s) = u ◦ g(s)
also satisfies Lipschitz condition on [a, d1], and thus is absolute
continuous on [a, d1]. Then f (ω, s) is differentiable with respect to
s almost everywhere on [a, d1], and the derivative is equal to the
right derivative. By Fundamental Theorem Π of Lebesgue integral,
we have∫ d1

a

∂+

∂s
f (ω, s)ds =

∫ d1

a

∂

∂s
f (ω, s)ds = f (ω, d1) − f (ω, a).

Therefore,∫ d1

a
E
[

∂+

∂s
f (ω, s)

]
ds

= E
[∫ d1

a

∂+

∂s
f (ω, s)ds

]
= E[f (ω, d1) − f (ω, a)] = M(d1, d2) − E[f (ω, a)]. (A.2)

Since ∂+

∂s f (ω, s) is right continuous in s and is bounded on
[a, d1], according to Lebesgue dominated convergence theorem,
we have E


∂+

∂s f (ω, s)

is right continuous in s.

It is easy to show that if g(x) is right continuous and integrable
on closed interval I and G(x) =

 x
a g(t)dt , where a ∈ I , then

∂+

∂x G(x) = g(x), ∀x ∈ I . Thus, taking right derivative on both sides
of (A.2), we get

∂+

∂d1
M(d1, d2)

=
∂+

∂d1

∫ d1

a
E
[

∂+

∂s
f (ω, s)

]
ds = E

[
∂+

∂d1
f (X, d1)

]
= E

[
u′(X1 ∧ d1 + X2 ∧ d2)


I{X1 > d1} + I{X2 > d2}

∂d2
∂d1

]
= E[u′(d1 + X2 ∧ d2) I{X1 > d1}]

−
F 1(d1)

F 2(d2)
E[u′(X1 ∧ d1 + d2) I{X2 > d2}]

= F 1(d1)


E[u′(d1 + X2 ∧ d2) | X1 > d1]

− E[u′(d2 + X1 ∧ d1) | X2 > d2]

. (A.3)

The last equality follows from the fact that E[X I{Y ∈ B}] = E[X |

Y ∈ B] P{Y ∈ B} if P{Y ∈ B} > 0. The right continuity of
∂+

∂d1
M(d1, d2) is from (A.3). �
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