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Abstract
A non-parametric test based on nested L-statistics and designed to compare the riskiness of
portfolios was introduced by Brazauskas et al. (2007). Its asymptotic and small-sample properties
were primarily explored for independent portfolios, though independence is not a required condition
for the test to work. In this paper, we investigate how performance of the test changes when
insurance portfolios are dependent. To achieve that goal, we perform a simulation study where we
consider three different risk measures: conditional tail expectation, proportional hazards transform,
and mean. Further, three portfolios are generated from exponential, Pareto, and lognormal
distributions, and their interdependence is modelled with the three-dimensional t and Gaussian
copulas. It is found that the presence of strong positive dependence (comonotonicity) makes the test very
liberal for all the risk measures under consideration. For types of dependence that are more common in
an insurance environment, the effect of dependence is less dramatic but the results are mixed, i.e., they
depend on the chosen risk measure, sample size, and even on the test’s significance level. Finally, we
illustrate how to incorporate such findings into sensitivity analysis of the decisions. The risks we analyse
represent tornado damages in different regions of the United States from 1890 to 1999.
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1. Introduction

Comparing the riskiness of insurance portfolios is a practically important area that has received a
fair share of attention from researchers in academia. In this paper, we consider situations where a
problem encountered in practice cannot be solved exactly (i.e. using a specific stochastic model)
because access to complete properly sampled data is restricted or data even impossible to sample.
Therefore, the solution proposed here involves two steps: (i) solve a simpler (special case) problem
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for which data could be acquired, and (ii) use simulations to see how sensitive that solution is.
Taking such a route, businesses would be able to achieve their objectives with a relatively small
investment in terms of money, staff expertise, and time.

As a motivating example, consider an insurance company that has a portfolio of auto collision policies
in one state and explores the opportunity to enter a new market – a neighbouring state. As one of the
first steps in its decision-making process the company would like to quickly evaluate how much risk it
would be exposed to had it issued a similar product in the other state. (Of course, assessment of the
regulatory environment in the other state would be equally important, but that is beyond the scope of
the current paper.) If the states are next to each other and there are no obvious differences in their risk
profiles (an example of obvious difference would be if one state is mostly rural while the other has a
large metropolitan area), we suspect they should not be too different. But the statement “not too
different” has to be evaluated statistically. In addition, it is clear that auto collision claims in one state
and those in the other will not represent independent samples due to frequent border crossings by the
driver populations (i.e. drivers from state 1 can cause auto claims in state 2 and vice versa). For initial
market exploration, the company would not want to devote substantial resources (e.g. staff expertise,
IT costs, time) for elaborate statistical modelling. Moreover, it is hard to think about joint outcome,
matching a claim from one state with a claim from another state. Thus, data that would allow proper
modelling of dependence is practically impossible to sample, and the problem of interest cannot be
solved exactly. Nonetheless, the company can learn about the new market by solving a special case
problem (treating drivers in two states as independent populations) for which data could be acquired
and then using simulations to see how sensitive that solution is. More specifically, the company would
have to choose a risk measure, appropriate statistical tools (estimators and test statistics), and perform
the following hypothesis test:

H0 : R1 =R2 versus HA : R1 ≠R2 (1.1)

Here R1 = R[F1] and R2 = R[F2] denote the risk measure functionals that are used to capture the
riskiness of states 1 and 2, with their claims following the cumulative distribution functions (cdfs) F1
and F2, respectively. For testing purposes, F1 and F2 are assumed independent; for sensitivity
analysis, they would be treated as dependent. (More details on risk measures, mathematical problem
formulation, test statistics, and decision making are provided in sections 3 and 4.) Note that the
scenario described above is not restricted or unique to automobile insurance. Dependencies among two
or more portfolios of risks may also arise due to some common large-scale events such as tornadoes or
hurricanes that affect several states simultaneously. Therefore, the problem of dependent portfolios is
even more acute for reinsurance industry, which often deals with the macro-level portfolios. To
understand what methods are available at our disposal, let us briefly review the actuarial and statistical
literatures on this and related topics.

There is a vast literature on risk measures and their application to contract pricing, capital allocation,
and risk management. For a quick introduction into these topics, the reader may be referred to the
review papers by Albrecht (2004), Tapiero (2004), and Young (2004). Systematic development of
statistical inferential tools for risk measures is a relatively new area, but it has already seen a number
of non-parametric, parametric, and robust parametric techniques being proposed for estimation of
risk measures (see Jones & Zitikis, 2003, 2007; Brazauskas & Kaiser, 2004, Kaiser & Brazauskas,
2006; Brazauskas et al., 2008). Among the non-parametric proposals, those based on L-statistics
(linear combinations of order statistics) have taken a leading role, which is mostly due to their
computational efficiency and straightforward risk measure formulations (see Necir et al., 2007;
Necir & Meraghni, 2009, 2010). Moreover, similar tools have also been proposed in the empirical
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finance literature (see Darolles et al., 2009), where performance of hedge funds is measured using
a metric based on L-moments (see Hosking, 1990).

Further, in a parallel literature on the hypothesis testing, several tests similar to (1.1) have been
developed by Jones & Zitikis (2005), Jones, Puri & Zitikis (2006), and Brazauskas et al. (2007).
The test proposed in the latter paper (which, as will be seen in section 4, is an L-statistic of
L-statistics; hence the name “nested L-statistic”) is the subject of this work. The asymptotic and
small-sample properties of that test were primarily explored for independent portfolios, though
independence is not a required condition for the test to work. Practical performance of the test was
illustrated using the tornado damage data taken from Brooks & Doswell (2001).

In view of the motivating example, which leads to the hypothesis testing problem (1), the test
based on nested L-statistics should be redesigned to accommodate latent dependence between port-
folios. From a theoretical point of view, that is certainly an interesting and challenging
mathematical exercise. But, as our findings in section 5.2 will demonstrate, in typical practical situa-
tions the test can be applied with appropriate numerical adjustments to its significance level, and thus
solving the theoretical problem may not be worth the effort. In this paper, we perform an extensive
simulation study and investigate how performance of the test changes when insurance portfolios are
dependent. In addition, to see what effect, if any, the manager’s choice of risk measure has on test-
based decisions, three different risk measures – conditional tail expectation, proportional hazards
transform, and mean – are considered. Further, three portfolios are generated from exponential,
Pareto, and lognormal distributions, and their interdependence is modelled with the three-dimensional t
and Gaussian copulas. It is found that the presence of strong positive dependence (comonotonicity)
makes the test very liberal for all the risk measures under consideration. For types of dependence that
are more common in an insurance environment, the effect of dependence is less dramatic but the
results are mixed, i.e., they depend on the chosen risk measure, sample size, and even on the test’s
significance level. Thus the next question is: What should one do with such knowledge? Our
proposal is to use these findings for sensitivity analysis of the decisions, which is a standard approach
in actuarial practice. We illustrate how to do that on the tornado damage data.

The rest of the paper is organised as follows. In section 2, various dependence structures between
the portfolios, including tail dependence, are specified. In section 3, several examples of the risk
measures used to measure the riskiness of portfolios are presented. A brief description of the
hypothesis test based on a nested L-statistic is provided in section 4. The main findings of the paper
are summarised in a simulation study in section 5. Then, in section 6, sensitivity studies are
performed using the data sets on tornado damages in different regions of the United States for the
years 1890–1999. Concluding remarks are offered in section 7.

2. Dependent Portfolios

Perhaps the most common dependence structure used in modelling is independence, and when the
marginal distributions of random variables are continuous, the product copula (usually denoted as Π)
characterises the independent random variables. Then there are two extreme types of dependence:
perfect positive dependence or comonotonicity, and perfect negative dependence or counter-
monotonicity. For continuous random variables, the first type is characterised by the comonotonicity
copula, which can capture situations when the random variables are almost surely strictly increasing
functions of each other, and the second type by the countermonotonicity copula, which applies to
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only two random variables where one is almost surely a decreasing function of the other. Likewise,
many intermediate dependence structures can be described by identifying a relevant type of copula
(see Frees & Valdez, 1998; Nelson, 2006; Joe, 2014).

In order to determine what effect, if any, the dependence structure between the portfolios has on the
power function of the hypothesis test described in section 4, we shall perform a simulation study. For
the simulation study, we consider different types of dependent portfolios, which cover the full
spectrum of dependence strength from negative dependence through the perfect positive dependence.
In particular, we select four types of dependent portfolios: negative dependence (for two portfolios,
it corresponds to countermonotonicity), zero dependence, moderate positive dependence, and strong
positive dependence (comonotonicity). These dependence structures can be captured using the
well-known t copula, for which the Gaussian copula represents a limiting case. The following are
examples of the three-dimensional correlation matrix (Σ) for the dependence structures mentioned
above. Note that for the Gaussian copula zero dependence is equivalent to independence.

∙ Negative (Σ1) and zero (Σ2) dependence:

X
1
=

1 �0:5 �0:5

�0:5 1 �0:5

�0:5 �0:5 1

0BB@
1CCA and

X
2
=

1 0 0

0 1 0

0 0 1

0BB@
1CCA

∙ Moderate positive (Σ3) and strong positive (Σ4) dependence:

X
3
=

1 0:5 0:5

0:5 1 0:5

0:5 0:5 1

0BB@
1CCA and

X
4
=

1 1 1

1 1 1

1 1 1

0BB@
1CCA

In addition, Figure 1 illustrates the difference between the two-dimensional t3 copula (with v = 3
degrees of freedom) and Gaussian copula, i.e., tv with v→∞, for normal marginals and varying
strengths of dependence. (In this particular instance, the three-dimensional plots provide no new
insights.) Notice how the tail dependence manifests itself for v = 3 and disappears as v→∞, i.e., in
the latter case there are essentially no points in the corners of each plot.

3. Risk Measures

Risk measure is a useful tool for quantifying the riskiness of a portfolio, and we shall use a special
type of coherent risk measures for this study. More specifically, in order to compare the riskiness of
portfolios, spectral risk measures will be utilised. Such measures were first introduced in the finance
literature with the intention that the user may wish to re-weight the initial distribution of the
portfolio in order to reflect his/her risk aversion. In mathematical terms, a spectral risk measure
R = R[F] of a random variable X, with a cdf F, is defined as

R½F�=
ð1
0
F�1ðuÞJðuÞdu (3.1)

where J is the weight function which controls the risk aversion, and F − 1 the quantile function of X.
Choosing the weight function J(u) = 1 for 0≤u≤1, in equation (3.1), gives the expected value of X
(denoted by MEAN[F]); J(u) = r(1− u)r −1 for 0≤ u≤ 1 yields the proportional hazards transform of F
(denoted by PHT[F]), where r (0< r≤1) is a real-valued constant known as the distortion level; and
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conditional tail expectation of F (denoted by CTE[F]) can be defined as spectral risk measure by
setting J(u) = 0 for 0≤u< t and J(u) = 1/(1 − t) for t≤ u≤ 1, where t (0≤ t<1) is a real-valued
constant known as the threshold level.

In practice, the cdf F has to be estimated from the observed data. As discussed in section 1, one can
do that parametrically, non-parametrically, or semi-parametrically and then insert the estimated F in
equation (3.1), which would produce an estimator of R[F]. In this paper, we will focus on the
empirical non-parametric estimation, i.e., in (3.1) we replace F by the empirical cdf bFn. That leads to
the following formula for the empirical estimator of a risk measure R[F]:

R½bFn�= Xn
j=1

cjnXj : n (3.2)

where X1:n≤ ⋯ ≤Xn:n denote the ordered values of data X1,… , Xn, and cjn =
Ð j =n
ðj�1Þ = n JðuÞdu. Note

that R½bFn�, as defined in (3.2), belongs to a general class of L-statistics, theoretical properties of
which are well understood and have been thoroughly studied by Jones & Zitikis (2003, 2007), Necir
& Meraghni (2009, 2010), and other authors.

4. Hypothesis Test

4.1. Problem formulation

Let X(1),… , X(k) denote k (independent or dependent) portfolios of risks with cdfs F1,… , Fk,
respectively. Suppose their riskiness is measured using the risk measures R1 = R[F1],… , Rk = R[Fk],
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Figure 1. Two-dimensional copula realisations for negatively dependent, zero dependent, and
moderately positively dependent normal marginals. Top row: t3 copulas. Bottom row: Gaussian
copulas.
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as defined by (3.1). The hypothesis of interest is to check whether or not the k risk measures are all
equal. That is, we formulate the problem as follows:

H0 : R1= � � � =Rk versus HA : at least one pairRi ≠Rj

To test the above hypothesis, Brazauskas et al. (2007) proposed a non-parametric test statistic that
constructs the Gini index based on R1,… , Rk. Hence, all information about the differences of
portfolio riskiness can be summarised by the inequality index

γ =
1
k2

X
1≤ i; j≤ k

Ri�Rj

�� ��= 1
k2

Xk
i=1

ð4i� 2ðk + 1ÞÞRi :k (4.1)

where the second equality follows from a well-known result for order statistics (see, e.g. David &
Nagaraja, 2003, section 9.4), and R1:k≤ ⋯ ≤Rk:k denote the ordered values of R1,… , Rk. This
leads to a more compact formulation of the problem:

H0 : γ =0 versus HA : γ > 0

4.2. Test statistic

A natural way to estimate γ is to replace Ri:k with bRi :k in (4.1), which yields

bγ = 1
k2

Xk
i= 1

ð4i� 2ðk + 1ÞÞbRi : k (4.2)

That is, bγ is defined as an L-statistic based on ordered values of bR1; ¼ ; bRk, each of which is an
L-statistic itself (see equation (3.2)). Now we can see that bγ is an L-statistic of L-statistics, hence the
name “nested L-statistic”.

To test the hypothesis stated in section 4.1, the following test statistic was proposed:

T =
bγffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i= 1
n�1
i

s
where bγ is defined by (4.2) and ni the sample size generated by portfolio X(i) with cdf Fi. Asymptotic
properties of the test statistic T are established in section 2 of Brazauskas et al. (2007). Those results,
however, are too complicated for practical decision making, i.e., closed form expressions for critical values
of the test are difficult to obtain. Therefore, it was suggested to use a bootstrap approximation instead.

4.3. Decision making

To accommodate portfolio dependence using copulas, we will assume that all sample sizes are equal,
i.e., n1 = ⋯ = nk = n. Next, for 1≤ j≤ n, let (Xj(1),… , Xj(k)) denote the jth realisation of the
dependent random vector (X(1),… , X(k)). Then, using sampling with replacement, we obtain the
bootstrap samples (marked with a superscript “*”) such that

ðX�
1ð1Þ; ¼ ;X�

1ðkÞÞ= ðXj1ð1Þ; ¼ ;Xj1ðkÞÞ; ¼¼ ; ðX�
nð1Þ; ¼ ;X�

nðkÞÞ= ðXjnð1Þ; ¼ ;XjnðkÞÞ
Further, using these resampled observations, we can compute the bootstrap estimate bR�

i of bRi, for
every 1≤ i≤k, by replacing Xj:n with X�

j :nðiÞ in formula (3.2). After that, the bootstrap estimate of
the Gini index γ is calculated using the following relationship:

bγ�=Xk
i=1

4i� 2ðk + 1Þð ÞD�
i : k
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where D�
1 : k ≤ � � � ≤D�

k :k are ordered values of D�
i = bR�

i �bRi, for i = 1,… , k. Combining these
evaluations together, the bootstrap version of the test statistic T is given by

T�=
ffiffiffi
n
k

r bγ�
Finally, we repeat the above resampling procedure B times and in this way obtain B replicates of T*,
denoted as T�

1; ¼ ;T�
B. The bootstrap estimate of the critical value of the test is the (1 − α) level

quantile of T*, denoted by xα[T*]. It can be estimated by T�
Bð1�αÞb c :B, the Bð1�αÞb cth order statistic

of T*. The decision rule is as follows: we reject the null hypothesis H0 in favour of the alternative
hypothesis HA if the actual value of the test statistic T (the value obtained from the original samples)
exceeds the approximated critical value xα[T*]. Otherwise, we do not reject H0.

5. Simulation Study

Since the sampling distribution of the test statistic does not have a manageable closed form
expression, we use Monte Carlo simulations to investigate how the performance of the test changes
when insurance portfolios are dependent. More specifically, we are interested in quantifying the
relationship between the power of the test and the strength of portfolio dependence, for selected
types of alternatives. Note that the strength of dependence is modelled using tν copula.

5.1. Study design

We first generate three dependent portfolios of insurance losses such that they are either equally risky
(H0 setting) or unequally risky (HA setting), according to a fixed risk measure. For this study, we
choose MEAN, PHT, and CTE as the risk measures (see section 3). We then perform the hypothesis test of
section 4 using the generated portfolios and compute its proportion of rejections. (Such a proportion
estimates the nominal level of significance under H0 and the power of the test under HA.) By
executing this process for the four types of dependence listed in section 2 (negative dependence, zero
dependence, moderate positive dependence, and strong positive dependence), we obtain the pro-
portion of rejections corresponding to each of the dependence structures. Specific parameters and
other details of the study design are described in sections 5.1.1 and 5.1.2.

5.1.1. Riskiness of portfolios
For generation of insurance portfolios with specified riskiness, we follow the simulation studies of
Brazauskas & Kaiser (2004), Kaiser & Brazauskas (2006), Brazauskas et al. (2007) and choose the
following three parametric families:

∙ Exponential with the cdf

F1ðxÞ= 1�e�ðx�x0Þ = θ; x> x0; θ>0 (5.1)

∙ Pareto with the cdf

F2ðxÞ= 1�ðx0 = xÞβ; x> x0; β> 0 (5.2)

∙ Lognormal with the cdf

F3ðxÞ=Φ ðlogðx�x0Þ�μÞ; x> x0; �1< μ<1 (5.3)

where Φ(·) denotes the standard normal cdf.

The parameter x0 in the above distributions can be interpreted as a deductible or a retention
level of an insurance policy. (Note that due to x0, the distributions F1, F2, and F3 have the
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same support.) Although in general x0 could be any positive real number, for this study we set
x0 = 1. The other parameters θ, β, and μ are selected in such a way that the cdfs F1, F2, and F3 follow
the hypothesised portfolio riskiness with respect to a fixed risk measure. In particular,
if they are equally risky (under H0), then they must satisfy the equation

R½F1�=R½F2�=R½F3� (5.4)

where R[·] represents either MEAN, PHT, or CTE. (These are three conceptually different risk measures – MEAN

is a measure of central tendency; PHT and CTE are tail measures but defined using different probabilistic
principles – that allow us to judge sensitivity of the decisions to the choice of risk measure.) Evaluation of
these measures for the distributions F1, F2, and F3 yields the following expressions of (5.4).

∙ For the MEAN risk measure (when R[Fi] = MEAN[Fi]):

x0 + θ=
x0β
β�1

= x0 + eμ +0:5 (5.5)

∙ For the PHT risk measure (when R[Fi] = PHT[Fi]):

x0 +
θ

r
= x0 +

x0
rβ�1

=x0 +Creμ (5.6)

where for fixed r, the integral Cr =
Ð1
�1 1�ΦðzÞð Þrezdz is found numerically. For example, as

reported by Brazauskas & Kaiser (2004), C0.55 = 3.896, C0.70 = 2.665, C0.85 = 2.030,
C0.95 = 1.758. Note that when r = 1, the PHT measure becomes the MEAN.

∙ For the CTE risk measure (when R[Fi] = CTE[Fi]):

x0�θðlogð1�tÞ�1Þ= x0β
β�1

ð1�tÞ�1 = β = x0 +
1

1�t
eμ + 0:5Φð1�Φ�1ðtÞÞ (5.7)

Note that when t = 0, the CTE measure becomes the MEAN.

For the simulation study we fix x0 = 1 and β = 5.5, and then compute the corresponding values of θ
and μ for each risk measure. Table 1 provides all distribution-related parameters under H0, which
are calculated using equations (5.5)–(5.7).

Under HA, the riskiness of portfolios can be unequal in numerous ways. In this study, we consider
the following two types of alternatives:

∙ Two portfolios are equally risky but the third one differs; i.e.

R½F�
1�= c�R½F1�; R½F�

2�=R½F2�; R½F�
3�=R½F3� (5.8)

where F�
1; F

�
2; and F

�
3 are parametric distributions of portfolios under this alternative, c� ≠ 1, and

R[F1] = R[F2] = R[F3].

∙ Relative riskiness of all three portfolios is equally spaced; i.e.

R½F��
1 �= c��R½F1�; R½F��

2 �=R½F2�; R½F��
3 �= c2��R½F3� (5.9)

where F��
1 ; F��

2 ; and F��
3 are parametric distributions of portfolios under this alternative, c�� >1,

and R[F1] = R[F2] = R[F3].

To simulate these scenarios, we choose parameters θ and μ to be identical to their values under H0.
Also, constants c* and c** are such that c* = 0.85, 0.90, 0.95, 1.05, 1.10, 1.15, 1.25 and c** = 1.05,
1.10, 1.15, 1.20, 1.25. The remaining distribution-related parameters are derived from equations
(5.8) and (5.9), and their values or formulas are presented in Table 2.
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5.1.2. Dependence of portfolios
This section presents algorithms and major steps for generation of dependent portfolios with
exponential, Pareto, and lognormal margins and the dependence structures specified by the corre-
lation matrices of section 2. Briefly, a key idea is to use the meta-tν distribution which is a multi-
variate distribution with arbitrary margins and the dependence structure governed by tν copula. In
our examples, the degrees of freedom parameter is either ν = 3 or ν→∞ (the latter case corresponds
to the meta-Gaussian distribution). Specifically, we implement the following three-step procedure:

Step 1. For a fixed risk measure and a fixed scenario of riskiness, we first generate a random
realisation of the trivariate variable tν, with the location vector 0 and the correlation matrix Σ
(examples of which are specified in section 2). The sample size of each margin is n, and we
denote this variable as Y = (Y1, Y2, Y3).

Table 1. The risk measure and distribution-related parameters under H0.

Risk measure Parametric distribution
Distribution-related parameters under
H0: R[F1] = R[F2] = R[F3]

MEAN Exponential x0 = 1, θ = 0.222
Pareto x0 = 1, β = 5.5
Lognormal x0 = 1, μ = − 2.004, σ = 1

PHT (r = 0.85) Exponential x0 = 1, θ = 0.231
Pareto x0 = 1, β = 5.5
Lognormal x0 = 1, μ = − 2.010, σ = 1

CTE (t = 0.75) Exponential x0 = 1, θ = 0.240
Pareto x0 = 1, β = 5.5
Lognormal x0 = 1, μ = − 1.978, σ = 1

PHT, proportional hazards transform; CTE, conditional tail expectation.

Table 2. The risk measure and distribution-related parameters under HA.

Distribution-related parameters under

Risk measure Parametric distribution HA specified by (5.8) HA specified by (5.9)

MEAN Exponential x0 = 1, θ� = x0(c�−1) + c�θ x0 = 1, θ�� = x0(c�� − 1) + c��θ
Pareto x0 = 1, β = 5.5 x0 = 1, β = 5.5
Lognormal x0 = 1, μ = − 2.004, σ = 1 x0 = 1, σ = 1

μ�� = log x0 c2���1
� �

+ c2��e
μ +0:5

� ��0:5

PHT (r = 0.85) Exponential x0 = 1, θ� = x0r(c� − 1) + c�θ x0 = 1, θ�� = x0r(c�� − 1) + c��θ
Pareto x0 = 1, β = 5.5 x0 = 1, β = 5.5
Lognormal x0 = 1, μ = − 2.010, σ = 1 x0 = 1, σ = 1

μ�� = log
x0 c2���1ð Þ

Cr
+ c2��e

μ

� �
CTE (t = 0.75) Exponential x0 =1; θ�= x0ðc��1Þ

1�log 1�tð Þ + c�θ x0=1; θ��=
x0ðc���1Þ
1�logð1�tÞ + c��θ

Pareto x0 = 1, β = 5.5 x0 = 1, β = 5.5
Lognormal x0 = 1, μ = − 1.978, σ = 1 x0 = 1, σ = 1

μ�� = log x0ð1�tÞðc2���1Þ
Φ 1�Φ�1ðtÞð Þ + c2��e

μ+ 0:5
� �

�0:5

PHT, proportional hazards transform; CTE, conditional tail expectation.
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Step 2. Next, we transform Y into U = (U1, U2, U3) = (Gν(Y1), Gν(Y2), Gν(Y3)), where Gν is
the cdf of the standard tν variable (i.e. with location 0 and scale 1). The distribution of U is the
trivariate tν copula with the correlation matrix Σ.

Step 3. Finally, as the well-known Sklar’s theorem ensures, the quantile transformation
of the uniform margins returns the output with the desired probabilistic features.
That is, the trivariate vector X= ðX1;X2;X3Þ= ðF�1

1 ðU1Þ; F�1
2 ðU2Þ; F�1

3 ðU3ÞÞ, where
F�1
1 ðuÞ= x0 � θ logð1�uÞ; F�1

2 ðuÞ= x0ð1�uÞ�1 = β; F�1
3 ðuÞ=x0 + expðΦ�1ðuÞ + μÞ represents

portfolios X1, X2, X3 with marginal cdfs F1, F2, F3, defined by (5.1)–(5.3), and their
interdependence governed by tν copula with the correlation matrix Σ.

Further, since tν copula is fully characterised by its correlation matrix Σ, one can easily see that
setting Σ equal to Σ1, Σ2, Σ3, or Σ4 (see section 2) in Step 1 produces portfolio realisations
with negative dependence, zero dependence, moderate positive dependence, or strong positive
dependence, respectively. Also, to generate equally and unequally risky portfolios, we change
the parameters of the quantile functions according to the specifications of Tables 1 and 2,
respectively.

Finally, while Steps 2 and 3 are straightforward transformations of random variables, Step 1
requires a more careful explanation. For Σs with non-diagonal elements strictly <1, we generate the
trivariate variable tν (with the location vector 0) by implementing Algorithm 5.2 of Embrechts
et al. (2003):

(a) Find the Cholesky decomposition M of Σ.

(b) Simulate three independent standard normal random variables Z1, Z2, Z3.

(c) Simulate a random variable V from χ2v that is independent of Z = (Z1, Z2, Z3).

(d) Then Y=
ffiffiffiffiffiffiffiffiffiffiffi
ν =V

p
MZ is the trivariate tν variable with location 0 and correlation Σ.

In the case when ν→∞, the (c) step can be skipped and the transformation of variables in
(d) replaced with Y = MZ. This results in the trivariate Gaussian variable with location 0 and
correlation Σ. In addition, for commonotonic cases (e.g. Σ4 in section 2), the tail dependence
differences between the tν and Gaussian copulas vanish (see McNeil et al., 2005, section 5.3.1).
Thus, the strong positively dependent portfolios can be generated by ignoring Steps 1 and 2 and
modifying Step 3 as follows: simulate a standard uniform random variable U and then compute
X= ðF�1

1 ðUÞ; F�1
2 ðUÞ; F�1

3 ðUÞÞ, where F�1
1 ; F�1

2 ; F�1
3 are defined as in Step 3 above (see McNeil

et al., 2005, proposition 5.16). For alternative specifications of the algorithms of this section, see
Joe (2014, sections 6.9 and 2.5).

5.2. Numerical findings

Once a set of portfolios is generated then they are resampled according to the bootstrap procedure of
section 4.3, an α-level test is performed, and its decision – reject H0 or not – is recorded. This
procedure is repeated 5,000 times, for each of the three risk measures, four dependence structures,
and for each of the hypothesised scenarios. Using the recorded 5,000 decisions for the tests based on
the MEAN, PHT, and CTE measures, respectively, we estimate the proportion bp of test’s rejections. Under
H0, if bp falls within the 99% confidence interval α ± z0:005

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αð1�αÞ = 5;000p

, where z0.005 is a critical
value of the standard normal variable, then the test performs as expected. If bp exceeds the upper
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bound of the interval, then the test is labelled as liberal. And if it is below the lower bound, then the
test is called conservative. The study is performed for the following choices of simulation parameters:

∙ Level of significance: α = 0.01, 0.05, 0.10.

∙ Sample size: n = 50, 100, 200.

∙ Number of bootstrap samples: B = 1,000.

Our simulation results are summarised in Table 3, where probabilities of type I error are reported, as
well as in Figures 2 and 3, where estimated power curves are plotted. Specifically, we notice from
Table 3 that in the presence of strong positive dependence (comonotonicity), the probability of the
type I error exceeds the nominal level several times, sometimes even more than ten times (see, e.g. the
entries for α = 0.01), for all the risk measures under consideration. This means that the test is very

Table 3. Estimated probabilities of the type I error of the tests based on the MEAN, proportional hazards
transform (PHT), conditional tail expectation (CTE) measures, for selected n, α, ν, and various dependence
structures.

Dependence structure (characterised by Σis of section 2)

Negative Zero Moderate positive Strong positive

n α Risk measure ν = 3 ν→∞ ν = 3 ν→∞ ν = 3 ν→∞ ν = 3 ν→∞

50 0.01 MEAN 0.008 0.010 0.012 0.008 0.009 0.008 0.213 0.213
PHT (r = 0.85) 0.013 0.015 0.017 0.012 0.017 0.015 0.358 0.358
CTE (t = 0.75) 0.014 0.013 0.018 0.013 0.014 0.015 0.236 0.236

0.05 MEAN 0.049 0.053 0.051 0.047 0.050 0.046 0.287 0.287
PHT (r = 0.85) 0.062 0.070 0.068 0.065 0.073 0.069 0.421 0.421
CTE (t = 0.75) 0.057 0.066 0.063 0.054 0.059 0.058 0.310 0.310

0.10 MEAN 0.101 0.106 0.105 0.103 0.105 0.106 0.332 0.332
PHT (r = 0.85) 0.121 0.134 0.136 0.132 0.145 0.140 0.450 0.450
CTE (t = 0.75) 0.116 0.127 0.129 0.115 0.129 0.126 0.358 0.358

100 0.01 MEAN 0.008 0.012 0.010 0.008 0.007 0.009 0.158 0.158
PHT (r = 0.85) 0.014 0.016 0.014 0.014 0.013 0.014 0.270 0.270
CTE (t = 0.75) 0.012 0.013 0.011 0.010 0.011 0.009 0.173 0.173

0.05 MEAN 0.048 0.052 0.050 0.048 0.050 0.046 0.219 0.219
PHT (r = 0.85) 0.059 0.068 0.063 0.061 0.072 0.071 0.343 0.343
CTE (t = 0.75) 0.052 0.059 0.054 0.052 0.054 0.056 0.249 0.249

0.10 MEAN 0.103 0.108 0.105 0.100 0.101 0.104 0.266 0.266
PHT (r = 0.85) 0.123 0.128 0.128 0.127 0.133 0.136 0.385 0.385
CTE (t = 0.75) 0.111 0.118 0.111 0.110 0.120 0.118 0.292 0.292

200 0.01 MEAN 0.008 0.011 0.008 0.008 0.007 0.008 0.104 0.104
PHT (r = 0.85) 0.012 0.015 0.012 0.011 0.014 0.014 0.199 0.199
CTE (t = 0.75) 0.009 0.013 0.010 0.007 0.010 0.011 0.111 0.111

0.05 MEAN 0.047 0.050 0.049 0.045 0.050 0.050 0.168 0.168
PHT (r = 0.85) 0.058 0.060 0.060 0.060 0.069 0.067 0.272 0.272
CTE (t = 0.75) 0.048 0.051 0.051 0.051 0.055 0.057 0.181 0.181

0.10 MEAN 0.098 0.103 0.096 0.102 0.111 0.105 0.216 0.216
PHT (r = 0.85) 0.112 0.120 0.119 0.121 0.135 0.125 0.314 0.314
CTE (t = 0.75) 0.104 0.103 0.097 0.110 0.115 0.112 0.232 0.232

Note: The 99% margins of error are ±0.004 (for α = 0.01), ±0.008 (for α = 0.05), ±0.011 (for α = 0.10). The
bold entries correspond to the cases when the test performance is liberal.
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liberal under this scenario of dependence, which is most extreme. For the less extreme strengths of
dependence, however, the results are mixed. That is, they depend on the chosen risk measure (MEAN is
never liberal, PHT almost always, and CTE sometimes), sample size (liberal performances are most
common for n = 50, less for n = 100, and least for n = 200), and even on the test’s significance level
(for α = 0.10, the bold entries are most frequent, but their frequency declines as α decreases).
Further, outside of the comonotonic case, there is no statistical evidence to suggest that the
strength of dependence monotonically affects the test’s level. Finally, except for several borderline
cases, the effect of tail dependence is also undetectable (compare the corresponding entries for
ν = 3 and ν→∞).

Figures 2 and 3 provide power estimates against the two types of alternatives described above, for
n = 200 and α = 0.05. Similar to the type I error investigations, we notice that the power of the test is
uniformly highest in the strong positive dependence case, for all risk measures and both types of copulas.
Of course, this finding is not unexpected because the test exceeds the nominal level under H0 and its
power curve is simply shifted across all scenarios of riskiness. We also notice that the power of the test
depends on the underlying risk measure. That is, all things being equal, the test is more powerful for the
“light”measure (such as the MEAN) than for the “heavy” one (such as the PHT or CTE). There is no effect of
tail dependence on the power curves, i.e., t3 and Gaussian copulas produce similar power curves, but
there is some effect of the strength of dependence. In particular, while negative dependence slightly
decreases the power of the test when compared to the zero dependence case, the positive dependence
improves the test’s performance. Other features of the estimated power curves are typical: the test
becomes more powerful as c* (c**) moves further away from c* = 1 (c** = 1), i.e., when data go deeper
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Figure 2. The first type of alternatives. Estimated power curves of the tests based on the MEAN,
proportional hazards transform (PHT), and conditional tail expectation (CTE) measures, for various
dependence structures, n = 200, and α = 0.05. Top row: t3 copulas. Bottom row: Gaussian copulas.
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into the alternative. Further, comparison of the two types of alternatives reveals that the test is more
powerful against the second type of alternatives, which can be anticipated because under the second
scenario the differences in portfolio riskiness are more pronounced. Finally, we conclude that the
test – which was designed for independent portfolios – performs adequately when portfolios are
dependent, and it will successfully detect, with the probability substantially above 0.50, the differences in
portfolio riskiness of at least 15% (corresponding to c*≤0.85 or c*≥1.15, and c**≥1.15) for portfolios
of n≥200 losses. Of course, a caveat to this conclusion is the comonotonic case which requires a
separate analysis. (That is being carried out by the authors in a parallel paper.)

6. Practical Considerations

In this section, we illustrate how to apply the findings of section 5 in practice. Using the tornado
damage data of Brooks & Doswell (2001), normalised values of which (i.e. data adjusted for wealth
and inflation) are available in table A.3 of Brazauskas et al. (2007), we reanalyse the real data
example of the latter paper by investigating potential effects of portfolio dependence on the decision-
making procedure.

The portfolios from given data are formed for two regions –Midwest and South – with the respective
sample sizes nMidwest = 47 and nSouth = 86. (The data set also contains a third region, Northeast, but
it has only four observations, which is way too small to assure valid statistical inference.) The
hypothesis that the portfolios are equally risky was tested by applying the procedure of section 4. We
used the same risk measures as in the simulation study: MEAN, PHT (r = 0.85), and CTE (t = 0.75).
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Figure 3. The second type of alternatives. Estimated power curves of the tests based on the MEAN,
proportional hazards transform (PHT), and conditional tail expectation (CTE) measures, for various
dependence structures, n = 200, and α = 0.05. Top row: t3 copulas. Bottom row: Gaussian copulas.
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Also, B = 1,000 bootstrap samples were generated to calculate the critical values at 1%, 5%, and
10% levels of significance. Table 4 provides summary estimates and decisions of the tornado damage
data sorted by region.

Several conclusions emerge from the table. As the point estimates of all three risk measures suggest,
the Midwest region is roughly twice as risky as the South. More formally, according to the MEAN

measure, the difference is statistically significant at all typical levels of significance. And the PHT

(r = 0.85) and CTE (t = 0.75) measures reject H0 at α = 0.05, 0.10 and α = 0.10, respectively.
Further, we need to check how sensitive these decisions are due to (potentially) misspecified portfolio
dependence. Aside from the comonotonic case, the results of section 5.2 suggest that the decision to
reject H0 at the significance level α will remain at that level as long as portfolios are compared
according to the mean measure. For the PHT (r = 0.85) and CTE (t = 0.75) measures, a premium of
20%–40% has to be added to α. That is, in many practical situations, the actual probability of type I
error for PHT (r = 0.85) and CTE (t = 0.75) can reach 1.20α to 1.40α. Finally, the comonotonic case –
no matter how rare it may be – represents a perfect-storm scenario that can break down the test and
easily yield probabilities for the type I error as high as 0.30 or even higher. Thus the user of the test
should keep such a possibility in mind.

7. Concluding Remarks

In this paper, we have considered a hypothesis testing problem about the equality of risk measures
using a nested L-statistic. Asymptotic and small-sample properties of the test have been studied by
Brazauskas et al. (2007) under the assumption of independent insurance portfolios. Here, using
Monte Carlo simulations, we have investigated the performance of the test when portfolios are
dependent. We have concluded that the presence of strong positive dependence (comonotonicity)
makes the test very liberal for the PHT, CTE, and MEAN risk measures, when marginal portfolios
follow exponential, Pareto, and lognormal distributions and their interdependence is governed
by the three-dimensional t and Gaussian copulas. For non-comonotonic scenarios of dependence,
the test performs adequately, with its probabilities of type I error being on target for the mean
measure and getting inflated by about 20%–40% for the PHT and CTE measures. In addition,
for the alternative hypotheses considered in this paper, we have not observed any significant effects
of tail dependence, but detected some effect of the strength of dependence. In particular, while
negative dependence slightly decreases the power of the test when compared to the zero dependence
case, the positive dependence improves the test’s performance. Finally, we have also demonstrated
how to incorporate such findings into sensitivity analysis of the decisions by providing a real
data example.

Table 4. Estimates and decisions for analysis of the tornado damage data sorted by region.

MEAN PHT (r = 0.85) CTE (t = 0.75)

ðbRMidwest; bRSouthÞ (12,287; 5,787) (14,819; 7,381) (31,315; 16,884)bγ 3,250 3,719 7,215
ðx0:10½bγ��; x0:05½bγ��; x0:01½bγ��Þ (1,940; 2,332; 3,122) (2,421; 2,918; 3,788) (6,580; 7,671; 10,106)
Reject H0 (at level α)? Yes (α = 0.01, 0.05, 0.10) Yes (α = 0.05, 0.10) Yes (α = 0.10)

PHT, proportional hazards transform; CTE, conditional tail expectation.
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The results of this paper generate several ideas for further research. First, the comonotonic case has a
devasting effect on the test and thus requires a separate analysis. Second, it is of interest to under-
stand the mathematical phenomenon of how the power function of the test behaves due to changes in
the correlation matrix that controls the interdependence of portfolios. This problem is related to
various versions of stochastic ordering of random variables. Some preliminary results on this topic
are reported by Samanthi et al. (2016). Third, a natural extension of the test is to redesign it for
discontinuous data that may include excessive number of zeros, but otherwise are continuous. (This
is a common situation in personal lines insurance.) Going in this route, one would have to revisit the
fundamental theorems on the asymptotic behaviour of L-statistics (see Chernoff et al., 1967). Fourth,
one may abandon the idea of using the Gini index on risk measures and construct a completely
different test. There may, of course, be many more generalisations and improvements of the
approach presented in this paper.
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