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Abstract. Quantiles of probability distributions play a central role in the definition of
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capture the riskiness of the distribution tail. Estimates of risk measures are needed in many
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designing risk transfer strategies, and allocating capital. In this paper, we present the

empirical nonparametric and two types of parametric estimators of quantiles at various

levels. For parametric estimation, we employ the maximum likelihood and percentile-

matching approaches. Asymptotic distributions of all the estimators under consideration

are derived when data are left-truncated and right-censored, which is a typical loss variable

modification in insurance. Then, we construct relative efficiency curves, REC, for all

the parametric estimators. Specific examples of such curves are provided for exponential

and single-parameter Pareto distributions for a few data truncation and censoring cases.

Additionally, using simulated data we examine how wrong quantile estimates can be when

one makes incorrect modeling assumptions. The numerical analysis is also supplemented

with standard model diagnostics and validation (e.g., quantile-quantile plots, goodness-of-

fit tests, information criteria) and presents an example of when those methods can mislead

the decision maker. These findings pave the way for further work on RECs with potential

for them being developed into an effective diagnostic tool in this context.
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1 Introduction

Quantiles of probability distributions play a central role in the definition of risk measures (e.g., value-

at-risk, conditional tail expectation) which in turn are used to capture the riskiness of the distribution

tail. Estimates of risk measures are needed in many practical situations such as in pricing of extreme

events, developing reserve estimates, designing risk transfer strategies, and allocating capital. When

solving such problems, the first highly consequential task is to find point estimates of quantiles and to

assess their variability. In this context, the empirical nonparametric approach is the simplest one to

use (see Jones and Zitikis, 2003), but it lacks efficiency due to the scarcity of sample data in the tails.

On the other hand, parametric estimators can significantly improve quantile estimators’ efficiency (see

Brazauskas and Kaiser, 2004, and Kaiser and Brazauskas, 2006). Moreover, the parametric approach

can accommodate truncation and censoring that are common features of insurance loss data. Of course,

the main drawback of parametric estimators is that they are sensitive to initial modeling assumptions,

which creates model uncertainty1

There is a growing number of studies on various aspects of model risk in modeling, measuring

and pricing risks. Cairns (2000) was the first author to systematically study model risk in insurance.

He discussed different sources of model risk, including parameter uncertainty and model uncertainty,

and presented methods to treat these uncertainties coherently. Hartman et al . (2017) focused on

parameter uncertainty and analyzed its impact in different sectors of insurance practice, namely, life

insurance, health insurance, and property/casualty insurance. They also gave a comprehensive review

of the literature concerning parameter uncertainty. A recent article by Hong et al . (2018) shows how

typical claim predictions change when the model is uncertain. In particular, they illustrate such effects

by using standard model selection tools such as Akaike Information Criterion to determine the “best”

regression subset of covariates, and then apply the selected model for claim prediction. Bignozzi et al .

(2015) and Samanthi et al . (2017) are two recent examples of theoretical and practical investigations,

respectively, of the effects of the data dependence assumption on subsequent risk measuring. Also, an

extensive simulation study involving estimation of upper quantiles of lognormal, log-logistic, and log-

1 Note that some authors use ‘model risk’ instead of ‘model uncertainty’ to describe the same phenomenon.
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double exponential distributions under model and parameter uncertainty was conducted by Modarres

et al . (2002). Their overall conclusion was that when modeling is done by assuming one of the three

families and treating the other two as possible misspecification, the least severe effect on upper quantile

estimates occurs when the lognormal distribution is assumed.

Further, there is even more interest in this topic in the financial risk management literature. Model

uncertainty within the risk aggregation problems has been recently studied by Embrechts et al . (2015)

and Cambou and Filipović (2017), and for value-at-risk estimation by Alexander and Sarabia (2012).

Cont et al . (2010) and Glasserman and Xu (2014) linked financial risk measurement procedures,

model risk, and robustness. The first paper suggests to use the classical robust statistics techniques for

managing model risk, while the second pursues model distance and entropy based techniques to derive

the worst-case risk measurements (relative to measurements from a baseline model). Finally, Aggarwal

et al . (2016) and Black et al . (2018) provide comprehensive accounts on model risk identification,

measurement, and management in practice. These authors develop a model risk framework, identify

distinct model cultures within an organization, review common methods and challenges for quantifying

model risk, and discuss difficulties that arise in mapping model errors to actual financial impact.

The implied conclusion in many academic and practice oriented papers on model risk is that it can

be reduced or mitigated by using all or a combination of the following: performing model validation,

fitting multiple models, and applying various stress tests or sensitivity analysis. This idea was in part

adopted in the case studies of Brazauskas and Kleefeld (2016), which were based on well-known (real)

reinsurance data. What was discovered by these authors, however, is that fitting multiple models

and using extensive model validation for each of them may not be sufficient if data are left-truncated.

That is, they used quantile-quantile plots, Kolmogorov-Smirnov (KS) and Anderson-Darling (AD)

tests, Akaike and Bayesian information criteria (AIC and BIC) and had concluded that six different

models are acceptable for each of the 12 data sets analyzed. However, when all those models were

used to estimate the 90% and 95% quantiles (value-at-risk measures) for ground-up loss, for some data

sets they resulted in similar estimates, which would be expected, while for others they were far apart,

which is counterintuitive. Moreover, using left-truncated operational risk data, Yu and Brazauskas

(2017) have shown that even shifted parametric models (which might seem like a plausible option but
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nonetheless incorrectly account for data truncation) can pass those standard model validation tests.

Next, due to the presence of deductibles and policy limits in insurance contracts, data truncation and

censoring are unavoidable modifications of the loss severity variable. This suggests that quantile and,

more generally, risk measure estimation requires careful thinking and analysis.

In this paper, we present the empirical nonparametric, maximum likelihood, and percentile-

matching estimators of ground-up loss distribution quantiles (at various levels). Asymptotic dis-

tributions of these estimators are derived when data are left-truncated and right-censored. Relative

efficiency curves, REC, for all the estimators are then constructed, and plots of such curves are pro-

vided for exponential and single-parameter Pareto distributions. Then, we generate a sample of 50

observations from a left-truncated and right-censored Pareto I model and using that data set inves-

tigate how biased quantile estimates can be when one makes incorrect distributional assumptions

or relies on a wrong modeling approach. The numerical analysis is also supplemented with standard

model diagnostics and validation (e.g., quantile-quantile plots and KS and AD tests) and demonstrates

how those methods can mislead the decision maker. In addition, we examine the information provided

by RECs and conclude that such curves have strong potential for being developed into an effective

diagnostic tool in this context.

The rest of the paper is organized as follows. In Section 2, nonparametric and parametric quantile

estimators are defined and their asymptotic distributions are specified when the underlying random

variable is left-truncated and right-censored. The next section presents two illustrative examples

of RECs for exponential and single-parameter Pareto distributions. Specifically, RECs of maximum

likelihood, percentile matching, and empirical estimators of quantiles of these distributions are plotted.

Section 4 studies the effects of distribution choice and modeling approach on estimates of quantiles.

Concluding remarks are offered in Section 5. Finally, the appendix provides two asymptotic theorems

of mathematical statistics and a detailed description of how to contruct RECs. These results are

essential to analytic derivations in the paper, and we recommend the reader to review them first.
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2 Quantile Estimation

Insurance contracts have coverage modifications that need to be taken into account when modeling

the underlying loss severity variable. In this section, we specify the estimators of quantiles of the

ground-up distribution and derive their asymptotic distributions when the loss variable is affected

by left truncation (due to deductible) and right censoring (due to policy limit). We consider three

types of estimators: empirical (Section 2.1), maximum likelihood, MLE (Section 2.2), and percentile

matching, PM (Section 2.3).

To present the estimators and their properties, let us start with notation and assumptions. Suppose

we observe n continuous independent identically distributed (i.i.d.) random variables X∗
1 , . . . ,X

∗
n,

where each X∗ is equal to the ground-up variable X, if X exceeds threshold t (t ≥ 0) but is capped at

upper limit u (u > t). That is, X∗ is a mixed discrete-continuous random variable that satisfies the

following conditional event relationship:

X∗ d
= min{X,u}

∣∣X > t,

where
d
= denotes “equal in distribution.” Also, let us denote the probability density function (pdf),

cumulative distribution function (cdf), and quantile function (qf) of X as f , F , and F−1, respectively.

Then, the cdf F∗, pdf f∗, qf F
−1
∗ of X∗ are related to F , f , F−1 and given by:

F∗(x
∗ | t;u) =





0, x∗ ≤ t;
F (x∗)−F (t)

1−F (t) , t < x∗ < u;

1, x∗ ≥ u,

(2.1)

f∗(x
∗ | t;u) =





f(x∗)
1−F (t) , t < x∗ < u;

1−F (u−)
1−F (t) , x∗ = u;

0, elsewhere,

(2.2)

F−1
∗ (s | t;u) =





F−1
(
s+ (1− s)F (t)

)
, 0 ≤ s < F (u)−F (t)

1−F (t) ;

u, F (u)−F (t)
1−F (t) ≤ s ≤ 1.

(2.3)

Note that we are interested in estimating the pth quantile of X (i.e., F−1(p)) based on the observed

data X∗
1 = x∗1, . . . ,X

∗
n = x∗n. Thus, Theorems A.1 and A.2 in Appendix A.1 and the REC construction

of Appendix A.2 have to be applied to functions (2.1)–(2.3), not F , f , F−1.
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2.1 Empirical Approach

As mentioned earlier, the empirical approach is restricted to the range of observed data. Indeed, based

on x∗1, . . . , x
∗
n, the empirical estimator F̂EMP(t) = 0. Thus, it cannot take full advantage of formulas

(2.1)–(2.3), and yields a biased estimator that works within a limited range of quantile levels. In this

case, the F−1(p) estimator is F̂−1
EMP(p) = x∗(⌈np⌉) < u, and as follows from Theorem A.1,

F̂−1
EMP(p) is AN

(
F−1
∗ (p),

1

n

p(1− p)

f2
∗ (F

−1
∗ (p))

)
, 0 < p <

F (u)− F (t)

1− F (t)
. (2.4)

To see that this estimator is positively biased, i.e., any (estimable) quantile of the observable variable

X∗ is never below the corresponding quantile of the unobservable variable X (which is what we want

to estimate), notice that for the mean parameter in (2.4), we have

F−1
∗ (p) = F−1

(
p+ (1− p)F (t)

)
≥ F−1(p), 0 < p <

F (u)− F (t)

1− F (t)
,

with the inequality being strict unless F (t) = 0. The inequality holds because F−1 is strictly increasing

(loss severities are non-negative absolutely continuous random variables) and (1− p)F (t) ≥ 0.

2.2 MLE Approach

Parametric methods use the observed data x∗1, . . . , x
∗
n and fully recognize its distributional properties.

The MLE approach is one of the most common estimation techniques. It takes into account (2.1)–(2.3)

and finds parameter estimates by maximizing the following log-likelihood function:

logL
(
θ
∣∣ x∗1, . . . , x∗n

)
= log

[
n∏

i=1

f∗(x
∗
i | t;u)

]
= log

[
n∏

i=1

[
f(x∗i )

1− F (t)

]1{t<x∗

i<u} [1− F (u−)

1− F (t)

]1{x∗

i=u}
]

=
n∑

i=1

log
[
f(x∗i )

]
1{t < x∗i < u} − n log

[
1− F (t)

]
+ log

[
1− F (u−)

] n∑

i=1

1{x∗i = u}, (2.5)

where 1{ } denotes the indicator function.

Once parameter MLEs, θ̂1, . . . , θ̂k, are available, the pth quantile estimate is found by plugging

those MLE values into the parametric expression of F−1(p) = h(θ1, . . . , θk). Let us denote this

estimator as F̂−1
MLE(p) = h(θ̂1, . . . , θ̂k). Then, as follows from the MLE’s asymptotic distribution and

the delta method,

F̂−1
MLE(p) is AN

(
F−1(p),

1

n
dθI

−1

θ
d′

θ

)
, 0 < p < 1, (2.6)
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where dθ =
(
∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣
(θ1,...,θk)

, and the entries of Iθ are given by (A.7) with g replaced

by (2.2). Note that (2.6) is defined for 0 < p < 1, while (2.4) for 0 < p < F (u)−F (t)
1−F (t) ≤ 1.

2.3 PM Approach

A popular alternative to the MLE approach for estimation of loss distribution parameters is percentile

matching. To estimate k unknown parameters with the PM method and using the ordered data

x∗(1) ≤ · · · ≤ x∗(n), one has to solve the following system of equations with respect to θ1, . . . , θk:

F−1
∗ (p1) = x∗(⌈np1⌉), F−1

∗ (p2) = x∗(⌈np2⌉), . . . , F−1
∗ (pk) = x∗(⌈npk⌉),

where p1 < · · · < pk < F (u)−F (t)
1−F (t) and x∗(⌈npk⌉) < u. Once parameter PMs, θ̃1, . . . , θ̃k, are available, the

pth quantile estimate is found by plugging those PM values into F−1(p) = h(θ1, . . . , θk). Let us denote

this estimator as F̂−1
PM (p) = h(θ̃1, . . . , θ̃k). Then, as follows from Theorem A.2 and the delta method,

F̂−1
PM (p) is AN

(
F−1(p),

1

n
dθD

∗
θ
Σθ(D

∗
θ
)′d′

θ

)
, 0 < p < 1, (2.7)

where dθ =
(
∂h/∂θ̃1, . . . , ∂h/∂θ̃k

) ∣∣∣
(θ1,...,θk)

and D∗
θ
is specified in Theorem A.2. The entries of Σθ are

given by (A.1) with g and G−1 replaced by expressions (2.2) and (2.3), respectively. Note that (2.7)

is defined for 0 < p < 1, while (2.4) for 0 < p < F (u)−F (t)
1−F (t) ≤ 1.

3 RECs for Exponential and Pareto Models

In this section, we provide examples of RECs for exponential and single-parameter Pareto distributions

under several data-truncation and censoring scenarios. For each model, we choose the (biased) empir-

ical estimator of F−1(p) as the benchmark estimator. Then, using formulas (2.4), (2.6), and (2.7), we

evaluate asymptotic relative efficiencies, AREp’s, for the MLE and PM estimators with respect to the

empirical estimator, as well as AREp of PM with respect to MLE. The three definitions of AREp’s are

given by equations (A.8)–(A.10).

3.1 Exponential Distribution

Let X1,X2, . . . be i.i.d. exponentially distributed random variables with cdf F (x) = 1−e−(x−x0)/θ, x ≥

x0, pdf f(x) = (1/θ)e−(x−x0)/θ, x > x0, and qf F−1(s) = x0 − θ log(1 − s), 0 ≤ s ≤ 1, and where

6



x0 ≥ 0 is known and θ > 0 is an unknown scale parameter. According to the model setup of Section 2,

however, the Xi’s are unobservable. The data are generated by variables X∗
1 , . . . ,X

∗
n which are i.i.d.

with cdf, pdf, and qf given by (2.1), (2.2), and (2.3), respectively. This implies that when Xi’s are

exponentially distributed, we have

F∗(x
∗ | t;u) =





0, x∗ ≤ t;

1− e−(x∗−t)/θ, t < x∗ < u;

1, x∗ ≥ u,

f∗(x
∗ | t;u) =





(1/θ)e−(x∗−t)/θ, t < x∗ < u;

e−(u−t)/θ, x∗ = u;

0, elsewhere,

F−1
∗ (s | t;u) =





−θ log(1− s) + t, 0 ≤ s < 1− e−(u−t)/θ ;

u, 1− e−(u−t)/θ ≤ s ≤ 1.

Now, for the empirical estimator F̂−1
EMP(p) = x∗(⌈np⌉), the asymptotic result (2.4) becomes

F̂−1
EMP(p) is AN

(
−θ log(1− p) + t,

θ2

n

p

1− p

)
, 0 < p < 1− e−(u−t)/θ. (3.1)

The statement (3.1) shows that the asymptotic bias of F̂−1
EMP(p) is t− x0.

Further, MLE of θ is found by maximizing the log-likelihood (2.5) which in this case is

logL
(
θ
∣∣x∗1, . . . , x∗n

)
= − log θ

n∑

i=1

1{t < x∗i < u} −
1

θ

n∑

i=1

[
(x∗i − t)1{t < x∗i < u}+ (u− t)1{x∗i = u}

]
.

It yields a closed-form solution for θ:

θ̂MLE =

∑n
i=1

[
(x∗i − t)1{t < x∗i < u}+ (u− t)1{x∗i = u}

]

∑n
i=1 1{t < x∗i < u}

.

This in turn implies that F̂−1
MLE(p) = x0 − θ̂MLE log(1− p), and the asymptotic result (2.6) becomes

F̂−1
MLE(p) is AN

(
x0 − θ log(1− p),

θ2

n

log2(1− p)

1− e−(u−t)/θ

)
, 0 < p < 1. (3.2)

Furthermore, since for the exponential distribution there is only one unknown parameter θ, its PM

estimator is derived by solving a single equation, F−1
∗ (p1) = x∗(⌈np1⌉). Note that p1 has to be chosen
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from the range 0 < p1 < 1− e−(u−t)/θ (equivalently, x∗(⌈np1⌉) < u). In this case, the resulting estimator

is also explicit and given by

θ̂PM =
t− x∗(⌈np1⌉)

log(1− p1)
.

Subsequently, F̂−1
PM (p) = x0 − θ̂PM log(1− p), and the asymptotic result (2.7) becomes

F̂−1
PM (p) is AN

(
x0 − θ log(1− p),

θ2

n

p1
1− p1

[
log(1− p)

log(1− p1)

]2)
, 0 < p < 1. (3.3)

Finally, we have everything in place for computation of AREp. Since F̂−1
EMP(p) is our benchmark

estimator which is biased, formulas (A.8) and (A.9) will be modified by replacing estimators’ variances

with their mean-square errors (MSE). The MSE ratios based on (3.1)–(3.3) are:

ARE
(
F̂−1

MLE(p), F̂
−1
EMP(p)

)
=

θ2

n
p

1−p + (t− x0)
2

θ2

n
log2(1−p)

1−e−(u−t)/θ

, 0 < p < 1− e−(u−t)/θ, (3.4)

ARE
(
F̂−1

PM (p), F̂−1
EMP(p)

)
=

θ2

n
p

1−p + (t− x0)
2

θ2

n
log2(1−p)

log2(1−p1)
p1

1−p1

, 0 < p < 1− e−(u−t)/θ, (3.5)

ARE
(
F̂−1

PM (p), F̂−1
MLE(p)

)
=

θ2

n
log2(1−p)

1−e−(u−t)/θ

θ2

n
log2(1−p)

log2(1−p1)
p1

1−p1

=
(1− p1) log

2(1− p1)

p1(1− e−(u−t)/θ)
, 0 < p < 1. (3.6)

Note that for p ≥ 1 − e−(u−t)/θ, the ratios (3.4) and (3.5) are infinite because F̂−1
EMP(p) is undefined.

Also, in (3.6), the probability level p1 has to be chosen from the range 0 < p1 < 1− e−(u−t)/θ .

In Figure 3.1, RECs of quantile estimators of the exponential(x0 = 100, θ) distribution are plotted

for the left-truncation level t = 500 and right-censoring at u = 2500. In the first column of plots, the

distribution is lighter tailed (θ = 250) with F (t) = 0.7981, F (u) = 0.9999, and F∗(u | t;u) = 0.9995.

In the second column of plots, the distribution has a heavier tail (θ = 500) with F (t) = 0.5507,

F (u) = 0.9918, and F∗(u | t;u) = 0.9817. Due to the high bias of the empirical estimator (which goes

to ∞ as p → 0), the vertical axes are plotted on the logarithmic scale to minimize visual distortions.

Comparison of plots across the rows reveals a couple of patterns: first, in the top row it is clearly

visible that a combination of heavier tail and a slightly smaller percentage of actually observed data

F∗(u | t;u) shifts all curves significantly upward (especially for small p); second, as is evident from all

plots, the efficiency of PM estimators increases monotonically for 0 < p1 < 0.80 and then starts to
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decrease for 0.80 < p1 < 1 (i.e., the curves pm4 are above those of pm3 which are above pm2, etc., but

pm6 are below pm5). Thus the p1 ≈ 0.80 level is optimal for PM estimation. This fact is in agreement

with the complete sample optimality result (see discussion in Section 3.1 of Brazauskas, 2009).
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Figure 3.1. RECs of quantile estimators of the exponential(x0 = 100, θ) distribution

for t = 500, u = 2500, n = 100, and θ = 250 (left column), θ = 500 (right column).

Level p1 = 0.05 (pm1), 0.10 (pm2), 0.25 (pm3), 0.50 (pm4), 0.75 (pm5), 0.90 (pm6).

Top row : Plots of formulas (3.4) and (3.5). Bottom row : Plots of formula (3.6).
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3.2 Pareto Distribution

Let X1,X2, . . . be i.i.d. random variables distributed according to a single-parameter Pareto dis-

tribution with cdf F (x) = 1 − (x0/x)
α, x > x0, pdf f(x) = (α/x0)(x0/x)

α+1, x > x0, and qf

F−1(s) = x0(1− s)−1/α, 0 ≤ s ≤ 1. Here x0 > 0 is known and α > 0 is an unknown shape parameter,

thus justifying the single-parameter characterization. As before, Xi’s are unobservable and the data

are generated by variables X∗
1 , . . . ,X

∗
n which are i.i.d. with cdf, pdf, and qf given by (2.1), (2.2), and

(2.3), respectively. This implies that when Xi’s are Pareto distributed, we have

F∗(x
∗ | t;u) =





0, x∗ ≤ t;

1− (t/x∗)α, t < x∗ < u;

1, x∗ ≥ u,

f∗(x
∗ | t;u) =





(α/t)(t/x∗)α+1, t < x∗ < u;

(t/u)α, x∗ = u;

0, elsewhere,

F−1
∗ (s | t;u) =





t(1− s)−1/α, 0 ≤ s < 1− (t/u)α;

u, 1− (t/u)α ≤ s ≤ 1.

Next, for the empirical estimator F̂−1
EMP(p) = x∗(⌈np⌉), the asymptotic result (2.4) becomes

F̂−1
EMP(p) is AN

(
t(1− p)−1/α,

(t/α)2

n

p

(1− p)1+2/α

)
, 0 < p < 1− (t/u)α. (3.7)

As evident from the statement (3.7) and the fact that t(1− p)−1/α ≥ x0(1− p)−1/α (since t ≥ x0), this

estimator is asymptotically (positively) biased.

Further, MLE of α is found by maximizing the log-likelihood (2.5) which in this case is

logL
(
α
∣∣x∗1, . . . , x∗n

)
=

n∑

i=1

log(α/x∗i )1{t < x∗i < u}

− α

n∑

i=1

[
log(x∗i /t)1{t < x∗i < u}+ log(u/t)1{x∗i = u}

]
.

It yields a closed-form solution for α:

α̂MLE =

∑n
i=1 1{t < x∗i < u}∑n

i=1

[
log(x∗i /t)1{t < x∗i < u}+ log(u/t)1{x∗i = u}

] .
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This in turn implies that F̂−1
MLE(p) = x0(1− p)−1/α̂MLE , and the asymptotic result (2.6) becomes

F̂−1
MLE(p) is AN

(
x0(1− p)−1/α,

1

n

log2(1− p)

(1− p)2/α
(x0/α)

2

1− (t/u)α

)
, 0 < p < 1. (3.8)

Furthermore, similar to the exponential distribution case, PM estimator of α is derived by solving

a single equation, F−1
∗ (p1) = x∗(⌈np1⌉), where x∗(⌈np1⌉) < u. The resulting estimator is given by

α̂PM =
log(1− p1)

log
(
t/x∗(⌈np1⌉)

) .

Subsequently, F̂−1
PM (p) = x0(1− p)−1/α̂PM , and the asymptotic result (2.7) becomes

F̂−1
PM (p) is AN

(
x0(1− p)−1/α,

(x0/α)
2

n

p1 log
2(1− p)

(1− p1) log
2(1− p1)

(1− p)−2/α

)
, 0 < p < 1. (3.9)

Note that p1 has to be chosen from the range 0 < p1 < 1− (t/u)α (equivalently, x∗(⌈np1⌉) < u).

Finally, for computation of AREp, formulas (A.8) and (A.9) are modified the same way as in

Section 3.1. The MSE ratios based on (3.7)–(3.9) are:

ARE
(
F̂−1

MLE(p), F̂
−1
EMP(p)

)
=

(t/α)2

n
p

(1−p)1+2/α +
[
t(1− p)−1/α − x0(1− p)−1/α

]2

1
n
log2(1−p)

(1−p)2/α
(x0/α)2

1−(t/u)α

=
p/(1 − p) + nα2(1− x0/t)

2

(x0/t)2 log
2(1− p)/(1 − (t/u)α)

, 0 < p < 1− (t/u)α, (3.10)

ARE
(
F̂−1

PM (p), F̂−1
EMP(p)

)
=

(t/α)2

n
p

(1−p)1+2/α +
[
t(1− p)−1/α − x0(1− p)−1/α

]2

(x0/α)2

n
p1 log

2(1−p)

(1−p1) log
2(1−p1)

(1− p)−2/α

=
(t/x0)

2
[
p/(1− p) + nα2(1− x0/t)

2
]

(p1/(1− p1)) (log(1− p)/ log(1− p1))
2 , 0 < p < 1− (t/u)α, (3.11)

ARE
(
F̂−1

PM (p), F̂−1
MLE(p)

)
=

1
n
log2(1−p)

(1−p)2/α
(x0/α)2

1−(t/u)α

(x0/α)2

n
p1 log

2(1−p)

(1−p1) log
2(1−p1)

(1− p)−2/α

=
(1− p1) log

2(1− p1)

p1(1− (t/u)α)
, 0 < p < 1. (3.12)

For p ≥ 1 − (t/u)α, the ratios (3.10) and (3.11) are infinite. In (3.12), the probability level p1 has to

be chosen from the range 0 < p1 < 1− (t/u)α.
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Figure 3.2. RECs of quantile estimators of the Pareto (x0 = 100, α) distribution

for t = 500, u = 2500, n = 100, and α = 1.50 (left column), α = 1.25 (right column).

Level p1 = 0.05 (pm1), 0.10 (pm2), 0.25 (pm3), 0.50 (pm4), 0.75 (pm5), 0.90 (pm6).

Top row : Plots of formulas (3.10) and (3.11). Bottom row : Plots of formula (3.12).

In Figure 3.2, RECs of quantile estimators of the Pareto (x0 = 100, α) distribution are plotted for

the left-truncation level t = 500 and right-censoring at u = 2500. In the first column of plots, the

distribution is heavy tailed (α = 1.50) with F (t) = 0.9106, F (u) = 0.9920, and F∗(u | t;u) = 0.9106.

In the second column of plots, the distribution has even heavier tail (α = 1.25) with F (t) = 0.8663,

F (u) = 0.9821, and F∗(u | t;u) = 0.8663. Due to the high bias of the empirical estimator (which goes

to ∞ as p → 0), the vertical axes are plotted on the logarithmic scale to minimize visual distortions.
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Comparison of plots shows the same ordering of PM curves as those under the exponential distribution

assumption. The choice of p1 ≈ 0.80 is also optimal for PM estimation. A change from heavy to even

heavier tail and a decrease in the percentage of actually observed data F∗(u | t;u) results in less

pronounced shifts of the Pareto-based REC curves; but they are much higher than the exponential

RECs. Thus, since both models are truncated and censored at the identical t = 500 and u = 2500,

this suggests that the significant differences in the REC curves between the distributions can be used

to construct a model selection method. This idea will be further discussed in Section 4.

4 Evaluation of Model Uncertainty

In this section, using simulated data we demonstrate how model uncertainty can emerge in a surprising

way and examine how wrong quantile estimates can be when one makes incorrect modeling assump-

tions. In particular, we generate n = 50 observations from the exponential distribution of Section 3.1

(with x0 = 100, θ = 500, t = 500, u = 2500), fit the exponential model using MLE and PM (p1 = 0.80)

estimators to it, and perform standard model diagnostics (e.g., quantile-quantile plots) and validation

(e.g., Kolmogorov-Smirnov and Anderson-Darling tests). As expected, the exponential distribution is

not rejected by any of the tests. Then, using the same data we repeat the exercise by assuming a

Pareto distribution, and find that it also passes all the tests. In both cases, we additionally compute

AIC and BIC values, which under the incorrect Pareto assumption are better than the ones under the

correct exponential assumption. Next, to make sure that this conclusion was not random, we simulate

n = 50 observations from the Pareto distribution of Section 3.2 (with x0 = 100, α = 1.50, t = 500,

u = 2500), fit and validate both models, and find yet again that both distributional assumptions are

acceptable. This exercise shows that standard model diagnostic methods can mislead the decision

maker, which would be no big deal if quantile estimates based on incorrect modeling assumptions

were close to the true values of quantiles, but that’s not the case. For completeness, we include the

empirical estimates of quantiles although it is known they are incorrect. Below we provide the details

of the described exercises so the interested reader can reproduce the results.

The data sets were simulated using R with a seed of 200 (it is used to initialize the random number

generator). They are presented in Table 4.1, where censored observations are italicized .
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Table 4.1. Left-truncated (at t = 500) and right-censored (at u = 2500) data simulated from

the exponential (x0 = 100, θ = 500) and Pareto (x0 = 100, α = 1.50) distributions.

Exponential Data: 501, 501, 502, 502, 540, 551, 556, 556, 567, 599, 632, 642, 644, 646, 672, 675,

699, 711, 728, 745, 750, 805, 829, 854, 869, 874, 889, 923, 961, 1012, 1034, 1046, 1054, 1102,

1107, 1169, 1178, 1190, 1253, 1392, 1430, 1450, 1470, 1901, 1965, 2351, 2465, 2500, 2500, 2500.

Pareto Data: 516, 526, 535, 542, 550, 570, 593, 603, 605, 608, 609, 661, 674, 688, 694, 728,

734, 751, 751, 768, 778, 782, 786, 797, 825, 836, 836, 847, 940, 962, 968, 1034, 1080, 1115,

1118, 1120, 1134, 1137, 1175, 1213, 1224, 1271, 1379, 1725, 1861, 2000, 2500, 2500 , 2500 , 2500.

In Figure 4.1, the quantile-quantile plots (QQ-plots) are provided. The plots are parameter free. That

is, since the exponential and Pareto distributions are location-scale and log-location-scale families,

respectively, their QQ-plots can be constructed without first estimating model parameters. Note also

that only actual data can be used in these plots (i.e., no observations u = 2500). As is evident

from Figure 4.1, the points in all graphs form a (roughly) straight line; thus both distributions are

acceptable for both data sets.
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Figure 4.1. Exponential and Pareto quantile-quantile plots for the data sets of Table 4.1.

The dashed line represents the “best” fit line. Left column: y = 485 + 550x (top) and

y = 485 + 525x (bottom). Right column: y = 6.27 + 0.58x (top and bottom).

To formally evaluate the appropriateness of the fitted model to data, we perform KS and AD

goodness-of-fit tests. The models are fitted using two parameter estimation methods, MLE and PM

(p1 = 0.80), to check the sensitivity of overall conclusions to model fitting procedures. The values

of the test statistics along with the corresponding p-values are reported in Table 4.2. (The p-values

are computed using parametric bootstrap with 1000 simulation runs. For a brief description of the

parametric bootstrap procedure, see, for example, Section 20.4.5 of Klugman et al . 2012). We can

see that except for one isolated case (Pareto data, Pareto model, PM estimation) the p-values are

above 0.10 for both distributions, all parameter estimation methods, and both tests. Thus, the fitted

exponential and Pareto models are acceptable for both data sets. In addition, the table contains AIC

and BIC values, which can be used as model selection tools. Based on these metrics (smaller values

are better), the Pareto model would be chosen for both data sets. Of course, the decision to accept

Pareto when data came from an exponential distribution is incorrect.
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Table 4.2. Parameter estimates, goodness-of-fit measures, and information criteria

for the exponential and Pareto models fitted to the data sets of Table 4.1.

Assumed Parameter Goodness-of-Fit Measures Information Criteria

Model Estimates Kolmogorov-Smirnov Anderson-Darling AIC BIC
(p-value∗) (p-value∗)

Exponential Data

Exponential θ̂MLE = 595.57 0.077 (0.914) 1.099 (0.317) 696.62 698.53

θ̂PM = 554.23 0.076 (0.637) 0.942 (0.374) 696.86 698.78

Pareto α̂MLE = 1.491 0.095 (0.371) 0.898 (0.344) 679.29 681.20

α̂PM = 1.572 0.109 (0.538) 1.112 (0.262) 682.92 684.83

Pareto Data

Exponential θ̂MLE = 579.33 0.109 (0.573) 0.564 (0.670) 695.99 697.90

θ̂PM = 443.01 0.102 (0.610) 1.006 (0.329) 696.12 698.03

Pareto α̂MLE = 1.487 0.128 (0.354) 1.025 (0.294) 678.29 680.20

α̂PM = 1.816 0.195 (0.000) 2.525 (0.000) 681.44 683.35

∗ The p-values are computed using parametric bootstrap with 1000 simulation runs.

Next, to see whether it really matters which model we select at this stage of the analysis, we have

to examine the true probability models that generated data and check how much off target our upper

quantile estimates are. For the data sets of Table 4.1, the underlying distributions are exponential

(x0 = 100, θ = 500) and Pareto (x0 = 100, α = 1.50), with the quantile functions given by:

F−1(p) = 100− 500 log(1− p) (exponential), F−1(p) = 100(1 − p)−1/1.50 (Pareto).

Thus, the true values of the 90%, 95% and 99% quantiles (estimation targets) are:

Exponential: F−1(0.90) = 1251, F−1(0.95) = 1598, F−1(0.99) = 2403.

Pareto: F−1(0.90) = 464, F−1(0.95) = 737, F−1(0.99) = 2154.

The quantile estimation results are summarized in Table 4.3. There, we clearly see that the parametric

estimates of the quantiles based on the correctly identified model are fairly close to their targets, but

those based on the incorrect model are significantly off their targets. Also, the empirical estimates are

way off target (F̂−1(0.99) = 2500 for the exponential data set is a lucky coincidence, not a rule).
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Table 4.3. Parametric and empirical estimates of the 90%, 95% and 99%

quantiles for the exponential and Pareto data sets of Table 4.1.

Data Set Estimation Methodology Quantile Estimates

Assumed Model Estimator F̂−1(0.90) F̂−1(0.95) F̂−1(0.99)

Exponential Exponential MLE 1471 1884 2843

PM 1387 1774 2674

Pareto MLE 468 746 2194

PM 436 679 1902

Empirical −−− 2004 2484 2500

Pareto Exponential MLE 1434 1836 2768

PM 1123 1431 2146

Pareto MLE 471 750 2216

PM 356 522 1269

Empirical −−− 1875 2500 2500

Finally, in Table 4.4 we present estimated RECs, given by (3.4) and (3.10), at selected quantile

levels. The curves are estimated using the MLE values from Table 4.2 and show how many times the

parametric approach is more efficient than the empirical one in estimating a quantile. Note that as was

seen in Figures 3.1 and 3.2, RECs based on PM estimators have the same shapes as those of MLE, just

rescaled by a constant (smaller than one). Thus PM based conclusions would not change from those

of MLE and one method of analysis will be sufficient. What stands out from these computations is the

vast differences between the corresponding exponential and Pareto RECs, when they are estimated

using the same data set (especially for small p). We conjecture that with some additional work one

can develop an effective diagnostic tool to differentiate between the models.
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Table 4.4. Estimated Pareto and exponential RECs (mle, empirical) at selected quantile levels.

Model parameter estimates are from Table 4.2, based on the data of Table 4.1.

Quantile Exponential Data Pareto Data

Level p Exponential Model Pareto Model Exponential Model Pareto Model

0.05 8293 615077 8792 611390

0.10 1971 145899 2089 145025

0.25 267 19631 283 19513

0.50 47 3413 50 3393

0.75 13 877 14 872

0.90 6 344 6 342

0.95 4 228 5 227

5 Concluding Remarks

The relative efficiency curves, REC, were introduced as a practical tool for comparison of two compet-

ing statistical procedures, when data are complete. In this paper, we have redesigned and extended

such curves to the left-truncated and right-censored data scenarios that are common in insurance ana-

lytics. Our illustrations have focused on the parametric (MLE and PM) and empirical nonparametric

approaches for estimation of quantiles that are key inputs for further risk analysis (e.g., contract

pricing, risk measurement, capital allocation). Further, we have developed specific examples of RECs

for exponential and single-parameter Pareto distributions under a few data truncation and censoring

scenarios. Then, using simulated exponential and Pareto data we have examined how wrong quantile

estimates can be when incorrect modeling assumptions are made. The numerical analysis involved

application of standard model diagnostics and validation (e.g., QQ-plots, KS and AD tests, AIC and

BIC criteria) and has demonstrated how those methods can mislead the decision maker. Finally, the

newly developed RECs have been applied to study the discrepancies between the quality of quantile

estimates of the fitted exponential and Pareto distributions. Our conclusion is that RECs have strong

potential for being developed into an effective diagnostic tool in this context.
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Appendix

In the appendix, we provide some theoretical results that are key to analytic derivations in the paper.

Specifically, in Appendix A.1, the asymptotic normality theorems for sample quantiles and percentile-

matching (PM) estimators of model parameters are presented. The construction of the relative effi-

ciency curves (REC) is described in Apepndix A.2. Note that more detailed presentations of parts of

this material are available in Brazauskas (2009) and Yu and Brazauskas (2017).

Suppose we have a sample of independent and identically distributed (i.i.d.) continuous random

variables, X1, . . . ,Xn, with the cumulative distribution function (cdf) G, probability density function

(pdf) g, and quantile function (qf) G−1. Let the cdf, pdf, and qf be given in a parametric form,

and suppose that they are indexed by a k-dimensional parameter θ = (θ1, . . . , θk). Further, let

X(1) ≤ · · · ≤ X(n) denote the ordered sample values. Also, throughout the paper the notation AN is

used for “asymptotically normal.”
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A.1 Asymptotic Theorems

The empirical estimator of a population quantile, say G−1(p), is the corresponding sample quantile

X(⌈np⌉), where ⌈·⌉ denotes the “rounding up” operation. We start with the asymptotic normality result

for sample quantiles. (Complete technical details are available in Section 2.3.3 of Serfling, 1980).

Theorem A.1 [Asymptotic Normality of Sample Quantiles]

Let 0 < p1 < · · · < pk < 1, with k > 1, and suppose that pdf g is continuous. Then the k-variate vector

of sample quantiles
(
X(⌈np1⌉), . . . ,X(⌈npk⌉)

)
is AN with the mean vector

(
G−1(p1), . . . , G

−1(pk)
)
and

the covariance-variance matrix 1
n

[
σ2
ij

]k
i,j=1

with

σ2
ij =

pi(1− pj)

g(G−1(pi))g(G−1(pj))
. (A.1)

In the univariate case (k = 1), the sample quantile

X(⌈np⌉) is AN

(
G−1(p),

1

n

p(1− p)

g2(G−1(p))

)
. (A.2)

The main drawback of statistical inference based on the empirical nonparametric approach is that

it is restricted to the range of observed data. For the problems encountered with claim severity

data, this is a major limitation. Therefore, a more appropriate alternative is to estimate distribution

quantiles parametrically, which first requires estimates of the model parameters and then those values

are applied to G−1(p). The most common technique for parameter estimation is MLE. Its asymptotic

distribution is well known and available, for example, in Section 4.2 of Serfling (1980).

Percentile matching is a popular alternative to the MLE approach for estimation of loss distribution

parameters (see Klugman et al ., 2012, Section 13.1). If the distribution has k unknown parameters,

(θ1, . . . , θk), PM estimators are found by matching G−1(pi) with X(⌈npi⌉), i = 1, . . . , k, and then solving

the resulting system of equations with respect to θ1, . . . , θk. Assuming the system of equations has

a unique solution, it is clear that PM estimators of θ1, . . . , θk are functions of X(⌈np1⌉), . . . ,X(⌈npk⌉).

Let us denote these estimators as θ̃i = h∗i
(
X(⌈np1⌉), . . . ,X(⌈npk⌉)

)
, i = 1, . . . , k. Their joint asymptotic

normality follows, with some modifications, from Theorem A.1 and the delta method (see, e.g., Section

3.3 of Serfling, 1980).
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Theorem A.2 [Asymptotic Normality of PMs]

Let θ̃ =
(
θ̃1, . . . , θ̃k

)
denote the PM estimator of parameter θ = (θ1, . . . , θk). Then,

(
θ̃1, . . . , θ̃k

)
is AN

((
θ1, . . . , θk

)
,
1

n
D∗

θ
Σθ(D

∗
θ
)′
)
, (A.3)

where the entries of Σθ are given by (A.1) and D∗
θ
= [d∗ij ]k×k is the Jacobian of the transformations

h∗1, . . . , h
∗
k evaluated at (θ1, . . . , θk), that is, d

∗
ij = ∂h∗i /∂X(⌈npj⌉)

∣∣∣
(θ1,...,θk)

.

A.2 Relative Efficiency Curves

For complete data, the relative efficiency curve, REC, was introduced by Brazauskas (2009). It is

constructed by using asymptotic properties of quantile estimators. Suppose two asymptotically normal

estimators of a fixed quantile of the underlying distribution are available. Plotting the ratio of their

variances versus the probability level of quantile yields an REC. Such a curve provides information

about the accuracy of one estimator relative to another when both are designed to estimate the

same (fixed but arbitrary) quantile of the distribution. If one or both estimators are biased, REC is

constructed by replacing their variances with the mean-square errors.

Next, for a fixed probability level p, 0 < p < 1, consider the empirical nonparametric and paramet-

ric estimators of the population quantile G−1
θ

(p). Then, as follows from (A.2), the empirical estimator

Ĝ−1
EMP(p) = X(⌈np⌉) satisfies:

Ĝ−1
EMP(p) is AN

(
G−1

θ
(p),

1

n

p(1− p)

g2
θ
(G−1

θ
(p))

)
. (A.4)

For MLE and PM estimators, we use their asymptotic distributions in conjunction with the delta

method (where G−1
θ

(p) is viewed as a function of θ, say, h(θ)) and arrive at the following results:

Ĝ−1
MLE(p) is AN

(
G−1

θ
(p),

1

n
dθI

−1

θ
d′

θ

)
(A.5)

and

Ĝ−1
PM(p) is AN

(
G−1

θ
(p),

1

n
dθD

∗
θ
Σθ(D

∗
θ
)′d′

θ

)
. (A.6)

Here Iθ =
[
Iij
]k
i,j=1

is the Fisher information matrix, with the entries given by

Iij = E

[
∂ log g(X)

∂θi
·
∂ log g(X)

∂θj

]
, (A.7)
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matrices D∗
θ
and Σθ are same as those specified in (A.3), and dθ =

(
∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣
(θ1,...,θk)

.

Note that the asymptotic variances of Ĝ−1
MLE(p) and Ĝ−1

PM(p) also depend on p.

Now, the asymptotic relative efficiency, ARE, of Ĝ−1
EMP(p) relative to Ĝ−1

MLE(p) is

AREp := ARE
(
Ĝ−1

EMP(p), Ĝ
−1
MLE(p)

)
=

g2
θ
(G−1

θ
(p))

p(1− p)
dθI

−1

θ
d′

θ
for 0 < p < 1, (A.8)

and relative to Ĝ−1
PM(p) it is

AREp := ARE
(
Ĝ−1

EMP(p), Ĝ
−1
PM(p)

)
=

g2
θ
(G−1

θ
(p))

p(1− p)
dθD

∗
θ
Σθ(D

∗
θ
)′d′

θ
for 0 < p < 1. (A.9)

For comparison of Ĝ−1
PM(p) relative to Ĝ−1

MLE(p), we have

AREp := ARE
(
Ĝ−1

PM(p), Ĝ
−1
MLE(p)

)
=

dθI
−1

θ
d′

θ

dθD
∗
θ
Σθ(D∗

θ
)′d′

θ

for 0 < p < 1. (A.10)

Plotting the points (p, AREp) yields corresponding relative efficiency curves, where AREp is defined

by (A.8), (A.9), or (A.10).
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