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Abstract. Continuous parametric distributions are useful tools for modeling and pricing

insurance risks, measuring income inequality in economics, investigating reliability of en-

gineering systems, and in many other areas of application. In this paper, we propose and

develop a new method for estimation of their parameters—the method of Winsorized mo-

ments (MWM)—which is conceptually similar to the method of trimmed moments (MTM)

and thus is robust and computationally efficient. Both approaches yield explicit formulas

of parameter estimators for log-location-scale families and their variants, which are com-

monly used to model claim severity. Large-sample properties of the new estimators are

provided and corroborated through simulations. Their performance is also compared to

that of MTM and the maximum likelihood estimators (MLE). In addition, the effect of

model choice and parameter estimation method on risk pricing is illustrated using actual

data that represent hurricane damages in the United States from 1925 to 1995. In particu-

lar, the estimated pure premiums for an insurance layer are computed when the lognormal

and log-logistic models are fitted to the data using the MWM, MTM, and MLE methods.
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1 Introduction

The insurance industry relies on models for claim frequency and severity, aggregate loss, payments,

reserves, and other variables. In practice, all models are inevitably dependent upon simplifying as-

sumptions, imperfect parameter estimates and other inputs, which create ‘model risk’. Model risk can

be defined as the risk that a company incurs because its models are misspecified or because some of

the assumptions underlying those models are not met in practice (see McNeil et al ., 2005). Taking

claim severity, for instance, we might work with a lognormal distribution to model losses whereas the

true underlying distribution is heavy-tailed. Hence being aware of such a risk, practitioners spend

significant amount of their time stress-testing assumptions, constructing several competing models for

the same problem, and performing sensitivity studies.

The field of statistics that is concerned with model mis-specification and data quality (e.g., mea-

surement errors, outliers, typos) is called robust statistics. In this area, the main focus is on parametric

models, their fitting to the observed data, and identification of outliers. Fitting of the model is ac-

complished by employing procedures that are designed to have limited sensitivity to changes in the

underlying assumptions as well as to “unexpected” data points (for illustrations, see Section 5). The

procedures that possess such properties are called robust . This suggests that problems involving model

risk are related to, and can be (in part) managed with, robust statistical methods.

Initial formal studies on robust statistical methods have appeared in the statistical literature in the

mid-1960’s (for the main trends, theory, and techniques of this field, see Huber and Ronchetti, 2009).

In the financial literature, the concepts of model risk and robust statistics have been discussed by

Cont (2006) and Dell’Aquila and Embrechts (2006). In economics, Hansen and Sargent (2008) provide

an extensive account on robust macroeconomic models. In actuarial science, robustness studies have

been carried out by Künsch (1992), Gisler and Reinhard (1993), Brazauskas and Serfling (2000, 2003),

Marceau and Rioux (2001), Serfling (2002), Dornheim and Brazauskas (2007), and others. Further,

for measuring insurance risks, contract specifications define data layers that play essential role in

pricing and thus have to be taken into consideration when estimating parameters of the model. Such

reasoning lead to introduction of the method of trimmed moments (MTM) – a parameter estimation
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method which is robust, computationally efficient, and can be easily adapted to insurance contract

specifications (see Brazauskas et al ., 2009, and Brazauskas, 2009).

The MTM procedure works like the standard method-of-moments but instead of moments uses

trimmed moments (which are always finite). Fully worked out examples of such estimators are available

for location-scale families, log-folded-normal, -Cauchy, and -Student’s t distributions (with known

degrees of freedom), as well as exponential, Pareto I, generalized Pareto, and gamma distributions

(see Brazauskas and Kleefeld, 2009, 2011, and Kleefeld and Brazauskas, 2012). MTMs have also

attracted attention from applied researchers: Horbenko et al . (2011), Opdyke and Cavallo (2012),

and Chau (2013) have discussed its feasibility in operational risk modeling and Kim and Jeon (2013)

have used this approach in credibility studies. Nonetheless, one often mentioned drawback of MTM is

that it discards all information contained in outlying data points even though they might be legitimate

observations from the actual assumed loss model.

To address this shortcoming and thus improve MTM’s efficiency, in this article we introduce a new

method which will be referred to as the method of Winsorized moments (MWM). In this method,

instead of discarding the extreme observations we replace them by a few non-extreme sample order

statistics. This approach is known as data Winsorization (hence the name of the method) and it works

as described in the following example.

Example 1.1. Suppose we have a data set of ten ordered observations:

1, 2, 3, 10, 20, 30, 100, 200, 300, 1000.

Data Winsorization means ‘pulling back’ low and high extremes towards the middle, where the bulk

of data reside. For example, the 20% left- and 10% right-Winsorized version of this data set is:

3, 3, 3, 10, 20, 30, 100, 200, 300, 300.

We see that 70% of data are original observations (3, 10, 20, 30, 100, 200, 300) but their end-points (3

and 300) are used to replace ‘extremes’ (1, 2 and 1000). So the new data set is 20% left-Winsorized and

10% right-Winsorized. For practical examples involving data Winsorization in insurance ratemaking,

see Dornheim and Brazauskas (2014, Section 2.2). �
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Parameter estimators obtained this way retain all the desirable properties of MTMs—they are robust,

computationally efficient, and responsive to insurance contract specifications—but typically are more

efficient, although both approaches yield estimates that are still less efficient than those obtained by

MLE which can be numerically unstable (for illustrations of this fact, see Section 5.1). Moreover, data

Winsorization is a well-known and widely-accepted approach in other areas, not only insurance. For

example, it is used for measuring income inequality in economics (see, e.g., Van Kerm, 2007) and for

improving the reliability of engineering solutions (see, e.g., Ko and Lee, 1991).

The remainder of this paper is organized as follows. In Section 2, we present the MWM idea, along

with the asymptotic properties of the MWM estimators. Examples of estimators for location-scale

families and two loss severity models—lognormal and log-logistic—are provided in Section 3. In the

simulation study of Section 4, the finite-sample performance of MWM estimators is compared to that

of MTM and MLE, with the objective to see how large the sample size should be for the estimators to

achieve asymptotic unbiasedness and reach their asymptotic efficiency levels. In Section 5, the effect

of model choice and parameter estimation method on risk pricing is illustrated using actual data that

represent hurricane damages in the United States from 1925 to 1995. In particular, the estimated pure

premiums for an insurance layer are computed when the lognormal and log-logistic models are fitted

to the data using the MWM, MTM, and MLE methods. We conclude the paper with a brief summary

of main findings in Section 6.

2 Method of Winsorized Moments

In this section we describe the MWM idea, along with the asymptotic properties of the obtained

estimators, and conclude with several examples of MWM estimators for parametric models.

2.1 Definition

Suppose X1, . . . ,Xn are independent and identically distributed (i.i.d.) random variables, which follow

a parametric distribution F with k ≥ 1 unknown parameters θ1, . . . , θk. Denote the order statistics of

X1, . . . ,Xn by X1:n ≤ · · · ≤ Xn:n. The MWM estimators of θ1, . . . , θk are derived in three steps:
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1. Compute the sample Winsorized moments

Ŵjn =
1

n

[
mn(j)hj

(
Xmn(j)+1:n

)
+

n−m∗

n(j)∑

i=mn(j)+1

hj(Xi:n) + m∗
n(j)hj

(
Xn−m∗

n(j):n

)]
(2.1)

for 1 ≤ j ≤ k. Here mn(j) and m∗
n(j) are integers 0 ≤ mn(j) < n − m∗

n(j) ≤ n such that

mn(j)/n → aj and m∗
n(j)/n → bj when n → ∞, where the proportions aj and bj are chosen

by the researcher. Also, hj are specially chosen data transformations that usually represent

moments or moment-like functions (e.g., hj(x) = xj , hj(x) = (log x)j , or hj(x) = (1/x)j).

2. Derive the corresponding population Winsorized moments

Wj = Wj(θ1, . . . , θk) = ajhj(F
−1(aj)) +

∫ 1−bj

aj

hj(F
−1(u)) du + bjhj(F

−1(1 − bj)) (2.2)

for 1 ≤ j ≤ k. Here F−1(u) = inf {x ∈ R : u ≤ F (x)} is the quantile function. (Notice that when

aj = bj = 0, then Wj = E[hj(X)] which, depending upon the distribution F , may be infinite.

On the other hand, when aj > 0 and bj > 0, the Winsorized moment Wj is always finite.)

3. Match the population and sample Winsorized moments and solve the system of equations





W1(θ1, . . . , θk) = Ŵ1n,
...

Wk(θ1, . . . , θk) = Ŵkn

(2.3)

with respect to θ1, . . . , θk. The obtained solutions, which we denote by θ̂j = gj(Ŵ1n, . . . , Ŵkn),

1 ≤ j ≤ k, are, by definition, the MWM estimators of θ1, . . . , θk. Notice that the functions gj

are such that θj = gj(W1, . . . ,Wk).

Note 2.1. The system of equations (2.3) can be written as Wj(θ1, . . . , θk) − Ŵjn = 0 for j =

1, . . . , k, and thus the MWM estimator can be viewed as an M -estimator (Huber and Ronchetti,

2009). Alternatively, the proposed approach can also be interpreted as a special case of Generalized

Method of Moments (Hansen, 1982). These perspectives might be very useful if one chooses to extend

MWM to more general settings (e.g., generalized linear models, econometric models, multivariate

distributions, Bayesian analysis), because the estimation methods obtained this way would possess

favorable robustness properties and computational efficiency. �
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Note 2.2. The procedure (2.1)–(2.3) is presented for general k and in theory it should always work.

In practice, however, it can happen that equations (2.3) do not have a solution, or that they are difficult

to solve even numerically when k is large due to stability problems (think about the regression models

with a large number of covariates, for example). To alleviate the problem, the functions hj have to be

chosen thoughtfully, i.e., we want to select data transformations that linearize the quantile function (in

terms of parameters) as much as possible and keep the moments as low as possible because those yield

simpler equations. On the other hand, for many applications in actuarial science, risk management,

economics, business and engineering the most common models fall within the case k ≤ 4 (see Klugman

et al ., 2012, Appendix A; Kleiber and Kotz, 2003; and Johnson et al ., 1995). Moreover, a number of

those distributions belong to a general class of location-scale families or their variants, which implies

that k ≤ 2. In the latter instances, the procedure is indeed straightforward and, as will be shown in

Section 3.1, yields explicit formulas for MWM estimators. Finally, for parametric distributions that

cannot be fully transformed to a location-scale family or its variant (e.g., gamma, log-t, two-parameter

Pareto, GPD, GB2), we would choose h1(t) = h2(t) = t but a1 6= a2 and b1 6= b2. Such an approach

was implemented for MTM (see Brazauskas and Kleefeld, 2009, and Kleefeld and Brazauskas, 2012)

and could be utilized for MWM as well. �

2.2 Asymptotic Properties

For any fixed j, the sample Winsorized moment in equation (2.1) can be written as

Ŵjn =
1

n

n∑

i=1

Kj

(
i

n + 1

)
hj(Xi:n) + c

(1)
jn hj

(
X

⌊np
(1)
j

⌋+1:n

)
+ c

(2)
jn hj

(
X

⌈np
(2)
j

⌉:n

)
,

where ⌊·⌋ denotes “smallest integer part” and ⌈·⌉ denotes “greatest integer part”,

Kj(x) = 1
{

p
(1)
j ≤ x ≤ p

(2)
j

}
=





1, if p
(1)
j ≤ x ≤ p

(2)
j ;

0, otherwise;
(2.4)

with p
(1)
j = aj and p

(2)
j = 1− bj and where aj and bj represent left and right Winsorizing proportions,

respectively. Also, lim
n→∞

c
(1)
jn = c

(1)
j = p

(1)
j = aj and lim

n→∞
c
(2)
jn = c

(2)
j = 1 − p

(2)
j = bj .

For hj functions used in this paper, which will be continuously differentiable on (−∞,∞) or (0,∞),

it is fairly easy to verify the conditions of Corollary 3 in Chernoff et al . (1967). Hence, for any fixed
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j, 1 ≤ j ≤ k, the statistic Ŵjn is asymptotically normal with the mean

Wj =

∫ 1−bj

aj

hj

(
F−1(u)

)
du + c

(1)
j hj

(
F−1

(
p
(1)
j

))
+ c

(2)
j hj

(
F−1

(
p
(2)
j

))
(2.5)

and the variance

n−1σ2
j = n−1

∫ 1

0
α2

j (u) du ,

where

αj(u) =
1

1 − u

∫ 1

u
Kj(w)H

′

j(w)(1 − w) dw +

2∑

m=1

1
{

p
(m)
j ≥ u

}
c
(m)
j

(
1 − p

(m)
j

)
H

′

j

(
p
(m)
j

)

and Hj = hj ◦ F−1. Following Serfling (1980, p. 20), this asymptotic normality statement can be

written concisely as

Ŵjn ∼ AN

(
Wj,

σ2
j

n

)
.

Next, let us define matrix Σ :=
[
σ2

ij

]k
i,j=1

with the entries

σ2
ij =

∫ 1

0
αi(u)αj(u) du

=

∫ 1

0

{
1

1 − u

[ ∫ 1

u
Ki(w)H

′

i(w)(1 − w) dw +

2∑

m=1

1
{

p
(m)
i ≥ u

}
c
(m)
i

(
1 − p

(m)
i

)
H

′

i

(
p
(m)
i

)]

×
1

1 − u

[ ∫ 1

u
Kj(v)H

′

j(v)(1 − v) dv +
2∑

m=1

1
{

p
(m)
j ≥ u

}
c
(m)
j

(
1 − p

(m)
j

)
H

′

j

(
p
(m)
j

)]}
du

=: A
(1)
i,j + A

(2)
i,j + A

(3)
i,j + A

(4)
i,j , (2.6)

where

A
(1)
i,j =

∫ 1

0

1

(1 − u)2

[ ∫ 1

u
Ki(w)H

′

i (w)(1 − w) dw ×

∫ 1

u
Kj(v)H

′

j(v)(1 − v) dv

]
du ,

A
(2)
i,j =

∫ 1

0

1

(1 − u)2

[ ∫ 1

u
Ki(w)H

′

i (w)(1 − w) dw ×
2∑

m=1

1
{

p
(m)
j ≥ u

}
c
(m)
j

(
1 − p

(m)
j

)
H

′

j

(
p
(m)
j

) ]
du ,

A
(3)
i,j =

∫ 1

0

1

(1 − u)2

[ ∫ 1

u
Kj(v)H

′

j(v)(1 − v) dv ×
2∑

m=1

1
{

p
(m)
i ≥ u

}
c
(m)
i

(
1 − p

(m)
i

)
H

′

i

(
p
(m)
i

)]
du ,

A
(4)
i,j =

∫ 1

0

1

(1 − u)2

[ 2∑

m=1

1
{

p
(m)
i ≥ u

}
c
(m)
i

(
1 − p

(m)
i

)
H

′

i

(
p
(m)
i

)

×
2∑

m=1

1
{

p
(m)
j ≥ u

}
c
(m)
j

(
1 − p

(m)
j

)
H

′

j

(
p
(m)
j

) ]
du .
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Now, using the notation introduced above, in the following theorem we establish asymptotic normality

of sample Winsorized moments and the corresponding MWM estimators.

Theorem 2.1. Let X1:n ≤ · · · ≤ Xn:n denote the order statistics of a random sample X1, . . . ,Xn

from a continuous distribution F . Suppose functions hj , j = 1, . . . , k, are continuously differentiable

on (−∞,∞) or (0,∞). Then the following statements follow from Remark 9 in Chernoff et al. (1967):

(i)
(
Ŵ1n, . . . , Ŵkn

)
∼ AN

(
(W1, . . . ,Wk),

1

n
Σ

)
,

(ii)
(
θ̂1, . . . , θ̂k

)
∼ AN

(
(θ1, . . . , θk),

1

n
DΣD′

)
,

where D :=
[
dij

]k
i,j=1

is the Jacobian of the transformations g1, . . . , gk evaluated at
(
W1, . . . ,Wk

)
and

Σ is the covariance-variance matrix introduced in equation (2.6).

From equations (2.4) and (2.5), we see that the entries of Σ actually depend on the proportions

(ai, bi) and (aj , bj). In total, there are six possible arrangements of these proportions:

1. 0 ≤ ai ≤ 1 − bi < aj ≤ 1 − bj ≤ 1,

2. 0 ≤ ai ≤ aj < 1 − bi ≤ 1 − bj ≤ 1,

3. 0 ≤ ai ≤ aj < 1 − bj ≤ 1 − bi ≤ 1,

4. 0 ≤ aj ≤ 1 − bj < ai ≤ 1 − bi ≤ 1,

5. 0 ≤ aj ≤ ai < 1 − bj ≤ 1 − bi ≤ 1,

6. 0 ≤ aj ≤ ai < 1 − bi ≤ 1 − bj ≤ 1.

Each choice results in a different expression of σ2
ij . To get a better sense of how the terms A

(1)
i,j , . . . , A

(4)
i,j

look like, in Lemma A.1 (see Appendix) we provide their expressions for the case when the respective

lower and upper proportions of two sample Winsorized moments are identical, i.e., 0 ≤ a = ai = aj <

1 − bi = 1 − bj = 1 − b ≤ 1. In Section 3, we will use this selection of a’s and b’s and derive explicit

formulas of MWM estimators for location and scale parameters for several choices of F and hj .

Note 2.3. In the procedure (2.1)–(2.3), if one selects aj > 0 and bj > 0 (0 < aj +bj < 1), for j = 1, 2,

then the resulting estimators will be resistant against outliers, i.e., they will be globally robust with the
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lower and upper breakdown points given by lbp = min{a1, a2} and ubp = min{b1, b2}, respectively.

The robustness of such estimators against extremely small or large outliers comes from the fact that

in the computation of estimates the order statistics with the index less than n × lbp or higher than

n × (1 − ubp) are replaced with the ones having index n × lbp or n × (1 − ubp), respectively. For

more details on lbp and ubp for heavy-tailed asymmetric models, see Brazauskas and Serfling (2000)

and Serfling (2002). �

Note 2.4. The primary competitor of MWM is the method of trimmed moments (MTM) introduced

by Brazauskas et al . (2009). The MTM procedure is conceptually equivalent to (2.1)–(2.3), except that

trimmed moments are used instead of Winsorized moments. Its asymptotic properties were derived

using central limit theory for trimmed L-statistics (see Brazauskas et al ., 2007), but they also follow

directly from the results of this section. That is, in (2.4) we need to choose K̃j(x) = Kj(x)/(1−aj −bj)

with p
(1)
j = aj and p

(2)
j = 1− bj, and lim

n→∞
c
(1)
jn = c

(1)
j = 0 and lim

n→∞
c
(2)
jn = c

(2)
j = 0. Then, these choices

imply that in expression (2.6) we have A
(2)
i,j = A

(3)
i,j = A

(4)
i,j = 0, and Ã

(1)
i,j = A

(1)
i,j

/[
(1−ai−bi)(1−aj−bj)

]
.

Clearly, the statements of Theorem 2.1 remain valid for these new selections and hence MTMs. �

3 Examples

In this section, we derive MWM estimators of location and scale parameters for general (i.e., not

necessarily symmetric) location-scale families, and obtain the entries of their asymptotic covariance-

variance matrix. For specific numerical illustrations, we choose lognormal and log-logistic distributions

and evaluate the asymptotic relative efficiency (ARE) of the MWM estimators with respect to the

maximum likelihood estimator (MLE):

ARE
(
MWM, MLE

)
=

asymptotic variance of MLE estimator

asymptotic variance of MWM estimator
.

In the multi-parameter case, the ARE is defined by replacing the two variances with the corresponding

generalized variances, which are the determinants of the asymptotic covariance-variance matrices of

vector estimators, and then raising the ratio to the power 1/k. For more details on these issues, the

reader may be referred, for example, to Serfling (1980, Section 4.1).
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3.1 Location-Scale Families

Let X1, . . . ,Xn be i.i.d. random variables, each with the common distribution

Location-scale: F (x) = F0

(
x − µ

σ

)
, −∞ < x < ∞, (3.1)

where location −∞ < µ < ∞ and scale σ > 0 are unknown parameters, and F0 is the standard (i.e.,

with µ = 0 and σ = 1) parameter-free version of F . The corresponding quantile function is

F−1(u) = µ + σF−1
0 (u), 0 < u < 1.

Since F has two unknown parameters, we employ two Winsorized moments. Choosing h1(t) = t and

h2(t) = t2, and then following the procedure of Section 2.1, we have

Ŵ1n =
1

n


mn(1) · Xmn(1)+1:n +

n−m∗

n(1)∑

i=mn(1)+1

Xi:n + m∗
n(1) · Xn−m∗

n(1):n


 ,

Ŵ2n =
1

n


mn(2) · X2

mn(2)+1:n +

n−m∗

n(2)∑

i=mn(2)+1

X2
i:n + m∗

n(2) · X2
n−m∗

n(2):n


 ,

with mn(1)/n = mn(2)/n → a and m∗
n(1)/n = m∗

n(2)/n → b as n → ∞.

As our next step in deriving MWM estimators, we calculate the population Winsorized moments

using equation (2.2) and obtain

W1 := W1(µ, σ) = aF−1(a) +

∫ 1−b

a
F−1(u) du + b F−1(1 − b)

= a
[
µ + σ F−1

0 (a)
]
+

∫ 1−b

a

[
µ + σ F−1

0 (u)
]
du + b

[
µ + σ F−1

0 (1 − b)
]

= µ + σ

{
aF−1

0 (a) +

∫ 1−b

a
F−1

0 (u) du + b F−1
0 (1 − b)

}

= µ + σ c1,
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W2 := W2(µ, σ) = a
[
F−1(a)

]2
+

∫ 1−b

a
[F−1(u)]2 du + b

[
F−1(1 − b)

]2

= a
[
µ + σ F−1

0 (a)
]2

+

∫ 1−b

a

[
µ + σ F−1

0 (u)
]2

du + b
[
µ + σ F−1

0 (1 − b)
]2

= µ2 + 2µσ

{
aF−1

0 (a) +

∫ 1−b

a
F−1

0 (u) du + b F−1
0 (1 − b)

}

+ σ2

{
a
[
F−1

0 (a)
]2

+

∫ 1−b

a

[
F−1

0 (u)
]2

du + b
[
F−1

0 (1 − b)
]2
}

= µ2 + 2µσ c1 + σ2 c2,

where ck ≡ ck(F0, a, b) := a
[
F−1

0 (a)
]k

+
∫ 1−b
a

[
F−1

0 (u)
]k

du + b
[
F−1

0 (1− b)
]k

, k = 1, 2, do not depend

on any unknown parameters and can be easily evaluated using numerical methods.

Equating Ŵ1n to W1 and Ŵ2n to W2, and then solving the resulting system of equations with

respect to µ and σ, we obtain the MWM estimators





µ̂MWM = Ŵ1n − c1 σ̂MWM =: g1

(
Ŵ1n, Ŵ2n

)
;

σ̂MWM =

√(
Ŵ2n − Ŵ 2

1n

)
·
(
c2 − c2

1

)−1
=: g2

(
Ŵ1n, Ŵ2n

)
.

(3.2)

The entries of the covariance-variance matrix Σ are calculated using the formulas of Section 2.2. After

lengthy but straightforward derivations, we can obtain quite simple expressions for σ2
i,j:

σ2
11 = σ2C1,

σ2
12 = σ2

21 = 2µσ2C1 + 2σ3C2,

σ2
22 = 4µ2σ2C1 + 8µσ3C2 + 4σ4C3,

where the constants Ck ≡ Ck(F0, a, b) can be written in terms of the earlier introduced constants ck

and do not depend on any unknown parameters; their expressions are provided in the appendix.
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For calculating the matrix D, we differentiate the functions gi in (3.2):

d11 =
∂g1

∂Ŵ1n

∣∣∣∣
(W1,W2)

= 1 − c1
∂g2

∂Ŵ1n

∣∣∣∣
(W1,W2)

=
c1µ + c2σ

σ(c2 − c2
1)

,

d12 =
∂g1

∂Ŵ2n

∣∣∣∣
(W1,W2)

= −c1
∂g2

∂Ŵ2n

∣∣∣∣
(W1,W2)

=
−0.5c1

σ(c2 − c2
1)

,

d21 =
∂g2

∂Ŵ1n

∣∣∣∣
(W1,W2)

=
−Ŵ1n√

(c2 − c2
1)(Ŵ2n − Ŵ 2

1n)

∣∣∣∣
(W1,W2)

=
−µ − c1σ

σ(c2 − c2
1)

,

d22 =
∂g2

∂Ŵ2n

∣∣∣∣
(W1,W2)

=
0.5√

(c2 − c2
1)(Ŵ2n − Ŵ 2

1n)

∣∣∣∣
(W1,W2)

=
0.5

σ(c2 − c2
1)

.

Consequently,

DΣD′ =

[
d11 d12

d21 d22

][
σ2

11 σ2
12

σ2
21 σ2

22

][
d11 d21

d12 d22

]

=
σ2

(c2 − c2
1)

2

[
C1c

2
2 − 2c1c2C2 + c2

1C3 −C1c1c2 + c2C2 + c2
1C2 − c1C3

−C1c1c2 + c2C2 + c2
1C2 − c1C3 C1c

2
1 − 2c1C2 + C3

]
. (3.3)

We summarize the above findings as a theorem stated below.

Theorem 3.1. Suppose X1, . . . ,Xn are i.i.d. random variables from a continuous location-scale

family with cdf F defined by equation (3.1). Let µ̂MWM and σ̂MWM denote the MWM estimators of µ

and σ, respectively. Then

(
µ̂MWM, σ̂MWM

)
∼ AN

(
(µ, σ),

σ2

n
S

)
with S = σ−2DΣD′ ,

where the matrix DΣD′ is specified by equation (3.3).

Note that the matrix S does not depend on any unknown parameters and can be expressed in terms

of F0, a and b, which are specified by the researcher.

To get a better sense of how broad the results of Section 3.1 are and how versatile the MWM

approach is, Table 3.1 lists selected location-scale distributions and their variants used for modeling

insurance loss severity, along with key inputs for equations (3.2).
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Table 3.1. Distributional characteristics, functions hk(t) and constants ck(F0, a, b)

in equations (3.2) for selected location-scale distributions and related loss models.

Distribution Standard Quantile Functions a = b = 0.05 a = b = 0.10 a = 0.25, b = 0.01

Function, F−1
0 h1(t) h2(t) c1 c2 c1 c2 c1 c2

Location-scale distributions
`
F−1(u) = µ + σF−1

0 (u)
´

Exp (0, σ) − log(1 − u) t – 0.9513 – 0.9054 – 1.0277 –

N (µ, σ) Φ−1(u) t t2 0 0.8313 0 0.6787 0.1458 0.6315

C (µ, σ) tan (π(u − 0.5)) t t2 0 7.1058 0 3.0537 1.0594 20.0825

L (µ, σ) − log(1/u − 1) t t2 0 2.4779 0 1.9312 0.2776 1.9272

G (µ, σ) − log(− log(u)) t t2 0.5397 1.5408 0.5070 1.2369 0.6859 1.7009

Log-location-scale distributions
`
F−1(u) = exp

˘
µ + σF−1

0 (u)
¯´

PaI (log θ, 1/α) − log(1 − u) log t – 0.9513 – 0.9054 – 1.0277 –

logN (µ, σ) Φ−1(u) log t log2 t 0 0.8313 0 0.6787 0.1458 0.6315

logC (µ, σ) tan (π(u − 0.5)) log t log2 t 0 7.1058 0 3.0537 1.0594 20.0825

logL (µ, σ) − log(1/u − 1) log t log2 t 0 2.4779 0 1.9312 0.2776 1.9272

W (log θ, 1/τ ) log(− log(1 − u)) log t log2 t -0.5397 1.5408 -0.5070 1.2369 -0.3108 0.7480

iW (log θ, 1/τ ) − log(− log(u)) log t log2 t 0.5397 1.5408 0.5070 1.2369 0.6859 1.7009

Folded
`
F−1(u) = σF−1

0 ((u + 1)/2)
´

and log-folded distributions
`
F−1(u) = exp

˘
σF−1

0 ((u + 1)/2)
¯´

FN (σ) Φ−1((u + 1)/2) t – 0.7806 – 0.7624 – 0.8349 –

FC (σ) tan (π(u/2)) t – 2.2576 – 1.8203 – 3.3340 –

logFN (σ) Φ−1((u + 1)/2) log t – 0.7806 – 0.7624 – 0.8349 –

logFC (σ) tan (π(u/2)) log t – 2.2576 – 1.8203 – 3.3340 –

Abbreviations: Exp = exponential; N = normal; C = Cauchy; L = logistic; G = Gumbel; W = Weibull;

PaI = single-parameter Pareto (with θ known); FN = folded normal; FC = folded Cauchy; iW = inverse Weibull.

Note 3.1. Table 3.1 provides only a fraction of location-scale families and their transformations that

are available in the literature. More examples can be found in Johnson et al . (1995) and Kleiber

and Kotz (2003). Also, for more examples of folded distributions that have been used for modeling

insurance data, see Nadarajah and Bakar (2015). In all these cases, the formulas for (µ̂MWM, σ̂MWM)

are given by (3.2); the only adjustment one has to make is to recompute constants ck. �

3.2 Lognormal Model

Let X1, . . . ,Xn be i.i.d. random variables, each with the same lognormal distribution

Lognormal (µ, σ) : F (x) = Φ

(
log(x) − µ

σ

)
, x > 0, (3.4)

where log-location −∞ < µ < ∞ and log-scale σ > 0 are unknown parameters with Φ denoting the

standard normal cdf. Since the logarithmic transformation makes this distribution normal, which is a
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member of the location-scale family, results of Section 3.1 apply with two modifications: h1(t) = log(t)

and h2(t) = log2(t). Hence, the MWM estimators of µ and σ have the same closed form expression as

estimators in (3.2), except that the sample Winsorized moments are now defined as

Ŵ1n =
1

n


mn(1) · log(Xmn(1)+1:n) +

n−m∗

n(1)∑

i=mn(1)+1

log(Xi:n) + m∗
n(1) · log(Xn−m∗

n(1):n)


 ,

Ŵ2n =
1

n


mn(2) · log2(Xmn(2)+1:n) +

n−m∗

n(2)∑

i=mn(2)+1

log2(Xi:n) + m∗
n(2) · log2(Xn−m∗

n(2):n)


 ,

with mn(1)/n = mn(2)/n → a and m∗
n(1)/n = m∗

n(2)/n → b as n → ∞. Note also that the above

choice of functions h1 and h2 ensures that the formulas of c1 and c2 do not change when one computes

the corresponding MWM estimators for location and scale parameters of the normal distribution (for

which h1(t) = t and h2(t) = t2). That is,

ck = ck(Φ, a, b) = a
[
Φ−1(a)

]k
+

∫ 1−b

a

[
Φ−1(u)

]k
du + b

[
Φ−1(1 − b)

]k
, k = 1, 2.

Let us summarize this discussion as a corollary.

Corollary 3.1. Suppose X1, . . . ,Xn are i.i.d. random variables with cdf F defined by equation (3.4).

Let µ̂MWM and σ̂MWM denote the MWM estimators of µ and σ, respectively. Then it follows from

Theorem 3.1 that

(
µ̂MWM, σ̂MWM

)
∼ AN

(
(µ, σ),

σ2

n
S

)
with S = σ−2DΣD′ ,

where the matrix DΣD′ is specified by equation (3.3), but now with the standard normal cdf Φ instead

of the therein used standardized location-scale distribution.

We next examine how much efficiency is lost due to using
(
µ̂MWM, σ̂MWM

)
instead of

(
µ̂MLE, σ̂MLE

)
.

The following note provides key facts about the lognormal distribution MLEs.

Note 3.2. The MLE of lognormal distribution parameters has explicit form





µ̂MLE = n−1
∑n

i=1 log(Xi),

σ̂MLE =
√

n−1
∑n

i=1 (log(Xi) − µ̂MLE)2.
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It is well known (see, e.g., Serfling, 2002) that

(
µ̂MLE, σ̂MLE

)
∼ AN

(
(µ, σ),

σ2

n
S0

)
with S0 =

[
1 0

0 1/2

]
.

Hence, it follows that

ARE
(
(µ̂MWM, σ̂MWM), (µ̂MLE, σ̂MLE)

)
=
(
det(S0)/det(S)

)1/2
=
(
2 det(S)

)−1/2
.

In addition, when mn(1) = m∗
n(1) = mn(2) = m∗

n(2) = 0, then the MWM estimators (3.2) become

(µ̂MLE, σ̂MLE). Also note that since S → S0 (element-wise convergence) when a = b → 0, then the

MLE asymptotic distribution follows from Corollary 3.1. �

Numerical values of the AREs are provided in Table 3.2 for chosen proportions a and b. Since

the logarithmic transformation of the lognormal random variable makes the variable normal, which is

symmetric, we can see similar performances of the MWM estimators when similar Winsorizing schemes

are used. For example, the AREs are identical for the MWM estimators with reversed Winsorizing

proportions: (a, b) = (0.1, 0.25) has ARE = 0.701 and (a, b) = (0.25, 0.1) also has ARE = 0.701.

Further, the Winsorizing schemes that focus exclusively on data in the center (i.e., when a = b) are

known to be efficient for estimating the location (center) but not necessarily for estimating the scale

(see, e.g., Huber and Ronchetti, 2009). This can be explained by the fact that σ, unlike µ, is a

parameter that measures data spread – thus spacings between a few observations in the middle are

not necessarily representative of the dispersion for the entire sample. For the joint estimation of µ and

σ, we observe that inefficiency of σ estimators dominates the overall ARE: a = b = 0.05 has ARE =

0.914 (good); a = b = 0.25 has ARE = 0.571 (moderate); a = b = 0.49 has ARE = 0.081 (very poor).

Finally, it is also of interest to compare the MWM approach with the MTM. Thus Table 3.2 has a

second part that contains ARE entries for the MTM estimators, which are taken from Brazauskas et al .

(2009). We clearly see that MWM uniformly outperforms MTM in terms of ARE, while still offering

identical breakdown points (degrees of resistance against lower and upper outliers) and computational

efficiency. The only point of overlap between the two methods is when a = b = 0, where they both

become the MLE and thus have ARE = 1.
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Table 3.2. Lognormal model: ARE((µ̂MWM, σ̂MWM),
(
µ̂MLE, σ̂MLE)) and

ARE((µ̂MTM, σ̂MTM),
(
µ̂MLE, σ̂MLE)) for selected values of a and b,

with the boxed numbers highlighting the case a = b.

Method of Proportion Proportion b

Estimation a 0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

MWM 0 1 0.957 0.916 0.874 0.791 0.581 0.379 0.214

0.05 0.957 0.914 0.872 0.830 0.745 0.534 0.330 0.163

0.10 0.916 0.872 0.829 0.786 0.701 0.489 0.284 0.109

0.15 0.874 0.830 0.786 0.744 0.658 0.444 0.236 –

0.25 0.791 0.745 0.701 0.658 0.571 0.354 0.126 –

0.49 0.581 0.534 0.489 0.444 0.354 0.081 – –

0.70 0.379 0.330 0.284 0.236 0.126 – – –

0.85 0.214 0.163 0.109 – – – – –

MTM 0 1 0.932 0.874 0.821 0.722 0.502 0.312 0.169

0.05 0.932 0.872 0.820 0.771 0.678 0.470 0.286 0.142

0.10 0.874 0.820 0.769 0.722 0.633 0.430 0.248 0.097

0.15 0.821 0.771 0.722 0.676 0.590 0.390 0.208 –

0.25 0.722 0.678 0.633 0.590 0.507 0.312 0.113 –

0.49 0.502 0.470 0.430 0.390 0.312 0.074 – –

0.70 0.312 0.286 0.248 0.208 0.113 – – –

0.85 0.169 0.142 0.097 – – – – –

3.3 Log-logistic Model

Let X1, . . . ,Xn be i.i.d. random variables, each with the common log-logistic distribution

Log-logistic (µ, σ) : F (x) = G0

(
log(x) − µ

σ

)
, x > 0, (3.5)

where −∞ < µ < ∞ and σ > 0 are unknown parameters, and

G0(y) =
1

1 + exp {−y}
, −∞ < y < ∞, (3.6)

denotes the standard logistic cdf. The quantile function corresponding to (3.5) is given by

F−1(u) = exp
{
µ + σG−1

0 (u)
}

, 0 < u < 1,
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where G−1
0 (u) = − log(1/u−1) is the quantile function of the standard logistic distribution. Applying

all the steps of Section 3.1 with h1(t) = log(t) and h2(t) = log2(t), the MWM estimators of µ and σ

are obtained in the same form as in (3.2). Note that the sample Winsorized moments Ŵ1n and Ŵ2n

are computed as in Section 3.2.

We next examine how much efficiency is lost due to using
(
µ̂MWM, σ̂MWM

)
instead of

(
µ̂MLE, σ̂MLE

)
.

The following note provides key facts about the log-logistic distribution MLEs.

Note 3.3. The log-likelihood of the log-logistic distribution is given by

logL
(
µ, σ |X1, . . . ,Xn

)
=

n∑

i=1

log

(
g0

(
(log(Xi) − µ)/σ

)

σXi

)

= −
n∑

i=1

log(Xi) − µ

σ
− n log(σ) −

n∑

i=1

log(Xi) − 2

n∑

i=1

log

(
1 + exp

{
−

log(Xi) − µ

σ

})
,

where g0 denotes the density function corresponding to (3.6). One can clearly see from this log-

likelihood expression that there is no closed-form solution for
(
µ̂MLE, σ̂MLE

)
; thus it has to be found

using iterative numerical procedures. Further, it is known (see, e.g., deCani and Stine, 1986) that

(
µ̂MLE, σ̂MLE

)
∼ AN

(
(µ, σ),

σ2

n
S0

)
with S0 =

[
3 0

0 9/(3 + π2)

]
.

Hence, it follows that

ARE
(
(µ̂MWM, σ̂MWM), (µ̂MLE, σ̂MLE)

)
=
(
det(S0)/det(S)

)1/2
=

√
27

(3 + π2)det(S)
.

Finally, unlike the lognormal model case, the MLE of log-logistic distribution parameters is not a

special or limiting case of the MWM estimators. �

In Table 3.3 we provide numerical values of the AREs for selected proportions a and b. After the

logarithmic transformation, the log-logistic model becomes logistic which is symmetric, and thus we

again see similar performance of the MWM estimators when similar Winsorizing schemes are used.

For example, the AREs are identical with reversed Winsorizing proportions: (a, b) = (0.05, 0.25) has

ARE = 0.801 and (a, b) = (0.25, 0.05) also has ARE = 0.801. Further, when a and b increase, we

observe a gradual decrease in efficiency, this pattern was also observed in Table 3.2. However, unlike

the lognormal case, the ARE reaches its maximum at a = b = 0.05 (or in some small neighborhood of
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it), not at a = b = 0. Finally, comparison with the MTM estimators, shows that at the peak MTM

reaches a higher ARE value than MWM, but that advantage is valid only for nearby located a and

b values. Once we look outside the square {(a, b) : 0 ≤ a ≤ 0.10, 0 ≤ b ≤ 0.10}, MWM uniformly

improves MTM according to the ARE criterion.

Table 3.3. Log-logistic model: ARE((µ̂MWM, σ̂MWM),
(
µ̂MLE, σ̂MLE)) and

ARE((µ̂MTM, σ̂MTM),
(
µ̂MLE, σ̂MLE)) for selected values of a and b,

with the boxed numbers highlighting the case a = b.

Method of Proportion Proportion b

Estimation a 0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

MWM 0 0.893 0.896 0.873 0.843 0.774 0.571 0.358 0.187

0.05 0.896 0.913 0.895 0.868 0.801 0.589 0.359 0.169

0.10 0.873 0.895 0.878 0.852 0.783 0.564 0.323 0.118

0.15 0.843 0.868 0.852 0.825 0.754 0.528 0.277 –

0.25 0.774 0.801 0.783 0.754 0.680 0.439 0.153 –

0.49 0.571 0.589 0.564 0.528 0.439 0.104 – –

0.70 0.358 0.359 0.323 0.277 0.153 – – –

0.85 0.187 0.169 0.118 – – – – –

MTM 0 0.893 0.884 0.834 0.782 0.681 0.449 0.258 0.127

0.05 0.884 0.936 0.903 0.861 0.768 0.529 0.311 0.146

0.10 0.834 0.903 0.874 0.835 0.745 0.507 0.283 0.106

0.15 0.782 0.861 0.835 0.797 0.709 0.473 0.245 –

0.25 0.681 0.768 0.745 0.709 0.625 0.391 0.138 –

0.49 0.449 0.529 0.507 0.473 0.391 0.095 – –

0.70 0.258 0.311 0.283 0.245 0.138 – – –

0.85 0.127 0.146 0.106 – – – – –

4 Simulation Study

In this section, we supplement our theoretical results concerning the MWM and MTM estimators with

their finite-sample performance evaluations. The objective is to compare the two methods and see

how large the sample size n should be for the estimators to achieve (asymptotic) unbiasedness and

for their finite-sample relative efficiency (RE) to reach the corresponding ARE level. The univariate
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and multivariate RE definitions are similar to those of the ARE except that we now want to account

for possible bias, which we do by replacing all entries in the covariance-variance matrix with the

corresponding mean-squared errors (MSE). That is,

RE
(
Q, MLE

)
=

asymptotic generalized variance of MLE estimator

small-sample generalized MSE of Q estimator
,

where Q represents MWM, MTM, or MLE, the numerator is defined as in Section 3, and the denom-

inator is the square root of the determinant of




E
[
(θ̂1 − θ1)

2
]

E
[
(θ̂1 − θ1)(θ̂2 − θ2)

]

E
[
(θ̂1 − θ1)(θ̂2 − θ2)

]
E
[
(θ̂2 − θ2)

2
]


 .

From a specified distribution F (i.e., lognormal or log-logistic), we generate 100,000 samples of

a specified length n using simulations. For each sample we estimate the parameters of F using

various estimators (MLE, MWM, and MTM). This process results in 100,000 copies of estimates for

each estimator, which are then used to compute the estimator’s RE and its standard error. The

standardized MEAN that we report is defined as the average of 100,000 estimates divided by the true

value of the parameter that we are estimating. The standard error is standardized in a similar manner.

4.1 Lognormal Model

We start the study with the lognormal distribution LN(µ = 5, σ = 1) using the following parameters:

• Sample size: n = 100, 250, 500.

• Estimators of µ, σ:

– MLE (corresponds to MWM or MTM with a = b = 0).

– MWM and MTM with: a = b = 0.05; a = b = 0.10; a = b = 0.25;

a = b = 0.49; a = 0.10 and b = 0.70; a = 0.25 and b = 0.

We summarize the simulation results in Tables 4.1 and 4.2, where the first table represents analysis

of the bias and the second one that of the relative efficiency. In both tables, the estimator with

a = b = 0 corresponds to the MLE.
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Table 4.1. Lognormal model, LN(µ = 5, σ = 1): Mean values of µ̂/µ and σ̂/σ for

selected n and several MWM (denoted as ‘W’) and MTM (denoted as ‘T’) estimators.

For a = b = 0, MWM and MTM correspond to the MLE.

Proportion n = 100 n = 250 n = 500 n → ∞
a b bµ/µ bσ/σ bµ/µ bσ/σ bµ/µ bσ/σ bµ/µ bσ/σ

w t w t w t w t w t w t w t w t

0 0 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

0.05 0.05 1.00 1.00 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

0.10 0.10 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

0.25 0.25 1.00 1.00 0.98 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1 1 1 1

0.49 0.49 1.00 1.00 0.51 0.87 1.00 1.00 1.00 1.24 1.00 1.00 0.90 1.03 1 1 1 1

0.10 0.70 0.98 1.01 0.96 1.01 0.99 1.00 0.98 1.01 1.00 1.00 0.99 1.00 1 1 1 1

0.25 0 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

Note: The entries for n < ∞ are mean values based on 100,000 samples. Their standard errors are ≤ 0.001,

except for the estimators with a = b = 0.49, for which the standard errors are ≤ 0.003.

It is easy to see from Table 4.1 that all MWM and MTM estimators successfully estimate the

log-location parameter µ. Indeed, they practically become unbiased for samples of size n ≥ 100.

Estimation of σ, however, reveals a different story. Although most estimators have less than 1%

relative bias for n ≥ 100, the median-type estimators (i.e., when a = b = 0.49) perform erratically:

they have the respective relative bias of −49% (MWM) and −13% (MTM) for n = 100, 0% and

+24% for n = 250, −10% and +3% for n = 500. Further, if we look at Table 4.2, we see that

the simulated RE’s of these estimators for n > 100 (which are equal to 0.08 and 0.07) are almost

identical to the corresponding ARE’s (which are equal to 0.081 and 0.074). Asymptotically all the

estimators under investigation are unbiased, but in finite size samples we obviously see that bias is

possible. Nonetheless, the relatively large biases we observe for fixed n have little effect on the RE’s

as they converge to the corresponding ARE’s for n > 100. Finally, the large bias and variance of the

median-type estimators can be explained by the fact that too few of the original observations are used

to estimate σ. This parameter, unlike µ, reflects the spread of data and in finite size samples cannot

be accurately estimated using only a few spacings between observations in the middle.
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Table 4.2. Lognormal model, LN(µ = 5, σ = 1): Finite-sample efficiencies of MWMs and

MTMs relative to MLEs. The ratios W/T represent efficiency of MWM relative MTM.

For a = b = 0, MWM and MTM correspond to the MLE.

Proportion n = 100 n = 250 n = 500 n → ∞
a b mwm mtm w/t mwm mtm w/t mwm mtm w/t mwm mtm w/t

0 0 1.00 1.00 1 1.00 1.00 1 1.00 1.00 1 1 1 1

0.05 0.05 0.91 0.87 1.05 0.91 0.87 1.05 0.91 0.87 1.05 0.914 0.872 1.05

0.10 0.10 0.82 0.77 1.06 0.82 0.77 1.06 0.83 0.77 1.08 0.829 0.769 1.08

0.25 0.25 0.57 0.50 1.14 0.57 0.50 1.14 0.57 0.51 1.12 0.571 0.507 1.13

0.49 0.49 0.08 0.06 1.33 0.08 0.07 1.14 0.08 0.07 1.14 0.081 0.074 1.09

0.10 0.70 0.28 0.25 1.12 0.28 0.25 1.12 0.28 0.25 1.12 0.284 0.248 1.15

0.25 0 0.79 0.72 1.10 0.79 0.72 1.10 0.79 0.72 1.10 0.791 0.722 1.10

Note: The entries for n < ∞ are mean values based on 100,000 samples.
Their standard errors are ≤ 0.003.

4.2 Log-logistic Model

We continue our simulation study with the log-logistic distribution LL(µ = 5, σ = 1) using the following

parameters:

• Sample size: n = 100, 250, 500.

• Estimators of µ, σ:

– MLE.

– MWM and MTM with: a = b = 0; a = b = 0.05; a = b = 0.10; a = b = 0.25;

a = b = 0.49; a = 0.10 and b = 0.70; a = 0.25 and b = 0.

In this case, the MLE estimates have to be found numerically (see Note 3.3). For that we will use

the Newton algorithm, with the tolerance limit for the error being 10−5. To guarantee the convergence

of Newton’s iterations, we choose
(
µ̂start, σ̂start

)
= (4.9, 1.1) as initial values, which is sufficiently close

to the root. We summarize the simulation results in Tables 4.3 and 4.4, where the first table represents

analysis of the bias and the second one that of the relative efficiency.
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Table 4.3. Log-logistic model, LL(µ = 5, σ = 1): Mean values of µ̂/µ and σ̂/σ for

selected n, MLE, MWM (denoted as ‘W’) and MTM (denoted as ‘T’) estimators.

Proportion n = 100 n = 250 n = 500 n → ∞
a b bµ/µ bσ/σ bµ/µ bσ/σ bµ/µ bσ/σ bµ/µ bσ/σ

w t w t w t w t w t w t w t w t

0 0 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

0.05 0.05 1.00 1.00 0.99 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1 1 1 1

0.10 0.10 1.00 1.00 0.99 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

0.25 0.25 1.00 1.00 0.99 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1 1 1 1

0.49 0.49 1.00 1.00 0.51 0.87 1.00 1.00 1.00 1.24 1.00 1.00 0.90 1.03 1 1 1 1

0.10 0.70 0.98 1.01 0.96 1.02 0.99 1.00 0.98 1.01 1.00 1.00 0.99 1.00 1 1 1 1

0.25 0 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1 1

mle 1.00 0.99 1.00 1.00 1.00 1.00 1 1

Note: The entries for n < ∞ are mean values based on 100,000 samples. Their standard errors are ≤ 0.001,

except for the estimators with a = b = 0.49, for which the standard errors are ≤ 0.002.

Similar to the case of lognormal model, we observe in Table 4.3 that all estimators of µ and σ

become practically unbiased for n ≥ 100, with the exception of the a = b = 0.49 estimators for σ,

which are again volatile. Fortunately, the relatively large bias in estimating σ has no influence on

those estimators’ RE (see Table 4.4) as it converges to its corresponding ARE level for n ≥ 100. Note

that finite-sample performance of all other estimators, including the MLE, is reliable and predictable.

Table 4.4. Log-logistic model, LL(µ = 5, σ = 1): Finite-sample efficiencies of MLE,

MWMs and MTMs relative to the asymptotic variance of MLE.

The ratios W/T represent efficiency of MWM relative MTM.

Proportion n = 100 n = 250 n = 500 n → ∞
a b mwm mtm w/t mwm mtm w/t mwm mtm w/t mwm mtm w/t

0 0 0.90 0.90 1 0.90 0.90 1 0.89 0.89 1 0.893 0.893 1

0.05 0.05 0.91 0.93 0.98 0.91 0.93 0.98 0.91 0.93 0.98 0.913 0.936 0.98

0.10 0.10 0.87 0.87 1.00 0.88 0.87 1.01 0.88 0.87 1.01 0.878 0.874 1.00

0.25 0.25 0.68 0.62 1.10 0.68 0.62 1.10 0.68 0.62 1.10 0.680 0.625 1.09

0.49 0.49 0.10 0.08 1.25 0.10 0.08 1.25 0.10 0.09 1.11 0.104 0.095 1.09

0.10 0.70 0.32 0.28 1.14 0.32 0.28 1.14 0.32 0.28 1.14 0.323 0.283 1.14

0.25 0 0.78 0.70 1.11 0.78 0.69 1.13 0.78 0.68 1.15 0.774 0.681 1.14

mle 1.00 1.00 1.00 1

Note: The entries for n < ∞ are mean values based on 100,000 samples.
Their standard errors are ≤ 0.004.
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4.3 Risk Measurement

To demonstrate what trade-offs the use of robust estimators entails in estimating distribution tails, in

this section we perform an additional simulation study. Here, we parametrically estimate the 95% and

99% value-at-risk, VaR, measures of the lognormal model LN(µ = 5, σ = 1) using the MLE, MWM

and MTM estimators. For the lognormal model, the VaR estimates are computed as follows:

V̂aR(α) = F̂−1(α) = exp{µ̂ + σ̂Φ−1(α)} with α = 0.95, 0.99.

For the choice of parameters µ = 5 and σ = 1, the true values of these risk measures are:

VaR(0.95) = exp{5 + Φ−1(0.95)} = 768.93 and VaR(0.99) = exp{5 + Φ−1(0.99)} = 1519.30.

In Table 4.5, we provide the bias, standard deviation, and root-MSE of the parametric VaR estimators.

We clearly see that, aside from the cases of extreme trimming/Winsorizing (e.g., a = b = 0.49 and

a = 0.10, b = 0.70), the robust estimators perform quite well. For a fixed choice of a and b, MWM

outperforms MTM, as was predicted by those estimators’ large- and small-sample properties. The

MLE (i.e., MWM and MTM with a = b = 0) performs best because it is an optimal method when

data exactly follow the assumed lognormal model, which is the case in this study. However, if that

assumption were violated, the MLE’s performance would be degraded, and in those situations, robust

procedures would be indispensable.

Table 4.5. Lognormal model, LN(µ = 5, σ = 1): Bias, standard deviation and root-MSE

of the 95% and 99% value-at-risk measures estimated using MLE, MWMs, MTMs.

For a = b = 0, MWM and MTM correspond to the MLE.

Proportion VaR(0.95) VaR(0.99)

a b Bias Std. Deviation
√

MSE Bias Std. Deviation
√

MSE

mwm mtm mwm mtm mwm mtm mwm mtm mwm mtm mwm mtm

0 0 -0.9 -0.9 118.4 118.4 118.4 118.4 0.6 0.6 295.6 295.6 295.6 295.6

0.05 0.05 -0.8 12.4 124.9 131.0 124.9 131.6 1.9 39.6 315.9 335.9 315.9 338.2

0.10 0.10 -1.0 15.3 132.7 142.5 132.7 143.3 2.5 49.6 340.2 372.2 340.2 375.5

0.25 0.25 -2.8 28.8 170.7 195.4 170.7 197.5 5.1 98.8 457.9 542.4 457.9 551.3

0.49 0.49 -46.7 44k 8k 5m 8k 5m 3k 18m 0.3m 3b 0.3m 3b

0.10 0.70 10.1 171.5 431.8 645.3 432.0 667.7 94.2 567.8 1224 2045 1228 2122

0.25 0 -1.3 0.5 125.3 127.8 125.3 127.8 0.1 9.0 325.2 338.3 325.2 338.5

Note: The true values of the risk measures are: VaR(0.95) = 768.93, VaR(0.99) = 1519.30. The results are

based on 100,000 simulated samples of size 100. For a = b = 0.49, k stands for ×103, m for ×106, b for ×109.
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5 Real Data Illustrations

In this section, we apply the MWM, MTM and MLE to analyze the normalized damage amounts from

the 30 most damaging hurricanes in the United States from 1925 to 1995, as recorded by Pielke and

Landsea (1998). The damages were normalized to 1995 dollars by inflation, personal property increases,

and coastal county population changes. Our goal is to investigate what effect initial assumptions and

parameter estimation methods have on model fit (Section 5.1) and how that impacts insurance contract

pricing (Section 5.2).

5.1 Model Fitting

As can be seen from Figure 5.1, the shape of the histogram of the top 30 damaging hurricanes is

similar to that of many insurance loss distributions—it is right-skewed and heavy-tailed. That is,

relatively small losses are most frequent, but as the size of loss increases their frequency declines; and

there is also one outlier (∼ $72 billion). A histogram of log-transformed damages (see right-hand panel

of Figure 5.1) shows that a roughly bell-shaped density curve will provide a satisfactory, though not

perfect, overall fit to the data. Therefore, we will fit lognormal and log-logistic models to this data

set using MLE, MWM, and MTM with several choices of proportions a = a1 = a2 and b = b1 = b2.

0 20 40 60 80
0

3

6

9

12

Damage

F
re

q
u

e
n

c
y

21 22 23 24 25 26
0

2

4

6

8

LOG ( Damage )

F
re

q
u

e
n

c
y

Figure 5.1. The histograms of the top 30 damaging hurricanes.

Left-hand panel: Original data (in billions). Right-hand panel: Log-transformed data.
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Figure 5.2. Model fits to the original (left-hand panels) and modified (right-hand panels)

hurricane data. Top row: Lognormal models. Bottom row: Log-logistic models. The lines represent

the relationship between standard quantiles and the log-quantiles of the estimated distribution.

The labels for the lines show which method was used to estimate model parameters.

The empirical quantiles are marked by ‘•’.

The initial fits are illustrated in the left-hand panels of Figure 5.2, where W1 and T1 denote

the MWM and MTM estimators, respectively, with a = b = 14/30 (highly robust but inefficient

estimators), and W2 and T2 correspond to the case a = b = 1/30 (minimally robust but highly
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efficient estimators). The parameter estimates and goodness-of-fit measurements appear in Table 5.1,

where the fit is measured using the mean absolute deviation between the log-parametrically-fitted and

log-empirically-evaluated quantiles,

(1/30)

30∑

j=1

∣∣ log F̂−1((j − 0.5)/30) − log Xj:30

∣∣. (5.1)

(In Table 5.2, the same measure is used, except that it is restricted to the contract specifications of

the example in Section 5.2.) In addition, to see the benefits of robust fitting, we have slightly modified

the original data set by replacing the largest observation 72.303 × 109 with 723.03 × 109 and then

re-computed the estimates and goodness-of-fit measures. The outcomes of this exercise are illustrated

in the right-hand panels of Figure 5.2 and Table 5.1.

Table 5.1. Parameter estimates and goodness-of-fit measurements (fit) of

the lognormal and log-logistic models for the original and modified hurricane data.

Estimator Proportion Lognormal Model Log-logistic Model

a b µ̂ σ̂ fit µ̂ σ̂ fit

MLE – – 22.800 0.834 0.104 22.775 0.477 0.104

MLE (modified) – – 22.877 1.098 0.293 22.777 0.531 0.185

W1 14/30 14/30 22.760 0.988 0.140 22.760 0.619 0.191

W1 (modified) 14/30 14/30 22.760 0.988 0.216 22.760 0.619 0.249

T1 14/30 14/30 22.760 1.673 0.660 22.760 1.048 0.767

T1 (modified) 14/30 14/30 22.760 1.673 0.649 22.760 1.048 0.709

W2 1/30 1/30 22.776 0.820 0.104 22.776 0.470 0.106

W2 (modified) 1/30 1/30 22.776 0.820 0.181 22.776 0.470 0.183

T2 1/30 1/30 22.766 0.852 0.101 22.766 0.497 0.101

T2 (modified) 1/30 1/30 22.766 0.852 0.178 22.766 0.497 0.178

Several conclusions emerge from this analysis. First, the robust MWM and MTM estimates are not

affected at all by the data modification whereas the MLE fit is substantially different from the original

one at the lognormal model and changes slightly at the log-logistic model. Second, as mentioned in

Note 3.2, the log-logistic MLE has to be found numerically, and when applied to the hurricane data,

the Newton algorithm fails to converge. Hence, to guarantee convergence of the iteration, we used

robust estimates of µ and σ as starting values for the algorithm, which inadvertantly improved stability
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of the MLE procedure at the log-logistic model. Results at the lognormal model are more indicative

of the non-robust nature of MLE. Third, as was noticed in Section 3.2, highly robust MWM and

MTM estimators (a = b = 14/30) produce nearly identical estimates of µ at both models, but their

inefficiency for estimating σ makes its estimates volatile. This divergence vanishes when we choose

more efficient MWM and MTM estimators (a = b = 1/30). Fourth, in terms of goodness-of-fit, major

differences between MWM and MTM emerge only for a = b = 14/30, all other cases produce nearly

identical model fits, which are not much different from those of MLE (for original data). We interpret

this occurrence as a coincidence that was observed for one data set.

5.2 Actuarial Premiums

Let us consider estimation of the loss severity component of the pure premium for an insurance benefit

(Z) that equals to the amount by which a hurricane’s damage (X) exceeds 5 billion dollars with a

maximum benefit of 20 billion dollars. That is,

Z =





0, if X ≤ x1;

X − x1, if x1 < X ≤ x2;

x2 − x1, if X > x2,

(5.2)

and, if X follows the distribution function F , we seek

Π[F ] = E[Z] =

∫ x2

x1

(x − x1) dF (x) + (x2 − x1)[1 − F (x2)], (5.3)

where x1 = 5 × 109 and x2 = 25 × 109.

Since it is now most important that our fitted distribution captures the behavior of the underlying

damage distribution between x1 and x2, the MWM and MTM estimators are most natural with the

choices a = 8/30 (which corresponds to the proportion of observations below x1) and b = 3/30 (which

corresponds to the proportion of observations above x2). We denote these MWM and MTM estimators

as W3 and T3, respectively.

As can be seen from Table 5.2, for each model, the overall W3 and T3 fits are very similar to

those of W2, T2 and MLE, but they yield a closer fit than those three procedures over the layer of

interest, which is [x1; x2]. Further, in Table 5.2 we also provide the actuarial premiums calculated
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using equation (5.3) for each fitted model and compare them with the empirical premium Π[F̂n],

where F̂n denotes the empirical distribution function. In addition, Table 5.2 contains 95% confidence

intervals (CIs) for the premium Π[F ]. For parametric CIs, we use the delta method applied to the

transformation of parameter estimators given by equation (5.3) together with the MWM, MTM and

MLE asymptotic distributions, which have been discussed in Sections 3.2 and 3.3. For constructing

the empirical interval, we use the classical central limit theorem and have that

Π[F̂n] ∼ AN

(
Π[F ],

1

n
V [F ]

)
,

where V [F ] is derived from equations (5.2) and (5.3). That is,

V [F ] = E[Z2] − (E[Z])2 =

∫ x2

x1

(x − x1)
2 dF (x) + (x2 − x1)

2[1 − F (x2)] −
(
Π[F ]

)2
,

which is estimated by replacing F with F̂n.

Table 5.2. Parameter estimates, goodness-of-fit measurements (rfit, defined by (5.1)

but restricted to the data in [x1; x2]), and actuarial premiums for the layer [x1; x2]

with 95% confidence intervals in parentheses.

Estimator Proportion Lognormal Model Log-logistic Model

a b bµ bσ rfit premium bµ bσ rfit premium

MLE – – 22.80 0.83 0.054 5.60 (3.37; 7.84) 22.78 0.48 0.045 5.29 (3.02; 7.60)

W1 14/30 14/30 22.76 0.99 0.105 5.86 (0.86; 10.86) 22.76 0.62 0.117 5.96 (1.23; 10.69)

T1 14/30 14/30 22.76 1.67 0.412 7.34 (2.55; 12.13) 22.76 1.05 0.433 7.37 (2.71; 12.03)

W2 1/30 1/30 22.78 0.82 0.050 5.38 (3.17; 7.60) 22.78 0.47 0.044 5.26 (2.98; 7.54)

T2 1/30 1/30 22.77 0.85 0.057 5.44 (3.17; 7.70) 22.77 0.50 0.050 5.36 (3.06; 7.65)

W3 8/30 3/30 22.83 0.75 0.046 5.49 (3.26; 7.72) 22.83 0.45 0.041 5.46 (3.19; 7.74)

T3 8/30 3/30 22.80 0.77 0.042 5.34 (3.07; 7.61) 22.80 0.46 0.040 5.37 (3.11; 7.63)

Note: The empirical point and interval estimates of the pure premium are 5.42 and (3.11; 7.72), respectively.

Point and interval estimates of the actuarial premiums are measured in billions.

As Table 5.2 suggests, the MWM and MTM estimators with appropriate proportions a and b

(i.e., the estimators W2, T2 and W3, T3) lead to premium estimates that are closer to the empirical

estimate than those obtained with highly robust but inefficient (i.e., W1, T1) or highly efficient but

non-robust estimators (i.e., MLE). The best fits over the restricted range, which are almost identical,

are achieved by the estimators that are constructed to be closest to the data over the interval of

interest (i.e., W3, T3). In this example, we again observe substantial differences between MWM and
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MTM fits only for a = b = 14/30. Due to similar theoretical properties and design, the other MWM

and MTM estimators have practically the same rfit values for this data set. In addition, note the

remarkable stability of point and interval estimates of the pure premium based on W3 and T3 when the

distributional assumption is changed from lognormal to log-logistic. In both cases, the point estimate

changes only about 0.5%. Also, the main advantage of parametric procedures (MWM, MTM, and

MLE) over the empirical approach is that in general they produce shorter confidence intervals for

the measures of interest, though the advantage is minimal in the current example. In summary, the

illustration we have provided in this section exemplifies the idea that the MWM and MTM estimators

are an appropriate choice for various model-fitting situations including those when a close fit in one

or both tails of the distribution is not required.

6 Concluding Remarks

In this paper, we have introduced and developed a new method for estimating the parameters of

continuous distributions: the method of Winsorized moments (MWM). The method utilizes the un-

derlying principle of the classical method-of-moments and its actions on data are easily understood,

which is a most appealing feature for practitioners. We have described the asymptotic properties of the

MWM estimators, provided examples of estimators for location-scale families and several insurance

loss models—lognormal and log-logistic—and compared MWM with its main competitor, the method

of trimmed moments (MTM).

Further, as was demonstrated theoretically and via simulations, both methods are equally straight-

forward computationally and possess identical (global) robustness properties if the same proportions

a and b are used for MWM and MTM estimators. In terms of efficiency, the Winsorized estima-

tors outperform MTMs when a and b are large, but for smaller proportions (e.g., inside the square

{(a, b) : 0 ≤ a ≤ 0.10, 0 ≤ b ≤ 0.10}, where typically the highest point of efficieny is reached) there is

no consistent winner as the outcome depends on the underlying distribution. For additional perspec-

tives on the finite-sample performance of these estimators, see Zhao, Brazauskas, Ghorai (2017).

Finally, the effect of model choice and parameter estimation method on risk pricing is illustrated

using actual data that represent hurricane damages in the United States from 1925 to 1995. In
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particular, the estimated pure premiums for an insurance contract are computed when the lognormal

and log-logistic models are fitted to the data using the MWM, MTM, and MLE methods. The real-

data study reveals that calculating the premiums for the layers of insurance coverage is a task for

which MWM and MTM are particularly natural.
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Appendix

Lemma A.1. If the Winsorizing proportions satisfy 0 ≤ a = ai = aj < 1 − bi = 1 − bj = 1 − b ≤ 1,

then the entries of Σ in (2.6) are found by adding the following four terms:

Â
(1)
i,j =

∫ 1−b

a

∫ 1−b

a
H

′

i(w)H
′

j(v)
[
min(v,w) − v w

]
dv dw

= aHi(a)Hj(a) + bHi(1 − b)Hj(1 − b) − ∆i∆j +

∫ 1−b

a
Hi(w)Hj(w) dw ,

Â
(2)
i,j =

a

1 − a

[
a(1 − a)H

′

j(a) + b2H
′

j(1 − b)
] ∫ 1−b

a
H

′

i(w)(1 − w) dw

+ b2H
′

j(1 − b)

∫ 1−b

a

∫ 1−b

u

H
′

i(w)(1 − w)

(1 − u)2
dw du

= ∆i

[
a2H

′

j(a) − b2H
′

j(1 − b)
]
+ b2Hi(1 − b)H

′

j(1 − b) − a2Hi(a)H
′

j(a) ,

Â
(3)
i,j =

a

1 − a

[
a(1 − a)H

′

i(a) + b2H
′

i(1 − b)
] ∫ 1−b

a
H

′

j(v)(1 − v) dv

+ b2H
′

i(1 − b)

∫ 1−b

a

∫ 1−b

u

H
′

j(v)(1 − v)

(1 − u)2
dv du

= ∆j

[
a2H

′

i(a) − b2H
′

i(1 − b)
]
+ b2Hj(1 − b)H

′

i(1 − b) − a2Hj(a)H
′

i(a) = Â
(2)
j,i ,

Â
(4)
i,j =

a

1 − a

[
a(1 − a)H

′

i(a) + b2H
′

i(1 − b)
][

a(1 − a)H
′

j(a) + b2H
′

j(1 − b)
]

+
1 − a − b

(1 − a)b

[
b2H

′

i(1 − b)b2H
′

j(1 − b)
]

= a3(1 − a)H
′

i(a)H
′

j(a) + b3(1 − b)H
′

i(1 − b)H
′

j(1 − b)

+ a2b2
[
H

′

i(a)H
′

j(1 − b) + H
′

j(a)H
′

i(1 − b)
]
,

where ∆k ≡ ∆k(F, a, b) := aHk(a) +
∫ 1−b
a Hk(v) dv + bHk(1 − b), k = i, j.

Proof: All four terms are derived by applying the integration by parts formula. �
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In Section 3.1, the entries of the covariance-variance matrix Σ were expressed in terms of the

constants Ck ≡ Ck(F0, a, b) and then noted that the latter ones can in turn be expressed in terms of

the constants ck ≡ ck(F0, a, b) := a
[
F−1

0 (a)
]k

+
∫ 1−b
a

[
F−1

0 (u)
]k

du+b
[
F−1

0 (1−b)
]k

. These expressions

are as follows:

C1 = c2 − c2
1 − a

∂
(
c2 − c2

1

)

∂a
− b

∂
(
c2 − c2

1

)

∂b

+ a(1 − a)

(
∂c1

∂a

)2

+ b(1 − b)

(
∂c1

∂b

)2

− 2ab
∂c1

∂a

∂c1

∂b
,

2C2 = c3 − c1c2 − a
∂
(
c3 − c1c2

)

∂a
− b

∂
(
c3 − c1c2

)

∂b

+ a(1 − a)
∂c1

∂a

∂c2

∂a
+ b(1 − b)

∂c1

∂b

∂c2

∂b
− ab

(
∂c1

∂a

∂c2

∂b
+

∂c1

∂b

∂c2

∂a

)
,

4C3 = c4 − c2
2 − a

∂
(
c4 − c2

2

)

∂a
− b

∂
(
c4 − c2

2

)

∂b

+ a(1 − a)

(
∂c2

∂a

)2

+ b(1 − b)

(
∂c2

∂b

)2

− 2ab
∂c2

∂a

∂c2

∂b
.

Consequently, the entries σ2
ij are as follows:

σ2
11 = σ2C1 ,

σ2
12 = σ2

21 = 2µσ2C1 + 2σ3C2 ,

σ2
22 = 4µ2σ2C1 + 8µσ3C2 + 4σ4C3 .
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