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The most comprehensive continuous-coverage modern climatic data sets, known as reanalyses, come from
combining state-of-the-art numerical weather prediction (NWP) models with diverse available observations.
These reanalysis products estimate the path of climate evolution that actually happened, and their use in a
probabilistic context—for example, to document trends in extreme events in response to climate
change—is, therefore, limited. Free runs of NWP models without data assimilation can in principle be used
for the latter purpose, but such simulations are computationally expensive and are prone to systematic
biases. Here we produce a high-resolution, 100-member ensemble simulation of surface atmospheric
temperature over North America for the 1979–2015 period using a comprehensive spatially extended non-
stationary statistical model derived from the data based on the North American Regional Reanalysis. The
surrogate climate realizations generated by this model are independent from, yet nearly statistically
congruent with reality. This data set provides unique opportunities for the analysis of weather-related risk,
with applications in agriculture, energy development, and protection of human life.
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Background & Summary
State-of-the-art numerical weather prediction models are expensive to run and are subject to biases due to
imperfect physical parameterizations of unresolved processes1. An alternative strategy for weather and
climate prediction, which complements a more traditional data assimilation approach (see, for example,
ref. 2), builds on extremely numerically efficient empirical stochastic models3, which have recently been
shown to be able to capture detailed spatiotemporal statistics of select climatic fields of interest4. In this
work, we apply the latter technique to obtain and record the output from a large ensemble of surface
atmospheric temperature (SAT) simulations over North America. These simulations can be used for a
wide variety of probabilistic applications, for example—to estimate long-term changes in the space/time
distribution and magnitude of extreme heat waves and cold spells in the region.

Modeling and predicting temperature extremes is a task of utmost societal and economic importance,
especially in the context of potential changes in the extreme weather associated with global warming5,6.
The main problem with robust detection of such changes stems from an inherent rarity of extreme events
coupled with a limited length of both the observational record and comprehensive high-resolution
climate-model simulations7,8. A standard way of dealing with these issues has been rooted in the
generalized extreme value (GEV) theory9. In this approach, the GEV distribution—or generalized Pareto
(GP) distribution—are fit to the sampled extreme values, with possible trends in the extremes accounted
for by time-dependent covariates affecting the distribution parameters10–13. A recent remarkable study
ref. 14 developed an alternative and, in a sense, more general approach to analyzing the extreme-event
data using the so-called stochastically generated skewed (SGS) distributions15,16. The SGS distributions
are fit to the entire available time series—rather than to extreme values only,—which allows one to reduce
sampling uncertainties associated with a limited climate record. Importantly, these SGS distributions are
generated by a corresponding damped linear Markov-process model that involves both additive and
multiplicative (state-dependent) stochastic noise. It is the latter dependence that generally makes the SGS
distributions non-Gaussian, which has profound implications for robust detection of change in the heavy
tails of the observed distributions, and, hence, in the extreme event statistics14.

The stochastic modeling methodology employed in the present work can be viewed as a multivariate
extension of the SGS-distribution generating stochastic model and has a long history of its own, starting
from the linear inverse modeling (LIM)17–20, to its multi-level and nonlinear extensions21, to the
modifications involving multiplicative noise introduced via state-dependent noise sampling22,23.
Traditionally, the emphasis of such statistical modeling was on identifying an optimal low-order model
that would be able to faithfully mimic certain features of the observed low-frequency climate variability3.
More recently, however, an intermediately sized empirical model24 demonstrated skill in reproducing
various aspects of high-dimensional air-sea interaction over the Southern Ocean. Testing the limits of
empirical data modeling, ref. 4 adopted and modified the basic methodology ref. 21 to develop a high-
resolution empirical stochastic model capable of emulating and predicting detailed variability of the
Northern Hemisphere sea-level pressure over a wide range from sub-daily to inter-annual time scales.
The latter proof-of-concept study provides the direct foundation for our present work.

Our updated empirical SAT modeling framework uses the input 2-m air-temperature data from the
North American Regional Reanalysis25 over the 1979–2015 period to fit a multi-scale parametric
statistical model for the one-way coupled sub-modules operating at different time resolutions and
incorporating non-stationary dependencies on seasonal and external predictors reflecting the large-scale
climate signals12 (Fig. 1; see Methods for details). At the simulation stage, the coupled empirical model is
driven by state-dependent spatially correlated noise to provide statistical realizations of the observed SAT
over the period of reanalysis; these realizations closely mimic the spatiotemporal structure of the observed
SAT evolution. Accounting for the spatiotemporal dependencies within the data allows the present
spatially extended multi-scale model to achieve a more robust estimation of the extreme-event statistics
compared to the univariate methodologies; cf. refs 26–28. The final output climate library contains 100
independent realizations of the daily minimum and daily maximum SAT evolution over North America
for the 1979–2015 period. This library, in addition to its obvious scientific value, can be used to assess the
diverse extreme weather statistics29 that are highly relevant for applications in the agriculture, energy
development and protection of human life.

Methods
In the following description, please refer to Fig. 1, which summarizes the entire sequence of steps in
model construction and subsequent simulation. Our present empirical modeling framework is largely
based on the methodology developed in ref. 4.

Empirical model input data
To build our empirical model, we used 2-m (surface) air temperature (hereafter SAT) data set based on
the National Center for Environmental Prediction North American Regional Reanalysis (NARR) (http://
www.esrl.noaa.gov/psd/data/gridded/data.narr.html). The NARR data set is comprised of 3-hourly (8 per
day) ‘observations’ on a 349 × 277 grid with nominal spatial resolution of 32 km, over the 1979–2015
period; about quarter of these data are from locations within continental US, leading to ~25,000 data
points in each of the ~365 (days per year) × 8 (observations per day) × 37 years ~ 108,000 available SAT
maps (the whole SAT data set over US thus contains ~10 Gb of single-precision data). We also utilized
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four external predictors, or covariates (Table 1), to represent the effects of forced and internal large-scale
climate variability on weather statistics over the North America; e.g., ref. 12. We removed the mean
seasonal cycle from all of the external predictor 1979–2015 time series and regressed out the ENSO signal
from NHT, AMO and PDO predictors (by transforming the NHT, AMO, and PDO time series to
regression residuals with respect to ENSO), then centered and normalized the resulting four time series.
We also removed, via linear regression, the NHT signal from the AMO time series. This procedure
resulted in the set of four nearly uncorrelated external predictors for the use with the empirical
SAT model.

We first computed the SAT climatological seasonal and diurnal cycles by applying 10-day running
mean to each of the 8 daily observations and averaging over all years, and formed SAT anomalies by
subtracting these cycles from the raw data. Our model was built in the phase space of SAT anomalies’
empirical orthogonal functions (EOFs30). The EOFs were computed for the monthly-mean SAT
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Figure 1. Empirical model construction and air-temperature simulation flowchart. The three-tier empirical

model is based on the North American Regional Reanalysis (NARR) 2-m air temperature data and is

conditioned on external predictors (EPs) that describe climate variations associated with large-scale

climate modes.
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anomalies and—separately—for high-pass filtered data set obtained by forming the deviations of SAT
anomalies with respect to their three-month running mean (the latter data set had the original 3-hourly
resolution); 200 monthly EOFs and 3,000 3-hourly EOFs account for over 99% of the total variance in the
respective multivariate time series (herafter, we will use a generic notation x for the vector time series of
the principal components (PCs) associated with each type of EOFs). We further subtracted the external
predictors from monthly PCs by using multiple linear regression of each of the PCs onto the external
predictors and only retaining the resulting PC residuals unexplained by the regression fit (these residuals
are, by construction, uncorrelated with external predictors). We also split the three-hourly PCs into the
daily-mean component and 3-hourly deviations from the daily means. We now look to construct a multi-
scale empirical model able to provide a faithful statistical simulation of each ‘tier’ of the data—monthly,
daily and three-hourly—and to capture possible interactions between these tiers.

Model calibration
The model’s building block is a stochastic autoregressive-moving average (ARMA) model for the
principal components x, postulated to have the following multi-level form21:

dx ¼ xUA 1ð Þ þ r 1ð Þ;
dr 1ð Þ ¼ ½r 1ð Þx�UA 2ð Þ þ r 2ð Þ;
dr 2ð Þ ¼ ½r 2ð Þr 1ð Þx�UA 3ð Þ þ r 3ð Þ:

ð1Þ

Here dx= xn+1− xn, and n is the time index; note that state vectors and residuals on the right-hand side of
(1) are all estimated at time n. The model’s parameters (linear operators A, as well as each level’s residuals
r) are found via regularized multiple linear regression and depend on seasonal cycle at monthly
resolution; at the simulations stage, the last level residuals r(3) are modeled stochastically. The multi-layer
stochastic model (1) can be viewed as a way of enlarging the phase space to unravel the dynamical
memory kernel of the system; see work ref. 31 for theoretical perspective on this approach using the
Mori-Zwanzig formalism.

The model (1) was estimated separately for temperature time series at monthly, daily and three-hourly
resolutions. For modeling the latter three-hourly anomalies (with respect to daily means), we developed a
diagnostic interpolation model to isolate the part of this three-hourly variability directly tied to the
synoptic daily variability (‘Interpolation model’ in Fig. 1; see ref. 4 for details), and only used one model
level in (1), which corresponds to the classical LIM model17–20, to model the remaining part of the 3-
hourly variability. For the daily model, we also estimated the linear relationship between the monthly
variance of the third-level residual variability r(3) and external predictors; we then computed and saved
the time series of the time-dependent amplitude of r(3) associated with external predictors, as well as the
library of the normalized residual variability r0 3ð Þ void of this dependence.

The daily component of the empirical stochastic model developed here thus has three levels, and its
three-hourly component has only one level. These choices were justified by analyzing the lag-covariance
structure of the respective model residuals (see Supplementary File 1). In particular, Supplementary Fig. 1
displays the values of lag-1 autocorrelation of the residuals at the last level of the respective models. The
third-level residuals of the daily model are indeed white, since their lag-1 autocorrelations are statistically
indistinguishable from zero (Supplementary Fig. 1a). By contrast, the three-hourly model’s residuals are
not white (Supplementary Fig. 1b) and thus have decorrelation time scales that exceed three hours (but
are still less than a day; not shown). The quasi-random forcing for the three-hourly model at the
simulation stage comes in the form of daily snippets (of length 8, with three-hourly resolution) taken
from the original library of the three-hourly model residuals on the day in which the original (observed)
daily state is closest to the current simulated daily state (see ‘Stochastic simulation’ section below). This
procedure accounts for non-whiteness of the stochastic forcing in the three-hourly LIM model, whose
integration simultaneously ensures smoothness of the simulated three-hourly PC anomalies.

Stochastic simulation
The monthly model was driven by the Gaussian spatially correlated white noise with covariance structure
derived from the third-level residual r(3), and the final simulation of monthly PCs was obtained by adding
the previously computed part of the monthly variability linearly related to the external predictors. Thus,
the monthly model simulation is independent of the daily and three-hourly simulations; however, only

Predictor name Acronym Source

Northern Hemisphere mean
temperature

NHT GISS surface temperature analysis36,37: https://data.giss.nasa.gov/gistemp

Atlantic Multidecadal Oscillation index AMO AMO38 unsmoothed, detrended from the Kaplan SST V2. Calculated at NOAA/ESRL/PSD1: http://www.esrl.
noaa.gov/psd/data/timeseries/AMO/

Pacific Decadal Oscillation index PDO Data39,40: http://jisao.washington.edu/pdo/PDO.latest

Niño3.4 index ENSO Nino 3.4 Index using ersstv4 from CPC: https://www.esrl.noaa.gov/psd/data/climateindices/list/#Nina34

Table 1. External predictors (monthly-resolution time series) used in empirical model construction.
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the three-month running mean of the monthly simulation is used in the final combined simulation
product, with any additional month-to-month variability arising from the sampling associated with the
variability in the daily model output. The choice of the three-month averaging time scale was subjective,
dictated by our attempt to seamlessly combine the low-frequency, forced or internal, variability simulated
in the monthly model, and ultra-low-frequency month-to-month internal variability arising in the daily
model. The latter internal variability can have persistent regimes with time scales on the order of but not
much longer than one month; hence, three-month averaging of the monthly model’s output was used to
avoid ‘double counting’ of this variability in the combined multi-scale model output.

The daily and three-hourly models are one-way coupled so that the daily simulation has to be carried
out first. This simulation is driven by state-dependent forcing snippets randomly pulled from the library
of the normalized third-level residuals r0 3ð Þ based on the proximity of the current simulated state xS to a
small subset of the observed states x; the idea borrowed from refs 22,23. The forcing so computed is then
scaled to have the appropriate amplitude as per the amplitude dependence on the external predictors. The
three-hourly simulation consists of two parts: the part diagnostically related to the simulated daily PCs
through the interpolation model, and the remainder, simulated using a one-level LIM model. The
stochastic forcing for this LIM model is also conditioned on the simulated daily state, in ways analogous
to the forcing specification for the daily model. Combining the daily and hourly simulations produces the
final realization of the full 3-hourly PCs.

The three-month running mean of monthly simulation and full three-hourly simulation are then
transformed from the EOF phase space back to physical space, combined and, upon addition of seasonal
climatology and diurnal cycle, provide the final emulation of the observed SAT variability. We produced
100 such simulations of 1979–2015 SAT. The final data product contains the output for daily maximum
and daily minimum SAT time series for each of these simulations (Data Citation 1).

Code availability
All annotated MATLAB © code and supporting input/output data for the present empirical SAT model
are also available from Figshare Data Repository (Data Citation 1). This archive contains detailed
README text files that would allow the user to reproduce all of the data preparation, model construction
and simulation steps outlined in the flowchart of Fig. 1. In particular, one can easily obtain, if necessary,
additional independent realizations of the 1979–2015 SAT evolution, which may be especially useful for
quantifying the probabilities of rare events14. The code archive includes the scripts for reading and
plotting the data in MATLAB. A basic plotting script can also be found here in the Supplementary Script
1.

Compressed Folder
Name

File Names Description

Tmax_simul#-#.zip air.2m.1979.nc
air.2m.1980.nc
air.2m.1981.nc
air.2m.1982.nc
air.2m.1983.nc
air.2m.1984.nc
air.2m.1985.nc
air.2m.1986.nc
air.2m.1987.nc
air.2m.1988.nc
air.2m.1989.nc
air.2m.1990.nc
air.2m.1991.nc
air.2m.1992.nc
air.2m.1993.nc
air.2m.1994.nc
air.2m.1995.nc
air.2m.1996.nc
air.2m.1997.nc
air.2m.1998.nc
air.2m.1999.nc
air.2m.2000.nc
air.2m.2001.nc
air.2m.2002.nc
air.2m.2003.nc
air.2m.2004.nc
air.2m.2005.nc
air.2m.2006.nc
air.2m.2007.nc
air.2m.2008.nc
air.2m.2009.nc
air.2m.2010.nc
air.2m.2011.nc
air.2m.2012.nc
air.2m.2013.nc
air.2m.2014.nc
air.2m.2015.nc

Simulated daily maximum temperatures for each year in NetCDF4 format, in bundles of 10 realizations stored in separate directories. The ‘#’ characters in the zipped
directory name indicate the range of realizations, from 1–10 to 91–100.

Tmax_QM_simul#-
#.zip

The same as above, but for the surface-temperature simulations quantile-mapped to observations

Tmin_simul#-#.zip Simulated daily minimum temperatures for each year in NetCDF4 format, in bundles of 10 realizations stored in separate directories. The ‘#’ characters in the zipped
directory name indicate the range of realizations, from 1–10 to 91–100

Tmin_QM_simul#-
#.zip

The same as above, but for the surface-temperature simulations quantile-mapped to observations

Tmax_observed_nc.
zip

NARR based daily maximum surface air temperature reflecting the variability associated with the 3,000 leading EOFs of the full data set. This is achieved by
performing PCA decomposition of the NARR data, truncating at 3,000 EOF modes and transforming back to physical space.

Tmin_observed_nc.
zip

The same as above, but for daily minimum surface air temperature.

Table 2. Description of model output files included in the data release.
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Data Records
The model output data are available as a collection of NetCDF4 files (Data Citation 1; Table 2), which
naturally incorporate all of the associated metadata; for example, see Supplementary File 2. The data
archive consists of four groups, two of which document the raw (unprocessed) simulated daily maximum
and daily minimum SATs. The other two are the daily maximum and daily minimum SAT versions
quantile-mapped to observations32, so that the observed and simulated local distributions of either of
these quantities at a given grid point for each season become identical by construction. To do this
quantile mapping, we sorted SAT values in the observed and simulated time series at a given grid point
(and for a given season) in the ascending order, and replaced the sorted simulated values with the sorted
observed values, then restored the original order of the values in the simulated time series. In this quantile
mapping, the four seasons were defined as December-January-February (DJF), March-April-May
(MAM), June-July-August (JJA) and September-October-November (SON) seasons. Also included in the
archive is the daily maximum and daily minimum SAT records based on the truncated NARR data to
span the phase space of its 3,000 leading EOFs, which describe over 99% of the total SAT variance over
the (land) region of simulation; this is to match the truncation applied in the empirical model
simulations. Note that the quantile mapping described above was also done using the NARR data set so
truncated, rather than the full original NARR SAT data.

The simulated data within each data group is further split into ten subgroups of ten simulations each,
and archived in individual files for each year, with a typical file size around 400Mb. Note that this size
reflects the NetCDF4 data compression, and the actual data size would be substantially larger.

Technical Validation
Our empirical model is not expected to produce climate realizations pathwise similar to the observed
climate; rather on the contrary, the climate simulated by such a model would be, by construction,
statistically independent of the actual observed climate realization. Hence, we should judge the success of
the model’s performance by comparing not the pathwise convergence, but rather the long-term statistical
properties of the observed and simulated variability, as in ref. 4.

We first assessed the model performance in the EOF phase space—via comparing the observed and
simulated probability density functions (PDF) and autocorrelation functions (ACF) of individual PCs
(see Supplementary File 1, Supplementary Figs 2–4). The observed PDFs and ACFs are mostly contained
within the 95% spread of these quantities in model simulations, indicating the model’s success in
capturing the observed statistics. It is generally more challenging to achieve a good statistical fit between
the observations and model simulations in physical space, as the transformation of model time series into

Figure 2. Examples of the observed and simulated monthly-mean surface air temperature anomalies with

respect to the long-term monthly climatology. Left panels: observations; right panels: model simulations. The

first two rows show a persistent January-February-March cold spell (January not shown); the bottom row

exemplifies summertime drought conditions. Units are °C.
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physical space may, in principle, distort the local behavior. We start by displaying a couple of illustrative
examples of model simulations, alongside with the corresponding observations, to give the reader a feel
for phenomenological complexity of the SAT evolution, and the model’s ability to mimic this complexity.

Simulation examples
One of the major advantages of the empirical model considered here—compared to simpler traditional
one-dimensional statistical data modeling at each spatial grid point—is that it is able to capture complex
spatiotemporal relationships between the features of the temperature variability associated with forced
and internal atmospheric dynamics. Figure 2 shows examples of the observed and simulated anomalous
seasonal cold (top two rows) and warm conditions (bottom row). Note that the persistent cold-spell
events we have chosen happen in different years in observations and model simulations, which means
that they likely stem from the internal dynamics—and are tentatively due to enhanced frequency of
synoptic events causing cold-air outbreaks in the months considered. On the other hand, the July 2012
anomalously warm conditions over US Great Plains happen both in observations and in model
simulations, suggesting that this pattern is externally forced; cf. refs 33,34. A more in-depth analysis of
ensemble simulations of the empirical model can provide further details on the contributions of forced
signals and internal variability to the observed variations of the surface temperature.

Similarly to simulating month-to-month variability akin to the observed variability, the model is able
to capture complex spatiotemporal behavior of temperature anomalies associated with stationary and
propagating synoptic features (T2_Obs_Sim_DJF_1992_93.mov, Data Citation 1); this captured
complexity is at the heart of the model’s skill in emulating the observed local weather and its long-
term changes (see below).

Distributions in physical space
The model reproduces well the seasonal cycle of temperature variance (Supplementary File 1,
Supplementary Fig. 5). The largest discrepancy between the model simulated and observed variance
occurs during the cold DJF season (Fig. 3a–c), where the model, while capturing very well the spatial
pattern of the variability, somewhat underestimates the magnitude of this variability over northwestern
and central North America, primarily due to overly diffusive (in space) cold polar air intrusions from the
Arctic plains (a hint of this behavior can be seen in T2_Obs_Sim_DJF_1992_93.mov, Data Citation 1).

The model also captures quite well the spatial distribution of DJF extreme cold (Fig. 3d–f), as well as JJA
extreme warm events (Supplementary File 1, Supplementary Fig. 6). There seems to be, once again, a warm

Figure 3. Comparison between the observed and simulated surface-temperature variability for December-

January-February (DJF) period. (a–c) temperature variance (°C2); (d,e) extreme events represented by the

2.5th percentile of the temperature distribution (°C). Model simulations closely capture the spatial patterns of

the observed variability. The most pronounced differences between observations and model simulations occur

over northwestern and central North America, where the model tends to underestimate the temperature

variance (c) and, in relation to that, the intensity of cold-air outbreaks (f).
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bias in reproducing wintertime extreme cold conditions over the northwestern and central North America
(Fig. 3f), possibly related to the variance bias detected in Fig. 3f. The JJA biases are slightly smaller than DJF
biases, and have a different spatial pattern (Supplementary File 1, Supplementary Fig. 6).

Overall, the model does a fairly good job in reproducing the observed seasonal distributions of SAT,
but with notable discrepancies mentioned above. To account for this, we provide, in the present data set
(Data Citation 1, Table 2)—in addition to raw simulated data,—the versions of the daily minimum and
daily maximum SAT time series quantile-mapped to observations32 (for each simulation and over the
entire simulated time series; see Data Records for details).

Dependence on external predictors
Our empirical model incorporates the dependence on external predictors, which can affect both the mean
and the variance of the simulated SAT variability (note that with fixed (constant) external predictors, the
distributions simulated by the model will necessarily be stationary, aside from seasonal dependences). To
demonstrate the reality of this effect, we display in Fig. 4a,b the difference maps between the simulated
JJA maximum daily surface-temperature distributions computed over the 1998–2015 and 1979–1997
periods; shown are the differences in the mean and 99th percentile of these distributions, respectively.
The above distributions for each year were computed based on the 100 quantile-mapped simulations (and
the resulting 92 days × 100 simulations= 9,200 ‘time’ points for each grid location). There is a statistically
significant warming across the majority of the continent, with the difference in the mean generally
exceeding the difference in the 99th percentile, indicating changes in the shape of the SAT distribution in
response to the external factors.

Figure 4c shows the time series of select characteristics of the PDF for the JJA daily maximum SAT at a
grid point closest to the Chicago O’Hare’s International airport. The temperature variations exhibit quite a
range of values throughout the time series, on the order of 25 °C. Interannual (year-to-year) variability and
long-term trends in the surface-temperature distributions (for example, changes in its annual median or 99th
percentile) are also present, but are naturally very slight compared to the overall range of variability,

Figure 4. Nonstationarity of the simulated surface-temperature distributions associated with external

predictors. Top row shows the difference maps (°C) between the simulated June-July-August (JJA) maximum

daily surface-temperature distributions computed over the 1998–2015 and 1979–1997 periods in (a) mean

temperature, and (b) 99th percentile of temperature; only the differences statistically significant at 5% level

according to the 2-sided t-test are displayed. Bottom row shows the evolution of the JJA daily maximum surface-

temperature distributions at a grid point closest to the Chicago O’Hare International Airport: (c) boxplot based

on the entire ensemble of 100 simulations shows the interquartile range (blue box), median (red line within the

box) and outliers (red plus-symbols) of temperature for each year; also shown are the 1979–1997 and 1998–2015

means of the observed temperature (horizontal black lines), as well as the 95th percentile of the observed

temperature (black curve). (d) displays the probability of temperature to exceed the threshold based on the 99th

percentile of temperature computed over the entirety of simulated data for this grid location, for the raw

simulated data (blue), as well as for the simulated data quantile-mapped to observations (dashed red line). The

mean 1979–1997 and 1998–2015 probabilities (horizontal black lines) differ by a factor of two.
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indicating the slowness of the climate change compared with the day-to-day SAT variations. Yet, statistically
significant long-term trends in these quantities are real and noticeable (reflecting, technically, the effect of
external predictors on the SAT variability in the present model’s context). A notable feature of the JJA
surface-temperature behavior includes an apparent jump (of around 1 °C) to warmer conditions after year
1997, following a major El Niño episode of 1997/98. This regional climate shift may be related to a larger-
scale climate shift35 manifested, among other things, in the flipped phase of the PDO, whose index is,
incidentally, one of the external predictors forcing the present model (Table 1).

No matter how slight the latter long-term changes may seem, they are reflected in the substantial
changes in the probability of extreme events. For example, the probability of the JJA maximum daily
surface temperatures to exceed the 99th percentile of this quantity (computed over the entire 1979–2015
period) increases by a factor of two after the 1997/98 transition to warmer conditions (Fig. 4d). Note that
the highest temperature of around 40 °C at Chicago O’Hare airport was only recorded once in the real
observational record (on July 13, 1995). Yet, the empirical model simulations predict non-zero likelihood
of such events over most of the 1979–2015 period, with year 1995 being, on average, less likely to produce
such extreme warmth than the later periods.

The take-away point here is that the types of probabilistic information our model simulations supply cannot
really be obtained based on the direct statistical analysis of the observational record, which demonstrates the
essential utility of our proposed empirical modeling methodology. Needless to say that completing similar tasks
using the high-resolution dynamical models (that is, numerical models based on first physical principles and
state-of-the-art parameterizations of unresolved processes) is still computationally prohibitive.

Usage Notes
The structure of the data archive is meant to facilitate obtaining certain types of probabilistic information, by
allowing one to read in the data from all of the 100 available simulations for a given year. If a single continuous
simulation would be of interest instead, it would probably be easier to read it in from the ensemble-simulation
files year-by-year and store each year in a temporary directory for further analysis of this simulation.
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