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Abstract. Over the last decade, researchers, practitioners, and regulators had intense

debates about how to treat the data collection threshold in operational risk modeling. For

fitting the loss severity distribution, several approaches have been employed: the empirical

approach, the “naive” approach, the shifted approach, and the truncated approach. Since

each approach is based on a different set of assumptions, different probability models

emerge. Thus, model uncertainty arises. The main objective of this paper is to understand

the impact of model uncertainty on the value-at-risk (VaR) estimators. To accomplish

that, we take the bank’s perspective and study a single risk. Under this simplified scenario

we can solve the problem analytically (when the underlying distribution is exponential)

and show that it uncovers similar patterns among VaR estimates to those based on the

simulation approach (when data follow a Lomax distribution). We demonstrate that for

a fixed probability distribution, the choice of the truncated approach yields lowest VaR

estimates, which may be viewed as beneficial to the bank, whilst the “naive” and shifted

approaches lead to higher estimates of VaR. The advantages and disadvantages of each

approach and the probability distributions under study are further investigated using a

real data set for legal losses in a business unit (Cruz, 2002).
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1 Introduction

Basel II/III and Solvency II—the leading international regulatory frameworks for banking and in-

surance industries—mandate that financial institutions build separate capital reserves for operational

risk. The Loss Distribution Approach or LDA, within the Advanced Measurement Approach (AMA)

framework, is the most sophisticated tool for estimating the operational risk capital. According to

LDA, the risk-based capital is an extreme quantile of the annual aggregate loss distribution (e.g., the

99.9th percentile), which is called value-at-risk or VaR. Some recent discussions between the industry

and the regulatory community in the United States reveal that the LDA implementation still has a

number of “thorny” issues (AMA Group, 2013). One such issue is the treatment of data collection

threshold. Here is what is stated on page 3 of the same document: “Although the industry gener-

ally accepts the existence of operational losses below the data collection threshold, the appropriate

treatment of such losses in the context of capital estimation is still widely debated.”

Various assumptions about the data collection threshold have been considered in the existing lit-

erature: known threshold (Baud, Frachot, Roncalli, 2002, and Shevchenko, Temnov, 2009), threshold

as unknown parameter (Baud, Frachot, Roncalli, 2002), stochastic threshold whose distribution has

to be modeled (Baud, Frachot, Roncalli, 2002, and de Fontnouvelle, DeJesus-Rueff, Jordan, Rosen-

gren, 2006), and time varying threshold that may scale according to inflation and business factors

(Shevchenko, Temnov, 2009). In this paper, we will assume the threshold is known. Given (exter-

nal) operational risk databases, which often collect losses exceeding (for example) $1 million, such an

assumption is appropriate.

Further, the annual aggregate loss variable is a combination of two variables—loss frequency and

loss severity—and there are different ways to estimate risk-based capital. One way, for example, is

to estimate the untruncated severity and truncation-adjusted frequency and then compute VaR. This

approach follows directly from the results described by Brazauskas, Jones, Zitikis (2015). Another way

is to estimate the truncated severity and unadjusted frequency to compute VaR. For a comprehensive

review of analytic techniques for truncated data in the context of operational risk modeling, see Cruz,

Peters, Shevchenko (2015, Section 7.9). Furthermore, as is known in practice, the severity distribution
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is a key driver of the capital estimate (Opdyke, 2014). And this is the part of the aggregate model

where initial assumptions about the data collection threshold are most influential. A number of authors

have examined some aspects of this topic in the past (see, e.g., Moscadelli, Chernobai, Rachev, 2007,

Chernobai, Rachev, Fabozzi, 2007, Luo, Schevchenko, Donnelly, 2007, Cavallo, Rosenthal, Wang, Yan,

2012, and Ergashev, Pavlikov, Uryasev, Sekeris, 2016). The modeling approaches they (collectively)

considered include: the empirical approach, the “naive” approach, the shifted approach, and the trun-

cated approach. Since each approach is based on a different set of assumptions, different probability

models emerge. Thus, model uncertainty arises.

The main objective of this paper is to understand the impact of model uncertainty on risk mea-

surements, and (hopefully) help settle the debate about the treatment of data collection threshold in

the context of capital estimation. Solving such a problem under a general setup, i.e., by considering

many interdependent risks and multiple stakeholders, is only possible through extensive simulations,

but that would not produce much insight. Therefore, we simplify the problem by taking the bank’s

perspective and by studying a single risk. Under this simplified scenario we can solve the problem

analytically (when the underlying distribution is exponential) and show that it uncovers similar pat-

terns among VaR estimates to those based on the simulation approach (when data follow a Lomax

distribution). We demonstrate that for a fixed probability distribution, the choice of the truncated

approach yields lowest VaR estimates, which may be viewed as beneficial to the bank, whilst the

“naive” and shifted approaches lead to higher estimates of VaR. As for the choice of severity distri-

butions, besides the Lomax distribution which is heavy tailed and hence appropriate in operational

risk modeling, we intentionally select the light-tailed exponential distribution to show what happens

to VaR estimates when wrong assumptions are made. Moreover, our step-by-step analysis not only

shows “what happens” to VaR estimates but it helps understand the questions of “how” and “why” it

happens. Also, perhaps surprisingly, our numerical illustrations reveal why the shifted approach is still

popular. That is because it is flexible enough to pass standard model validation tests and thus cannot

be discarded from practical use based on such tools alone. In summary, this paper contributes to

the existing literature by performing an extensive investigation of the impact that model uncertainty

has on the VaR estimators, justifies the soundness of the regulatory recommendation (i.e., use the
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truncated approach), and paves the way for a number of research problems in this important area.

It is worthwhile to note here that the model uncertainty considered in this paper is an epistemic

one, not a random uncertainty. It can be reduced, but not completely eliminated, by employing

sound model validation tools and in some cases (e.g., when the shifted approach is used) may require

out-of-model knowledge. In a more general context, model uncertainty is an important topic within

the model risk governance framework as regulated by the OCC and the Federal Reserve Bank in the

U.S. and the Basel Committee on Banking Supervision for the G20 countries (see, e.g., Office of the

Comptroller of the Currency, 2011, and Basel Coordination Committee, 2014).

The rest of the paper is structured as follows. In Section 2, we describe how model uncertainty

emerges and study its effects on VaR estimates. This is done by employing theoretical results (pre-

sented in Appendix) and via Monte Carlo simulations. Next, in Section 3, these explorations are

further illustrated using a real data set for legal losses in a business unit. Finally, concluding remarks

are offered in Section 4. Also, in Appendix, we provide some technical tools that are essential for

analytic treatment of the problem. In particular, key probabilistic features of the generalized Pareto

distribution are presented and several asymptotic theorems of mathematical statistics are specified.

2 Model Uncertainty

We start this section by introducing the problem and describing how model uncertainty arises. Then,

in Section 2.2, we review several typical models used for estimating VaR. Finally, using the theoretical

results of Appendix and Monte Carlo simulations, we finish with two parametric examples, where we

evaluate the probability of overestimating true VaR for exponential and Lomax distributions.

2.1 Motivation

In order to fully understand the problem, in this paper we will walk the reader through the entire

modeling process and demonstrate how our assumptions affect the end product, which is the estimate

of severity VaR. Since the problem involves collected data, initial assumptions, and statistical inference

(in this case, point estimation and assessment of estimates’ variability), it will be tackled with statistical

tools, including theoretical tools (asymptotics), Monte Carlo simulations, and real-data case studies.
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Let us briefly discuss data, assumptions, and inference. As noted in Section 1, it is generally agreed

that operational losses exist above and below the data collection threshold. Therefore, this implies

that choosing a modeling approach is equivalent to deciding on how much probability mass there is

below the threshold.
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Figure 1: Truncated, naive, shifted Exponential (σ) and Lomax (α = 3.5, θ1) probability

density functions. Data collection threshold t = 195, 000, with 50% of data unobserved.

Parameters σ and θ1 are chosen to match those in Tables 2 and 3 (see Section 2.3).

In Figure 1, we provide graphs of truncated, naive, and shifted probability density functions of two

distributions (studied formally in Section 2.3): Exponential which is a light-tailed model, and Lomax ,

with the tail parameter α = 3.5, which is a moderately-tailed model (it has three finite moments).

We clearly see that those models are quite different below the threshold t = 195, 000, but in practice

that would be unobserved. On the other hand, in the observable range, i.e., above t = 195, 000, the

plotted density functions are similar (note that the vertical axes are in very small units, 10−6) and

converge to each other as losses get larger (note how little differentiation there is among the curves

when losses exceed 1,000,000). Moreover, it is even hard to spot a difference between the corresponding

exponential and Lomax models, though the two distributions possess distinct theoretical properties

(e.g., for one all moments are finite, whereas for the other only three). Also, since probability mass

below the threshold is one of “known unknowns,” it will have to be estimated from the observed data
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(above t). As will be shown in the case study of Section 3, this task may look straightforward, but its

outcomes vary and are heavily influenced by the initial assumptions.

To formalize this dicussion, suppose that Y1, . . . , YN represent (positive and i.i.d.) loss severities

resulting from operational risk, and let us denote their pdf, cdf, and qf as f , F , and F−1, respectively.

Then, the problem of estimating VaR-based capital is equivalent to finding an estimate of qf at some

probability level, say F−1(β). The difficulty here is that we observe only those Yi’s that exceed some

known data collection threshold t ≫ 0. That is, the actually observed variables are Xi’s with

X1
d
= Yi1

∣∣Yi1 > t, . . . , Xn
d
= Yin

∣∣Yin > t, (2.1)

where
d
= denotes “equal in probability” and n =

∑N
j=1 1

{
Yj > t

}
. Their cdf F∗, pdf f∗, qf F−1

∗ are

related to F , f , F−1 and given by

F∗(x) =
F (x) − F (t)

1 − F (t)
, f∗(x) =

f(x)

1 − F (t)
, F−1

∗ (u) = F−1
(
u + (1 − u)F (t)

)
(2.2)

for x ≥ t and 0 < u < 1, and for x < t, f∗(x) = F∗(x) = 0.

Further, let us investigate the behavior of F−1
∗ (u) from a purely mathematical point of view. Since

the qf of continuous random variables (which is the case for loss severities) is a strictly increasing

function and (1 − u)F (t) ≥ 0, it follows that

F−1
∗ (u) = F−1

(
u + (1 − u)F (t)

)
≥ F−1(u), 0 < u < 1,

with the inequality being strict unless F (t) = 0. This implies that any quantile of the observable

variable X is never below the corresponding quantile of the unobservable variable Y , which is true

VaR. This fact is certainly not new (see, e.g., an extensive analysis by Opdyke, 2014, about the effect of

Jensen’s inequality in VaR estimation). However, if we now change our perspective from mathematical

to statistical and take into account the method of how VaR is estimated, we could augment the above

discussion with new insights and improve our understanding.

A review of existing methods shows that, besides estimation of VaR using (2.1) and (2.2) under the

truncated distribution framework, there are other parametric methods that employ different strate-

gies, such as the naive and shifted approaches (described in Section 2.2.2). In particular, those two

approaches use the data X1, . . . ,Xn and either ignore t or recognize it in some other way than (2.2).

Thus, model uncertainty emerges.
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2.2 Typical Models

2.2.1 Empirical Model

As mentioned earlier, the empirical model is restricted to the range of observed data. So it uses

data from (2.1), but since the empirical estimator F̂ (t) = 0, formulas (2.2) simplify to F̂∗(x) = F̂ (x),

f̂∗(x) = f̂(x), for x ≥ t, and F̂−1
∗ (u) = F̂−1(u). Thus, the model cannot take full advantage of (2.2).

In this case, the VaR(β) estimator is simply F̂−1(β) = X(⌈nβ⌉), and as follows from Theorem A.1,

X(⌈nβ⌉) is AN
(

F−1
∗ (β),

1

n

β(1 − β)

f2
∗ (F−1

∗ (β))

)
.

We now can evaluate the probability of overestimating true VaR by certain percentage, i.e., we

want to study function H(c) := P
{
X(⌈nβ⌉) > cF−1(β)

}
for c ≥ 1. Using Z to denote the standard

normal random variable and Φ for its cdf, and taking into account (2.2), we proceed as follows:

H(c) = P
{
X(⌈nβ⌉) > cF−1(β)

}
≈ P

{
Z >

[
cF−1(β) − F−1

∗ (β)
]
×
(

1

n

β(1 − β)

f2
∗ (F−1

∗ (β))

)−1/2
}

= 1 − Φ

(√
n

β(1 − β)

[
cF−1(β) − F−1(β + (1 − β)F (t))

]
× f

(
F−1(β + (1 − β)F (t))

)

1 − F (t)

)
.

From this formula we clearly see that 0.50 ≤ H(1) < 1 with the lower bound being achieved when

F (t) = 0. Also, at the other extreme, when c → ∞, we observe H(c) → 0. Additional numerical

illustrations are provided in Table 1.

Several conclusions emerge from the table. First, the case F (t) = 0 is a benchmark case that

illustrates the behavior of the empirical estimator when data is completely observed (and in that

case X(⌈nβ⌉) would be a consistent method for estimating VaR(β)). We see that H(1) = 0.5 and

then it quickly decreases to 0 as c increases. The decrease is quickest for the light-tailed distribution,

exponential(σ = 1), and slowest for the heavy-tailed Lomax(α = 1, θ2 = 1) which has no finite

moments. Second, as less data is observed, i.e., as F (t) increases to 0.5 and 0.9, the probability of

overestimating true VaR increases for all types of distributions. For example, while the probability of

overestimating VaR(0.995) by 20% (c = 1.2) for the light-tailed distribution is only 0.226 for F (t) = 0,

it increases to 0.398 and 0.811 for F (t) = 0.5 and 0.9, respectively. If severity follows the heavy-tailed

distribution, then H(1.2) is 0.444, 0.612, 0.734 for F (t) = 0, 0.5, 0.9, respectively. Finally, in practice,
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typical scenarios would be near F (t) = 0.9 with moderate- or heavy-tailed severity distributions, which

corresponds to quite unfavorable patterns in the table. Indeed, function H(c) declines very slowly and

the probability of overestimating VaR(0.995) by 100% seems like a norm (0.577 and 0.715).

Table 1: Function H(c) evaluated for various combinations of c, confidence level β, proportion

of unobserved data F (t), and severity distributions with varying degrees of tail heaviness

ranging from light- and moderate-tailed to heavy-tailed. (The sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9

c β Light Moderate Heavy Light Moderate Heavy Light Moderate Heavy

1 0.95 0.500 0.500 0.500 0.944 0.925 0.874 1.000 1.000 0.981

0.995 0.500 0.500 0.500 0.688 0.672 0.638 0.949 0.884 0.738

0.999 0.500 0.500 0.500 0.587 0.579 0.563 0.767 0.703 0.612

1.2 0.95 0.085 0.178 0.331 0.585 0.753 0.824 1.000 1.000 0.978

0.995 0.226 0.349 0.444 0.398 0.551 0.612 0.811 0.840 0.734

0.999 0.331 0.424 0.475 0.414 0.517 0.550 0.615 0.668 0.610

1.5 0.95 0.000 0.010 0.138 0.032 0.326 0.726 0.968 0.996 0.975

0.995 0.030 0.167 0.362 0.083 0.364 0.571 0.403 0.756 0.727

0.999 0.137 0.317 0.437 0.191 0.424 0.532 0.358 0.613 0.606

2 0.95 0.000 0.000 0.015 0.000 0.009 0.523 0.056 0.930 0.968

0.995 0.000 0.026 0.240 0.001 0.127 0.501 0.017 0.577 0.715

0.999 0.014 0.170 0.376 0.025 0.280 0.500 0.073 0.516 0.600

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Distributions: Light = exponential(σ),

Moderate = Lomax(α = 3.5, θ1), Heavy = Lomax(α = 1, θ2). For F (t) = 0: σ = θ1 = θ2 = 1. For F (t) = 0.5:

σ = 281, 326, θ1 = 890, 355, θ2 = 195, 000. For F (t) = 0.9: σ = 84, 687, θ1 = 209, 520, θ2 = 21, 667.

2.2.2 Parametric Models

We discuss three parametric approaches: truncated, naive, and shifted.

Truncated Approach : The truncated approach uses the observed data X1, . . . ,Xn and fully rec-

ognizes its distributional properties. That is, it takes into account (2.2) and derives MLE values by

maximizing the following log-likelihood function:

logLT

(
θ1, . . . , θk

∣∣X1, . . . ,Xn

)
=

n∑

i=1

log f∗(Xi) =

n∑

i=1

log

(
f(Xi)

1 − F (t)

)
, (2.3)

where θ1, . . . , θk are the parameters of pdf f . Once parameter MLEs are available, VaR(β) estimate

is found by plugging those MLE values into F−1(β). �
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Naive Approach : The naive approach uses the observed data X1, . . . ,Xn, but ignores the presence

of threshold t. That is, it bypasses (2.2) and derives MLE values by maximizing the following log-

likelihood function:

logLN

(
θ1, . . . , θk

∣∣X1, . . . ,Xn

)
=

n∑

i=1

log f(Xi). (2.4)

Notice that, since f(Xi) ≤ f(Xi)/[1 − F (t)] = f∗(Xi) with the inequality being strict for F (t) > 0,

the log-likelihood of the naive approach will always be less than that of the truncated approach.

This in turn implies that parameter MLEs of pdf f derived using the naive approach will always be

suboptimal, unless F (t) = 0. Finally, VaR(β) estimate is computed by inserting parameter MLEs (the

ones found using the naive approach) into F−1(β). �

Shifted Approach : The shifted approach uses the observed data X1, . . . ,Xn and recognizes thresh-

old t by first shifting the observations by t. Then, it derives parameter MLEs by maximizing the

following log-likelihood function:

logLS

(
θ1, . . . , θk

∣∣X1, . . . ,Xn

)
=

n∑

i=1

log f(Xi − t). (2.5)

By comparing (2.4) and (2.5), we can easily see that the naive approach is a special case of the shifted

approach (with t = 0). Moreover, although this may only be of interest to theoreticians, one could

introduce a class of shifted models by considering f(Xi − s), with 0 ≤ s ≤ t, and create infinitely

many versions of the shifted model. Finally, VaR(β) is estimated by applying parameter MLEs (the

ones found using the shifted approach) to F−1(β) + t. �

2.3 Parametric VaR Estimation

2.3.1 Example 1: Exponential Distribution

Suppose Y1, . . . , YN are i.i.d. and follow an exponential distribution, with pdf, cdf, and qf given by

(A.2), (A.1), and (A.4), respectively, with γ = 0 and µ = 0. However, we observe only variable X

whose relation to Y is governed by (2.1) and (2.2). Now, by plugging exponential pdf and/or cdf into
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the log-likelihoods (2.3), (2.4), (2.5), we obtain

logLT

(
σ
∣∣X1, . . . ,Xn

)
=

n∑

i=1

log

(
f(Xi)

1 − F (t)

)
=

n∑

i=1

log

(
σ−1e−Xi/σ

e−t/σ

)

= −n log σ +

n∑

i=1

−(Xi − t)

σ
, (2.6)

logLN

(
σ
∣∣X1, . . . ,Xn

)
=

n∑

i=1

log f(Xi) =

n∑

i=1

log
(
σ−1e−Xi/σ

)

= −n log σ +

n∑

i=1

−Xi

σ
, (2.7)

logLS

(
σ
∣∣X1, . . . ,Xn

)
=

n∑

i=1

log f(Xi − t) =
n∑

i=1

log
(
σ−1e−(Xi−t)/σ

)

= −n log σ +
n∑

i=1

−(Xi − t)

σ
, (2.8)

where the subscripts T, N, S (for L) denote “truncated”, “naive”, “shifted”, respectively. Then, by

maximizing the log-likelihoods (2.6), (2.7), and (2.8) with respect to σ, we get the following MLE

formulas for parameter σ under the truncated, naive, and shifted approaches:

σ̂T = X − t, σ̂N = X, σ̂S = X − t,

where X = n−1
∑n

i=1 Xi.

Next, by inserting σ̂T , σ̂N , and σ̂S into the corresponding qf’s as described in Section 2.2.2, we get

the following VaR(β) estimators:

V̂aRT (β) = −σ̂T log(1 − β), V̂aRN(β) = −σ̂N log(1 − β), V̂aRS(β) = −σ̂S log(1 − β) + t.

Further, a direct application of Theorem A.2 for σ̂T (with obvious adjustment for σ̂N), yields that

σ̂T is AN
(

σ,
σ2

n

)
, σ̂N is AN

(
σ + t,

σ2

n

)
, σ̂S is AN

(
σ,

σ2

n

)
.

Furthermore, having established AN for parameter MLEs, we can apply Theorem A.3 and specify

asymptotic distributions for VaR estimators. They are as follows:

V̂aRT (β) is AN
(
−σ log(1 − β),

σ2 log2(1 − β)

n

)
,

9



V̂aRN(β) is AN
(
−(σ + t) log(1 − β),

σ2 log2(1 − β)

n

)
,

V̂aRS(β) is AN
(
−σ log(1 − β) + t,

σ2 log2(1 − β)

n

)
.

Note that while all three estimators are equivalent in terms of the asymptotic variance, they are

centered around different targets. The mean of the truncated estimator is the true quantile of the

underlying exponential model (estimating which is the objective of this exercise) and the mean of the

other two methods is shifted upwards; in both cases, the shift is a function of threshold t.

Finally, as it was done for the empirical VaR estimator in Section 2.2.1, we now define function

H(c) = P
{
V̂aR(β) > cF−1(β)

}
for c ≥ 1, the probability of overestimating the target by (c−1)100%,

for each parametric VaR estimator and study its behavior:

HT (c) ≈ 1 − Φ
(
(c − 1)

√
n
)
, HN(c) ≈ 1 − Φ

(
(c − 1)

√
n −√

n(t/σ)
)
,

HS(c) ≈ 1 − Φ
(
(c − 1)

√
n +

√
n(t/σ) log−1(1 − β)

)
.

Table 2 provides numerical illustrations of functions HT (c), HN(c), HS(c). We select the same

parameter values as in the light-tailed cases of Table 1. From Table 2, we see that the case F (t) = 0

is special in the sense that all three methods become identical and perform well. For example, the

probability of overestimating true VaR by 20% is only 0.023 for all three methods and it is essentially

0 as c ≥ 1.5. Parametric estimators in this case outperform the empirical estimator (see Table 1)

because they are designed for the correct underlying model. However, as proportion of unobserved

data increases, i.e., as F (t) increases to 0.5 and 0.9, only the truncated approach maintains its excellent

performance. And while the shifted estimator is better than the naive, both methods perform poorly

and even rarely improve the empirical estimator. For example, in the extreme case of F (t) = 0.9,

the naive and shifted methods overestimate true VaR(0.95) by 50% with probability 1.000 and 0.996,

respectively, whereas the corresponding probability for the empirical estimator is 0.968.
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Table 2: Functions HT (c), HN (c), HS(c) evaluated for various combinations of c,

confidence level β, and proportion of unobserved data F (t). (The sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9

c β T N S T N S T N S

1 0.95 0.500 0.500 0.500 0.500 1.000 0.990 0.500 1.000 1.000

0.995 0.500 0.500 0.500 0.500 1.000 0.905 0.500 1.000 1.000

0.999 0.500 0.500 0.500 0.500 1.000 0.842 0.500 1.000 1.000

1.2 0.95 0.023 0.023 0.023 0.023 1.000 0.623 0.023 1.000 1.000

0.995 0.023 0.023 0.023 0.023 1.000 0.245 0.023 1.000 0.991

0.999 0.023 0.023 0.023 0.023 1.000 0.159 0.023 1.000 0.909

1.5 0.95 0.000 0.000 0.000 0.000 0.973 0.004 0.000 1.000 0.996

0.995 0.000 0.000 0.000 0.000 0.973 0.000 0.000 1.000 0.257

0.999 0.000 0.000 0.000 0.000 0.973 0.000 0.000 1.000 0.048

2 0.95 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.010

0.995 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.000

0.999 0.000 0.000 0.000 0.000 0.001 0.000 0.000 1.000 0.000

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Exponential(σ),

with σ = 1 (for F (t) = 0), σ = 281, 326 (for F (t) = 0.5), σ = 84, 687 (for F (t) = 0.9).

2.3.2 Example 2: Lomax Distribution

Suppose Y1, . . . , YN are i.i.d. and follow a Lomax distribution, with pdf, cdf, and qf given by (A.2),

(A.1), and (A.4), respectively, with α = 1/γ, θ = σ/γ, and µ = 0. However, we observe only variable

X whose relation to Y is governed by (2.1) and (2.2). Now, unlike the exponential case, maximization

of the log-likelihoods (2.3), (2.4), and (2.5) does not yield explicit formulas for MLEs of a Lomax

model. So, in order to evaluate functions HT (c), HN(c), HS(c), we use Monte Carlo simulations

to implement the following procedure: (i) generate Lomax-distributed data set according to pre-

specified parameters, (ii) numerically evaluate parameters α and θ for each approach, (iii) compute

the corresponding estimates of VaR, (iv) check whether the inequality in function H(c) is true for each

approach and record the outcomes, and (v) repeat steps (i)–(iv) a large number of times and report

the proportion of “true” outcomes in step (iv). To facilitate comparisons with the moderate-tailed

scenarios in Table 1, we select simulation parameters as follows:

• Severity distribution Lomax(α = 3.5, θ1): θ1 = 1 (for F (t) = 0),

θ1 = 890, 355 (for F (t) = 0.5), θ1 = 209, 520 (for F (t) = 0.9).
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• Threshold: t = 0 (for F (t) = 0) and t = 195, 000 (for F (t) = 0.5, 0.9).

• Complete sample size: N = 100 (for F (t) = 0); N = 200 (for F (t) = 0.5);

N = 1000 (for F (t) = 0.9). The average observed sample size is n = 100.

• Number of simulation runs: 10, 000.

Simulation results are summarized in Table 3, where we again observe similar patterns to those of

Tables 1 and 2. This time, however, the entries are more volatile, which is mostly due to the randomness

of simulation experiment (e.g., all entries for the T and c = 1 cases theoretically should be equal to 0.5,

because those cases correspond to the probability of a normal random variable exceeding its mean, but

they are slightly off). The F (t) = 0 case is where all parametric models perform well, as they should.

However, once they leave that comfort zone (F (t) = 0.5 and 0.9), only the truncated approach works

well, with the naive and shifted estimators performing similarly to the empirical estimator. Since

Lomax distributions have heavier tails than exponential, function H(c) under the truncated approach

is also affected by that and converges to 0 (as c → ∞) slower. In other words, for a given choice of

model parameters, the coefficient of variation of VaR is larger for the Lomax model than that for the

exponential model, thus resulting in larger overestimating probabilities than those in Table 2. The

difference between the T entries in Tables 2 and 3 is also influenced by the fact that the numerically

found MLE does not often produce very stable or say trustworthy parameter estimates for truncated

approach, which is a common technical issue. Nonetheless, the overall message here does not change:

we observe certain patterns among functions HT (c), HN(c), and HS(c), which are no different from

those of Section 2.3.1 that were found using the theoretical tools.
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Table 3: Functions HT (c), HN (c), HS(c) evaluated for various combinations of c, confidence

level β, and proportion of unobserved data F (t). (The average sample size is n = 100.)

F (t) = 0 F (t) = 0.5 F (t) = 0.9

c β T N S T N S T N S

1 0.95 0.453 0.453 0.453 0.459 0.951 0.982 0.547 0.908 1.000

0.995 0.433 0.433 0.433 0.435 0.692 0.734 0.444 0.891 0.998

0.999 0.426 0.426 0.426 0.437 0.149 0.624 0.331 0.867 0.944

1.2 0.95 0.131 0.131 0.131 0.095 0.945 0.791 0.356 0.904 0.999

0.995 0.247 0.247 0.247 0.184 0.208 0.518 0.170 0.889 0.993

0.999 0.297 0.297 0.297 0.272 0.059 0.484 0.121 0.845 0.864

1.5 0.95 0.009 0.009 0.009 0.002 0.626 0.270 0.112 0.879 0.998

0.995 0.097 0.097 0.097 0.044 0.044 0.278 0.021 0.875 0.872

0.999 0.178 0.178 0.178 0.123 0.016 0.313 0.019 0.843 0.708

2 0.95 0.000 0.000 0.000 0.000 0.032 0.010 0.002 0.865 0.984

0.995 0.025 0.025 0.025 0.004 0.004 0.090 0.000 0.851 0.563

0.999 0.075 0.075 0.075 0.032 0.002 0.147 0.001 0.224 0.459

Note: Threshold t is 0 for F (t) = 0 and 195, 000 for F (t) = 0.5, 0.9. Lomax(α = 3.5, θ1),

with θ1 = 1 (for F (t) = 0), θ1 = 890, 355 (for F (t) = 0.5), θ1 = 209, 520 (for F (t) = 0.9).

3 Real-Data Example

In this section we illustrate how all the modeling approaches considered in this paper (empirical and

three parametric) perform on real data. We go step-by-step through the entire modeling process,

starting with model fitting and validation, continuing with VaR estimation, and completing the ex-

ample with model-based predictions for quantities below the data collection threshold. Note that for

the parametric approaches we employ both exponential and Lomax models, although exponential is

clearly not a viable model for operational risk data (because its tail is too light for such data). How-

ever, the exponential distribution is a model for which all relevant formulas are explicit and can be

easily verified by the reader. Moreover, the data analysis exercise also serves as an example on how

to identify inappropriate models (e.g., exponential) and, if the model validation step is ignored, to

illustrate how wrong the predictions based on such models can be.
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3.1 Data

We will use the data set from Cruz (2002, p. 57), which has 75 observations and represents the

cost of legal events for a business unit. The cost is measured in the U.S. dollars. To illustrate the

impact of data collection threshold on the selected models, we split the data set into two parts: losses

that are at least $195,000, which will be treated as observed and used for model building and VaR

estimation, and losses that are below $195,000, which will be used at the end of the exercise to assess

the quality of model-based predictions. This data-splitting scenario implies that there are 54 observed

losses. A quick exploratory analysis of the observed data shows that it is right-skewed and potentially

heavy-tailed, with the first quartile 248,342, median 355,000, and the third quartile 630,200; its mean

is 546,021, standard deviation 602,912, and skewness 3.8.

3.2 Model Fitting

We fit two models to the observed data, exponential and Lomax, and use three parametric approaches,

truncated, naive, and shifted. The truncation threshold is t = 195, 000. For the exponential model,

MLE formulas for σ are available in Section 2.3.1. For the Lomax distribution, we perform numerical

maximization of the log-likelihoods (2.3), (2.4), and (2.5) to compute parameter values. For the data

set under consideration, the resulting MLE values are reported in Table 4. Also, the corresponding

estimates for parameter variances and covariances were computed using Theorem A.3.

Table 4: Parameter MLEs (with variance and covariance estimates in parentheses)

of the exponential and Lomax models, using truncated, naive, and shifted approaches.

Model Truncated Naive Shifted

Exponential σ̂ = 351, 021
`
2.28 × 109

´
σ̂ = 546, 021

`
5.52× 109

´
σ̂ = 351, 021

`
2.28× 109

´

Lomax α̂ = 1.91 (0.569) α̂ = 22.51 (5, 189.86) α̂ = 1.91 (0.569)

θ̂ = 151, 234
`
3.84 × 1010

´
θ̂ = 11, 735, 899

`
1.54 × 1015

´
θ̂ = 346, 234

`
3.84× 1010

´
`

ccov(bα, bθ) = 138, 934
´ `

ccov(bα, bθ) = 2.82 × 109
´ `

ccov(bα, bθ) = 138, 934
´

3.3 Model Validation

To validate the fitted models we employ quantile-quantile plots (QQ-plots) and two goodness-of-fit

statistics, Kolmogorov-Smirnov (KS) and Anderson-Darling (AD).
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Figure 2: Fitted-versus-observed log-losses for exponential (top row) and Lomax (bottom row)

distributions, using truncated (left), naive (middle), and shifted (right) approaches.

In Figure 2, we present plots of the fitted-versus-observed quantiles for the six models of Section

3.2. In order to avoid visual distortions due to large spacings between the most extreme observations,

both axes in all the plots are measured on the logarithmic scale. That is, the points plotted in those

graphs are the following pairs:

(
log
(
Ĝ−1(ui)

)
, log

(
X(i)

))
, i = 1, . . . , 54,

where Ĝ−1 is the estimated parametric qf, X(1) ≤ · · · ≤ X(54) denote the ordered losses, and ui =

(i−0.5)/54 is the quantile level. For the truncated approach, Ĝ−1(ui) = F̂−1
(
ui+F̂ (195, 000)(1−ui)

)
;

for the naive approach, Ĝ−1(ui) = F̂−1(ui); for the shifted approach, Ĝ−1(ui) = F̂−1(ui) + 195, 000.

Also, the corresponding cdf and qf functions were evaluated using the MLE values from Table 4.

We can see from Figure 2 that Lomax models show a better overall fit than exponential models,

and especially in the extreme right tail. That is, most of the points in those plots do not deviate from
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the 45◦ line. The naive approach seems off, but the truncated and shifted approaches do a reasonably

good job for both distributions, with Lomax models exhibiting slightly better fits.

The KS and AD goodness-of-fit statistics measure, respectively, the maximum absolute distance

and the cumulative weighted quadratic distance (with more weight on the tails) between the empir-

ical cdf F̂n(x) = n−1
∑n

i=1 1{Xi ≤ x} and the parametrically estimated cdf Ĝ(x). Their respective

computational formulas are given by

KSn = max
1≤i≤n

{∣∣∣Ĝ(X(i)) −
i − 1

n

∣∣∣,
∣∣∣Ĝ(X(i)) −

i

n

∣∣∣
}

and

ADn = − n + n
n∑

i=1

(
i/n
)2

log

(
Ĝ(X(i+1))

Ĝ(X(i))

)
− n

n−1∑

i=0

(
1 − i/n

)2
log

(
1 − Ĝ(X(i+1))

1 − Ĝ(X(i))

)
,

where 195, 000 = X(0) ≤ X(1) ≤ · · · ≤ X(n) ≤ X(n+1) = ∞ denote the ordered claim severities.

Also, Ĝ(X(i)) = F̂∗(X(i)) for the truncated approach, Ĝ(X(i)) = F̂ (X(i)) for the naive approach, and

Ĝ(X(i)) = F̂ (X(i) − 195, 000) for the shifted approach. Note that n = 54 and the corresponding

cdf’s were evaluated using the MLE values from Table 4. Also, the p-values of the KS and AD tests

were computed using parametric bootstrap with 10,000 simulation runs. For a brief description of the

parametric bootstrap procedure, see, e.g., Klugman, Panjer, Willmot (2012, Section 20.4.5).

Table 5: Values of KS and AD statistics (with p-values in parentheses)

for the fitted models, using truncated, naive, and shifted approaches.

Kolmogorov-Smirnov Anderson-Darling

Model Truncated Naive Shifted Truncated Naive Shifted

Exponential 0.186 (0.004) 0.307 (0.000) 0.186 (0.004) 3.398 (0.000) 4.509 (0.000) 3.398 (0.000)

Lomax 0.072 (0.632) 0.316 (0.000) 0.072 (0.631) 0.272 (0.671) 4.696 (0.000) 0.272 (0.678)

As the results of Table 5 suggest, both naive models are strongly rejected by the KS and AD tests,

which is consistent with the conclusions based on QQ-plots. The truncated and shifted exponential

models are also rejected, which strengthens our “weak” decisions based on QQ-plots. Unfortunately,

for this data set, neither KS nor the AD test can help us with differentiating between the truncated

and shifted Lomax models as both of them fit the data very well.
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3.4 VaR Estimates

Having fitted and validated the models, we now compute several point and interval estimates of VaR(β)

for all six models. The purpose of calculating VaR(β) estimates for all, “good” and “bad,” models is to

see the impact that model fit (which is driven by the initial assumptions) has on the capital estimates.

The results are summarized in Table 6, where, for completeness, empirical estimates of VaR(β) are

also reported. The confidence intervals for the exponential models are derived using Theorem A.3 and

based on the variance estimates from Table 4. For the Lomax models, the confidence intervals are

obtained using parametric bootstrap with 10,000 simulation runs.

Table 6: VaR(β) estimates (with 95% confidence intervals in parentheses), measured in millions

and based on the fitted models, using truncated, naive, and shifted approaches.

Model β Truncated Naive Shifted

Exponential 0.95 1.052 (0.771; 1.332) 1.636 (1.199; 2.072) 1.247 (0.966; 1.527)

0.995 1.860 (1.364; 2.356) 2.893 (2.121; 3.665) 2.055 (1.559; 2.551)

0.999 2.425 (1.778; 3.071) 3.772 (2.766; 4.778) 2.620 (1.973; 3.266)

Lomax 0.95 0.576 (0.071; 1.160) 1.670 (1.134; 2.206) 1.514 (0.978; 2.755)

0.995 2.281 (0.413; 4.758) 3.114 (2.257; 5.023) 5.417 (2.213; 20.604)

0.999 5.504 (1.100; 13.627) 4.214 (3.019; 8.586) 12.797 (3.649; 89.992)

Empirical estimates of VaR(β): 1.416 (for β = 0.95) and 3.822 (for β = 0.995 and 0.999).

We see from the table that the VaR(β) estimates based on the naive approach significantly differ

from the rest. The difference between truncated and shifted estimates at the exponential model is

t = 195, 000. For the Lomax model, these two approaches, which exhibited nearly perfect fits to data,

produce substantially different estimates, especially at the very extreme tail. Finally, in view of such

large differences between parametric estimates (which resulted from models with excellent fits), the

empirical estimates do not seem completely off.

3.5 Model Predictions

As the final test of our models, we check their out-of-sample predictive power. Table 7 provides the

“unobserved” legal losses, which will be used to verify how accurate are our model-based predictions.

To start with, we note that the empirical and shifted models are not able to produce meaningful

predictions because they assume that such data were impossible to occur (i.e., F̂ (195, 000) = 0 for
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these two approaches). So now we work only with the truncated and naive models.

Table 7: Unobserved costs of legal events (below $195,000).

142,774.19 146,875.00 151,000.00 160,000.00 176,000.00 182,435.12 191,070.31

143,000.00 150,411.29 153,592.54 165,000.00 176,000.00 185,000.00 192,806.74

145,500.50 150,930.39 157,083.00 165,000.00 180,000.00 186,330.00 193,500.00

Source: Cruz (2002), page 57.

First of all, we report the estimated probabilities of losses below the data collection threshold,

F̂ (195, 000). For the exponential models it is 0.300 (naive) and 0.426 (truncated). For the Lomax

models it is 0.310 (naive) and 0.794 (truncated). Secondly, using these probabilities we can estimate the

total, observed and unobserved, number of losses. For the exponential models N̂ = 77.2 ≈ 77 (naive)

and N̂ = 94.1 ≈ 94 (truncated). For the Lomax models N̂ = 78.3 ≈ 78 (naive) and N̂ = 262.1 ≈ 262

(truncated). Note how different from the rest is the estimate of the truncated Lomax model. By the

way, one should not forget that this model exhibited the best statistical fit for the observed data.

For predictions that are verifiable, in Table 8 we report model-based estimates of the number of

losses, the average loss, and the total loss in the interval
[
150,000; 175,000

]
. We also provide the

corresponding 95% confidence intervals for the predictions. The intervals were constructed by using

the variance and covariance estimates of Table 4 in conjunction with Theorem A.3. Notice that using

the data points from Table 7 it is straightforward to verify that the actual number of losses is 8, the

average loss is 156,627, and the total loss is 1,253,017. We see from Table 8 that, except for the average

loss measure, there are big disparities in predictions between different approaches. This has mostly to

do with the quality of model fit for the given data set, which is good for the truncated Lomax model

but bad for the other models and/or approaches. As a consequence, 95% confidence intervals based

on the truncated Lomax model cover the actual values of two important measures—number of losses

(8) and total loss (1,253,017)—but those based on the truncated exponential model do not. Moreover,

both naive models fit the data poorly and produce point and interval predictions that are even further

from their respective targets than those of the truncated exponential model. In addition, if one chose

to ignore the model validation step and proceeded directly to predictions based on the naive models,

they would be (falsely) reassured by the consistency of such predictions (number of losses: 2.6 and

2.7; total loss: 426,197 and 441,155).
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Table 8: Model-based predictions (with 95% confidence intervals in parentheses)

of several statistics for the unobserved losses between $150,000 and $175,000.

Model Truncated Naive

number average total number average total
of losses loss loss of losses loss loss

Exponential 4.2 162,352 685,108 2.6 162,405 426,197
(3.0; 5.5) (162,312; 162,391) (452,840; 917,376) (1.9; 3.4) (162,379; 162,430) (141,592; 710,802)

Lomax 9.9 162,017 1,609,649 2.7 162,397 441,155
(3.3; 16.5) (161,647; 162,388) (543,017; 2,676,281) (1.8; 3.7) (162,343; 162,451) (288,324; 593,985)

4 Concluding Remarks

In this paper, we have studied the problem of model uncertainty in operational risk modeling, which

arises due to different (seemingly plausible) model assumptions. We have focused on the statistical

aspects of the problem by utilizing asymptotic theorems of mathematical statistics, Monte Carlo

simulations, and real-data examples. Similar to other authors who have studied some aspects of this

topic before, we conclude that:

• The naive and empirical approaches are inappropriate for determining VaR estimates.

• The shifted approach, although fundamentally flawed (simply because it assumes that opera-

tional losses below the data collection threshold are impossible), has the flexibility to adapt to

data well and successfully pass standard model validation tests.

• The truncated approach is theoretically sound, when appropriate fits data well, and (in our

examples) produces lower VaR-based capital estimates than those of the shifted approach.

The research presented in this paper invites follow-up studies in several directions. For example,

as the first and most obvious direction, one may choose to explore these issues for other, perhaps more

popular in practice, distributions such as lognormal or loggamma. If the chosen model lends itself to

analytic investigations, then our Example 1 (in Section 2.3) is a blueprint for analysis. Otherwise,

one may follow our Example 2 for a simulations-based approach. Second, VaR can be replaced by a

different risk measure. For instance, the Expected Shortfall (also known as Tail-VaR or Conditional

Tail Expectation) has some theoretical advantages over VaR (e.g., it is a coherent risk measure)
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and is a recommended measure in Swiss Solvency Test . Third, due to the theoretical soundness of

the truncated approach, one may try to develop model-selection strategies for truncated (but not

necessarily nested) models. This line of work, however, may be quite challenging due to “flatness” of

the truncated likelihoods, a phenomenon frequently encountered in practice (see Cope, 2011). The

fourth venue of research that may also help with the latter problem is robust model fitting. There

are several excellent contributions to this topic in the operational risk literature (see, e.g., Horbenko,

Ruckdeschel, Bae, 2011, Opdyke and Cavallo, 2012, and Chau, 2013), but more work can be done.

Acknowledgements

The authors are very appreciative of valuable insights and useful comments provided by two anonymous

referees, which helped to substantially improve the paper.

References

[1] AMA Group (2013). AMA Quantification Challenges: AMAG Range of Practice and Observa-

tions on “The Thorny LDA Topics”. Risk Management Association.

[2] Arnold, B.C. (2015). Pareto Distributions, 2nd edition. Chapman & Hall.

[3] Basel Coordination Committee (2014). Supervisory guidance for data, modeling, and model risk

management under the operational risk advanced measurement approaches. Basel Coordination

Committee Bulletin 14(1), 1–17.

[4] Baud, N., Frachot, A., Roncalli, T. (2002). Internal data, external data and consortium data

for operational risk measurement: How to pool data properly? Working Paper , Groupe de

Recherche Opérationnelle, Crédit Lyonnais, France.

[5] Brazauskas, V., Jones, B., Zitikis, R. (2015). Trends in disguise. Annals of Actuarial Science

9(1), 58–71.

[6] Cavallo, A., Rosenthal, B., Wang, X., Yan, J. (2012). Treatment of the data collection threshold

in operational risk: A case study with the lognormal distribution. Journal of Operational Risk

7(1), 3–38.

[7] Chau, J. (2013). Robust Estimation in Operational Risk Modeling . Master’s Thesis, Department

of Mathematics, Utrecht University.

[8] Chernobai, A.S., Rachev, S.T., Fabozzi, F.J. (2007). Operational Risk: A Guide to Basel II

Capital Requirements, Models, and Analysis. Wiley.

20



[9] Cope, E. (2011). Penalized likelihood estimators for truncated data. Journal of Statistical Plan-

ning and Inference 141(1), 345–358.

[10] Cruz, M.G. (2002). Modeling, Measuring and Hedging Operational Risk . Wiley.

[11] Cruz, M.G., Peters, G.W., Shevchenko, P.V. (2015). Fundamental Aspects of Operational Risk

and Insurance Analytics: A Handbook of Operational Risk , Wiley.

[12] de Fontnouvelle, P., DeJesus-Rueff, V., Jordan, J., Rosengren, E. (2006). Capital and risk: New

evidence on implications of large operational losses. Journal of Money, Credit, and Banking

38(7), 1819–1846.

[13] Ergashev, B., Pavlikov, K., Uryasev, S., Sekeris, E. (2016). Estimation of truncated data sam-

ples in operational risk modeling. Journal of Risk and Insurance 83(3), 613–640.

[14] Horbenko, N., Ruckdeschel, P., Bae, T. (2011). Robust estimation of operational risk. Journal

of Operational Risk 6(2), 3–30.

[15] Klugman, S.A., Panjer, H.H., Willmot, G.E. (2012). Loss Models: From Data to Decisions, 4th

edition. Wiley.

[16] Luo, X., Shevchenko, P.V., Donnelly, J.B. (2007). Addressing the impact of data truncation

and parameter uncertainty on operational risk estimates. Journal of Operational Risk 2(4),

3–26.

[17] Moscadelli, M., Chernobai, A., Rachev, S.T. (2005). Treatment of missing data in the field of

operational risk: The impacts on parameter estimates, EL and UL figures. Operational Risk

6(6), 28–34.

[18] Office of the Comptroller of the Currency (2011). Supervisory guidance on model risk manage-

ment. SR Letter 11(7), 1–21.

[19] Opdyke, J.D. (2014). Estimating operational risk capital with greater accuracy, precision, and

robustness. Journal of Operational Risk 9(4), 3–79.

[20] Opdyke, J.D., Cavallo, A. (2012). Estimating operational risk capital: The challenges of trun-

cation, the hazards of maximum likelihood estimation, and the promise of robust statistics.

Journal of Operational Risk 7(3), 3–90.

[21] Serfling, R.J. (1980). Approximation Theorems of Mathematical Statistics. Wiley.

[22] Shevchenko, P., Temnov, G. (2009). Modeling operational risk data reported above a time-

varying threshold. Journal of Operational Risk 4(2), 19–42.

Appendix

In this appendix, we provide some theoretical results that are key to analytic derivations in the paper.

Specifically, in Section A.1, the generalized Pareto distribution (GPD) is introduced and a few of its
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special and limiting cases are discussed. In Section A.2, the asymptotic normality theorems for sample

quantiles (equivalently, value-at-risk or VaR) and the maximum likelihood estimators (MLE) of model

parameters are presented. The well-known delta method is also provided in this section.

A.1 Generalized Pareto Distribution

The cumulative distribution function (cdf) of the three-parameter GPD is given by

F
GPD(µ, σ, γ)(x) =





1 − (1 + γ(x − µ)/σ)−1/γ , γ 6= 0,

1 − exp (−(x − µ)/σ) , γ = 0,
(A.1)

and the probability density function (pdf) by

f
GPD(µ, σ, γ)(x) =





σ−1 (1 + γ(x − µ)/σ)−1/γ−1 , γ 6= 0,

σ−1 exp (−(x − µ)/σ) , γ = 0,
(A.2)

where the pdf is positive for x ≥ µ, when γ ≥ 0, or for µ ≤ x ≤ µ − σ/γ, when γ < 0. The

parameters −∞ < µ < ∞, σ > 0, and −∞ < γ < ∞ control the location, scale, and shape of

the distribution, respectively. Note that when γ = 0 and γ = −1, the GPD reduces to the shifted

exponential distribution (with location µ and scale σ) and the uniform distribution on [µ;µ + σ ],

respectively. If γ > 0, then the Pareto-type distributions are obtained. In particular:

• Choosing 1/γ = α, σ/γ = θ, and µ = θ leads to what actuaries call a single-parameter Pareto

distribution, with the scale parameter θ > 0 (usually treated as known deductible) and shape

α > 0.

• Choosing 1/γ = α, σ/γ = θ, and µ = 0 yields the Lomax distribution with the scale parameter

θ > 0 and shape α > 0. (This is also known as a Pareto II distribution.)

For a comprehensive treatment of Pareto distributions, the reader may be referred to Arnold (2015),

and for their applications to loss modeling in insurance, see Klugman, Panjer, Willmot (2012).

A useful property for modeling operational risk with the GPD is that the truncated cdf of excess

values remains a GPD (with the same shape parameter γ), and it is given by

P
{
X ≤ x

∣∣X > t
}

=
P{t < X ≤ x}

P{X > t} = 1 −
(

1 + γ
x − t

σ + γ(t − µ)

)−1/γ

, x > t, (A.3)
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where the second equality follows by applying (A.1) to the numerator and denominator of the ratio.

In addition, besides functional simplicity of its cdf and pdf, another attractive feature of the

GPD is that its quantile function (qf) has an explicit formula. This is especially useful for model

diagnostics (e.g., quantile-quantile plots) and for risk evaluations based on VaR measures. Specifically,

for 0 < u < 1, the qf is found by inverting (A.1) and given by

F−1
GPD(µ, σ, γ)(u) =





µ + (σ/γ)
(
(1 − u)−γ − 1

)
, γ 6= 0,

µ − σ log(1 − u), γ = 0.
(A.4)

A.2 Asymptotic Theorems

Suppose X1, . . . ,Xn represent a sample of independent and identically distributed (i.i.d.) continuous

random variables with cdf G, pdf g, and qf G−1, and let X(1) ≤ · · · ≤ X(n) denote the ordered sample

values. We will assume that g satisfies all the regularity conditions that usually accompany theorems

such as the ones formulated below. (For more details on this topic, see, e.g., Serfling, 1980, Sections

2.3.3 and 4.2.2.) Note that a review of modeling practices in the U.S. financial service industry

(see AMA Group, 2013) suggests that practically all the severity distributions in current use would

satisfy the regularity assumptions mentioned above. In view of this, we will formulate “user friendly”

versions of the most general theorems, making them easier to work with. Also, throughout the paper

the notation AN is used to denote “asymptotically normal.”

Since VaR measure is defined as a population quantile, say G−1(β), its empirical estimator is

the corresponding sample quantile X(⌈nβ⌉), where ⌈·⌉ denotes the “rounding up” operation. We start

with the asymptotic normality result for sample quantiles. Proofs and complete technical details are

available in Section 2.3.3 of Serfling (1980).

Theorem A.1 [Asymptotic Normality of Sample Quantiles]

Let 0 < β1 < · · · < βk < 1, with k > 1, and suppose that pdf g is continuous, as discussed above.

Then the k-variate vector of sample quantiles
(
X(⌈nβ1⌉), . . . ,X(⌈nβk⌉)

)
is AN with the mean vector

(
G−1(β1), . . . , G

−1(βk)
)

and the covariance-variance matrix
[
σ2

ij

]k
i,j=1

with the entries

σ2
ij =

1

n

βi(1 − βj)

g(G−1(βi))g(G−1(βj))
.
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In the univariate case (k = 1), the sample quantile

X(⌈nβ⌉) is AN
(

G−1(β),
1

n

β(1 − β)

g2(G−1(β))

)
.

Clearly, in many practical situations the univariate result will suffice, but Theorem A.1 is more

general and may be used, for example, to analyze business decisions that combine a set of VaR

estimates.

The main drawback of statistical inference based on the empirical model is that it is restricted

to the range of observed data. For the problems encountered in operational risk modeling, this is a

major limitation. Therefore, a more appropriate alternative is to estimate VaR parametrically, which

first requires estimates of the distribution parameters and then those values are applied to formula of

G−1(β) to find an estimate of VaR. The most common technique for parameter estimation is MLE.

The following theorem summarizes its asymptotic distribution. (Description of the method, proofs

and complete technical details are available in Section 4.2 of Serfling, 1980.)

Theorem A.2 [Asymptotic Normality of MLEs]

Suppose pdf g is indexed by k unknown parameters, (θ1, . . . , θk), and let
(
θ̂1, . . . , θ̂k

)
denote the MLE

of those parameters. Then, under the regularity conditions mentioned above,

(
θ̂1, . . . , θ̂k

)
is AN

((
θ1, . . . , θk

)
,

1

n
I−1

)
,

where I =
[
Iij

]k
i,j=1

is the Fisher information matrix, with the entries given by

Iij = E

[
∂ log g(X)

∂θi
· ∂ log g(X)

∂θj

]
.

In the univariate case (k = 1),

θ̂ is AN


θ,

1

n

1

E
[ (

∂ log g(X)
∂θ

)2 ]


 .

Having parameter MLEs,
(
θ̂1, . . . , θ̂k

)
, and knowing their asymptotic distribution is useful. Our

ultimate goal, however, is to estimate VaR—a function of
(
θ̂1, . . . , θ̂k

)
—and to evaluate its properties.

For this we need a theorem that would specify asymptotic distribution of functions of asymptotically
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normal vectors. The delta method is a technical tool for establishing asymptotic normality of smoothly

transformed asymptotically normal random variables. Here we will present it as a direct application

to Theorem A.2. For the general theorem and complete technical details, see Serfling (1980, Section

3.3).

Theorem A.3 [The Delta Method]

Suppose that
(
θ̂1, . . . , θ̂k

)
is AN with the parameters specified in Theorem A.2. Let the real-valued

functions h1 (θ1, . . . , θk) , . . . , hm (θ1, . . . , θk) represent m different risk measures, tail probabilities or

other functions of model parameters. Then, under some smoothness conditions on functions h1, . . . , hm,

the vector of MLE-based estimators

(
h1

(
θ̂1, . . . , θ̂k

)
, . . . , hm

(
θ̂1, . . . , θ̂k

))
is AN

((
h1 (θ1, . . . , θk) , . . . , hm (θ1, . . . , θk)

)
,

1

n
DI−1D′

)
,

where D = [dij ]m×k is the Jacobian of the transformations h1, . . . , hm evaluated at (θ1, . . . , θk), that

is, dij = ∂hi/∂θ̂j

∣∣∣
(θ1,...,θk)

. In the univariate case (m = 1), the parametric estimator

h
(
θ̂1, . . . , θ̂k

)
is AN

(
h (θ1, . . . , θk) ,

1

n
dI−1d′

)
,

where d =
(
∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣
(θ1,...,θk)

.
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