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Abstract. Episode Treatment Groups (ETGs) classify related services into medically

relevant and distinct units describing an episode of care. Proper model selection for those

ETG based costs is essential to adequately price and manage health insurance risks. The

optimal claim cost model (or model probabilities) can vary depending on the disease.

We compare four potential models (lognormal, gamma, log-skew-t, and Lomax) using

four different model selection methods (AIC and BIC weights, Random Forest feature

classification, and Bayesian model averaging) on 320 episode treatment groups. Using the

data from a major health insurer, which consists of more than 33 million observations

from 9 million claimants, we compare the various methods on both speed and precision,

and also examine the wide range of selected models for the different ETGs. Several case

studies are provided for illustration. It is found that Random Forest feature selection is

computationally efficient and sufficiently accurate, hence being preferred in this large data

set. When feasible (on smaller data sets), Bayesian model averaging is preferred because

of the posterior model probabilities.
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Random Forest.
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1 Introduction

Predictive analytics in healthcare has been gaining popularity as the power of data are more exten-

sively harnessed and revealed in practice. Through the development of lab and diagnostic tests, our

healthcare related data has multiplied to the point that we have terabytes of information to be evalu-

ated. From the health plan insurer’s point of view, predictive modeling can dramatically help with cost

control, pricing, reserving, risk management and marketing. Duncan (2011) comprehensively reviewed

healthcare risk adjustment and predictive modeling using models for predicting health costs such as

the generalized linear model, tree-based models and artificial neural networks with applications in

Medicaid/Medicare risk adjustment and other areas. Dove et al . (2003) described the development

and validation of a predictive model designed to identify and target HMO members who are likely to

incur high costs. Frees et al . (2011) model total health expenditures through multiple events using

two-part models.

Symmetry Episode Treatment Groups (ETGs) were introduced and patented by OPTUM as an

episode grouper for medical and pharmacy claims. They combine related services into a distinct

medically relevant unit describing a complete episode of care, thus applying to diverse groups such as

healthcare providers, researchers and administrators. ETGs have been used to look at the quality of

care and efficiency of outcomes for specific illnesses (see, for example, Leary et al ., 1997, and Forthman

et al ., 2000, 2005, 2010). Health insurers are interested in better understanding the potential future

costs of their book of business. With ETGs, we can see how much each patient spent on any disease

in a year. Then we can incorporate information about the disease profile of the book of business going

forward to better estimate future claim costs. Symmetry ETGs are currently used by more than 300

healthcare plans and their providers in the United States and similar groupings are used globally.

When modeling the annual costs for a single ETG across the book of business, the choice of model

is important. The statistical cost distribution of lower cost, more common diseases will have a very

different shape than that of rare, high cost diseases. As a set of possibles models, we chose four

different distributions (gamma, lognormal, Lomax, and log-skew-t) with varying tail thickness and

skewness. In this paper, we compare three different methods to find the optimal model for each ETG.

We explore the relationship between speed and accuracy among the methods. In Section 2, we describe
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our dataset. In Section 3, we describe the four candidate distributions and the three different model

selection techniques to choose among them. In Section 4, we perform a simulation study to compare

how well the three techniques work. In Section 5, we apply the methods to our actual claims data. In

Section 6, we conclude and give suggestions for implementation.

2 Data

We are using ETG cost data from a major national health insurer. It has 33 million sample observations

from 9 million claimants. Each row in our dataset contains the total cost to the insurer from July

2011 through June 2012 on claims associated with a given ETG. For example, imagine policyholder

John had both iron deficiency anemia (ETG 2082) and personality disorder (ETG 2394) between July

2011 and June 2012. He did not use his health insurance for any other reason than to treat those two

diseases, but cost the insurance company $1450 treating his anemia and another $2500 treating his

personality disorder. His rows in our dataset would be:

Table 2.1: Example data rows for John.

Policy ID ETG Cost

123 2082 1450

123 2394 2500

For those policyholders without claim cost on certain ETGs, there is no zero record for them in

the data set. There are 347 ETGs in all, including 320 non-routine ETGs, such as AIDS, hemophilia,

and personality disorder. We only consider those non-routine ETGs in this paper because the routine

ETGs (e.g., physical exams, standard checkups, immunizations) are rather consistent from year to

year. They are not worth the effort to model. Basic summary statistics for a range of non-routine

ETGs are shown in Table 2.2 for illustration. The ETGs were chosen to exemplify the differences in

shape and scale among the costs for the different diseases.
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Table 2.2: Dictionary and summary statistics for selected non-routine ETGs.

ETG Number of Policies ETG Description Mean Standard

Code with Non-Zero Costs Deviation

1301 13,534 AIDS 15,570 25,246

1635 2,679 Hyper-functioning adrenal gland 2,035 8,963

1640 1,162 Hypo-functioning parathyroid gland 1,704 6,314

2068 16,554 Agranulocytosis 4,677 17,923

2070 822 Hemophilia 94,343 303,552

2080 944 Anemia of chronic diseases 2,434 10,943

2082 49,409 Iron deficiency anemia 1,772 5,208

2394 1,550 Personality disorder 1,718 5,263

3868 42,401 Congestive heart failure 10,870 56,777

4370 50 Lung transplant 461,226 338,683

4744 4,162 Trauma of stomach or esophagus 6,562 10,994

7112 1,668 Juvenile rheumatoid arthritis 7,193 27,441

The histograms of these costs both on the original and log scale give insight into the skewness and

tail thickness of the data. Although the ETGs show similar shape with a heavy tail and right skewness

on the original scale, the histograms for those costs on the log scale vary among different ETGs. The

histograms for three selected ETGs are shown in Figure 2.1. The costs for each ETG vary greatly in

both shape and scale.
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Figure 2.1: Histograms of cost (left panel) and log-cost (right panel) for three ETGs: 2070, 2394, 5554.

3 Methods

Our methods take a set of candidate distributions, and determine which distribution (or weighted

average of distributions) best fits a set of data. In our application, we chose a set of plausible can-

didate distributions based on our exploration of the data and recognizing that our claim cost data is

constrained to be positive. We chose to consider the lognormal, gamma, Lomax, and log-skew-t dis-

tributions in this paper. Lognormal and gamma distributions are widely used in numerous fields (see,

e.g., Kleiber and Kotz, 2003). The Lomax distribution is essentially a Pareto distribution that has

been shifted so that its support begins at zero (see, Klugman et al ., 2012). The log-skew-t distribution

is a continuous probability distribution of a random variable whose logarithm is skew-t distributed.

The skew-t distribution generalizes the t distribution to allow for non-zero skewness. The skew-t dis-

tribution is extensively investigated as a promising candidate for both theoretical and empirical work

in actuarial science (see, e.g., Ferreira and Steel, 2007; Jones and Faddy, 2003; Eling, 2012). The
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density functions of the four distributions have different shapes and tail thicknesses, but all have been

used in business, economics, and actuarial modeling.

For each ETG, we will determine the optimal distribution using three different model selection

techniques: AIC and BIC weights, parallel model selection, and random forest feature classification.

3.1 AIC and BIC Weights

AIC and BIC are measures of model fit. In both cases, the statistic is penalized by the complexity

of the model so that the chosen model is only as complex as necessary. When comparing multiple

potential distributions, the AIC (or BIC) can be computed for each distribution and the one with the

smallest AIC is chosen as optimal. However, many studies, such as Shtatland et al (2000), show that

choosing a single optimal model from AIC or BIC can be computationally expensive (depending on

the likelihood to maximize) and have other disadvantages including, as Kuha (2004) shows, that while

both AIC and BIC are generally good approximations of their own theoretical target quantities, they

can still fail in some very simple examples. Rather than simply looking for an AIC-optimal or BIC-

optimal model, we calculate the AIC and BIC weights. These weights can be easily calculated from

the raw AIC/BIC values, and provide an approximation as the probabilities of each model being the

best model in an AIC or BIC sense. Burnham and Anderson (2002) presented a way to approximate

the probability that a chosen distribution is optimal. These approximations are known as AIC (or

BIC) weights and are computed as follows,

wAIC

i =
exp(−∆AIC

i
/2)

∑
K

k=1 exp(−∆AIC

k
/2)

with ∆AIC

i = aici − min {aic1, . . . ,aicK} ,

wBIC

i =
exp(−∆BIC

i
/2)

∑
K

k=1 exp(−∆BIC

k
/2)

with ∆BIC

i = bici − min {bic1, . . . ,bicK} ,

where K denotes the number of candidate models.

3.2 Bayesian Inference and Parallel Model Selection

Parallel model selection (Congdon, 2006) is a Bayesian method which estimates the posterior prob-

abilities of each distribution being the best, enabling model averaging and providing deeper insights

into the relationships between the distributions. The uncertainty in the model-selection process can

also be explicitly assessed. We selected the priors of the parameters in the various candidate models to
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be semi-informative. Using fully non-informative priors overly penalizes complex distributions (those

with a large number of parameters). The priors are defined in Table 3.2.

Table 3.2: Prior distribution settings.

Candidate Model Prior Number of Thinned Number of Burn-in

(Parameters) Distributions Samples Per Chain Samples Per Chain

lognormal µ ∼ normal (6, 5) 30,000 20,000

(µ, τ) τ ∼ gamma (4, 4.5)

gamma τ ∼ gamma (2, 3)

(τ, ν) ν |ω ∼ exponential (ω) 50,000 35,000

ω ∼ uniform (0.01, 10)

log-skew-t α ∼ normal (50, 4)

(α, ξ, ν,Ω) ξ | θ ∼ normal (θ, 7)

ν ∼ exponential (0.25) 300,000 260,000

Ω ∼ inverse gamma (6, 1)

θ ∼ normal (0, 5)

Lomax λ ∼ gamma (2, 3)

(λ, α) α |ω ∼ exponential (ω) 300,000 20,000

ω ∼ uniform (0.01, 10)

We used the LaplaceDemon package in R to perform parallel MCMC algorithms. Several al-

gorithms were tried and compared, such as Hit-and-Run Metropolis (Chen and Schmeiser, 1993),

No-U-Turn Sampler (Hoffman and Gelman, 2014; Bai, 2009), and Hamiltonian Monte Carlo (Neal,

2011). We ran three chains in most cases, each in parallel, where a sequence x1, x2, . . . of random

elements of some set is a Markov chain if the conditional distribution of xn+1 given x1, . . . , xn de-

pends on xn only. The three MCMC chains initialized with different starting values. The other two

important settings are burn-in size and thinned sample size. Burn-in sample size refers to the number

of samples discarded from the initial portion of a Markov chain so that the effect of initial values on

the posterior inference is minimized. Thinning is used to reduce sample autocorrelation by keeping

every kth simulated draw from the sequence. In our application, we thinned our samples to every 10th

observation. This reduced the autocorrelation to an acceptable level, less than 0.1.

3.3 Random Forest Feature Classification

Computational speed is always an issue in large-scale analytics. Therefore, it is desirable to find a

faster approach for large data sets which does not sacrifice too much accuracy. To this end, we can
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think about the model selection process in a new way. We have four (in our case) possible groups

that each set of ETG observations can be classified into, those best described by each distribution.

Then the model selection problem becomes a classification problem where the explanatory variables

are the features of the data and the response variable is the chosen distribution. Random forests can

select a model for ETG-based groups of losses by constructing many decision trees during the training

phase and allowing the trees to each choose an optimal model. The model selected is then the model

selected by the most trees. For more information about random forests, see Breiman (2001) or Hastie

et al . (2009).

To classify the datasets, we need to find some set of features to compare. Using all the observations

will ensure that the maximum amount of information is used, but is also the most computationally

expensive. We have experimented with two different sets of potential features, moment-based and

percentile-based.

• Moment-based characteristics (e.g., mean, standard deviation, coefficient of variation, skewness,

and kurtosis) for raw data and the same measures for log-data.

• Percentile-based characteristics (e.g., 10th, 25th, 50th, 75th, 90th percentiles, median absolute

deviation, and interquartile range) for raw data and the same measures for log-data.

We then compare the features of the individual ETG data to the features of data simulated from

the candidate distribution. For example, we simulate many datasets from a gamma distribution with

a range of reasonable parameters. We then calculate the summary statistics for each of those datasets.

Since we know those statistics came from a gamma distribution, we use them to train the random

forests. The random forest then looks at our data and decides which known distribution the data most

resembles.

To determine which set of features we are going to use in our model, we compared the out-of-bag

error rate (similar to leave-one-out cross validation) when we use each set of summary statistics (and

both). The results are presented in Table 3.4.
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Table 3.4: Performance of moment-based features versus percentile-based features
in the simulated data.

Candidate Models Used Feature Selection Out-of-Bag

Error Rate

lognormal, gamma, Lomax Moment-based features only 0.25%

Percentile-based features only 1.00%

Both types of features 0.08%

lognormal, gamma, Lomax, log-skew-t Moment-based features only 3.53%

Percentile-based features only 13.63%

Both types of features 2.01%

The performance of RF also depends on the difficulty of the tasks. If the set of possible distri-

butions have obvious distinguishable features (the lognormal, gamma and Lomax distributions are

very similar), RF would recognize that and the misclassification rate would be very low. But if the

distributions are quite similar, then it is more difficult to distinguish the models. The more candidate

distributions with similar characteristics, the worse the random forest performs.

Table 3.5 shows the RF classification results on simulated in-sample data and Table 3.6 shows the

results on the simulated but out-of-sample data.

Table 3.5: Random forest classification results on in-sample data.

Candidate Models Used Number of Trees Number of Vars Out-of-Bag

in Random Forest Used at Each Split Error Rate

lognormal, gamma, Lomax, log-skew-t 4,000 6 0.25%

lognormal, gamma, Lomax 4,000 6 0.00%

Table 3.6: Random forest classification results on out-of-sample data.

Candidate Models Used Misclassification Rate

lognormal, gamma, Lomax, log-skew-t 23.8%

lognormal, gamma, Lomax 1.2%
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Figure 3.1: Multidimensional scaling plots of proximity matrix for two scenarios.

Multidimensional scaling is an ordination technique to visualize the level of similarity between

individual cases in a data set. It aims to place each object in n-dimensional space such that the

between-object distances are preserved as far as possible. In Figure 3.1, the statistical features of

each data set are represented by a point in a two dimensional space. The points are arranged in

this space so that the distances between pairs of points relates to the similarities among the pairs of

objects. That is, two similar objects are represented by two points that are close together, and two

dissimilar objects are represented by two points that are far apart. Tables 3.5 and 3.6 tell us that if

only three distributions (gamma, lognormal, Lomax) are considered, they are easily distinguishable.

When the log-skew-t distribution is added to the mix, the plot shows that it is very similar to the

Lomax distribution. Thus, it is clear that the most difficult task is classification between all four

distributions (lognormal, gamma, log-skew-t, Lomax) because the points from different distributions

cannot be easily distinguished.

4 Simulation Study

To further explore the differences between the three model selection techniques, we set up a simulation

study. (For the simulation study and the analyses in the next section we used R.) First, we use the

MLE approach to fit the four distributions on the same real ETG data. And then we use these MLE-

fitted models to simulate four random samples with 600 observations each that follows one of the
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lognormal, gamma, log-skew-t, and Lomax distributions. Then, we apply the three model selection

methodologies (AIC weights, RF, Bayesian) to the simulated data sets and check how accurately each

approach identifies the true model. Our findings are summarized in Table 4.1.

Table 4.1: Model selection accuracy: AIC weights, Random Forest, Bayesian.

Model Selection Selected Distribution Used to Simulate Data

Methodology Distribution lognormal gamma log-skew-t Lomax

AIC weights lognormal 75.81% 0.00% 24.19% 0.00%

gamma 0.00% 94.42% 5.58% 0.00%

log-skew-t 0.00% 0.00% 93.91% 6.09%

Lomax 0.00% 0.00% 27.81% 72.19%

Random Forest lognormal 99.70% 0.00% 0.10% 0.20%

gamma 11.30% 62.75% 15.00% 10.95%

log-skew-t 0.08% 0.03% 67.58% 32.33%

Lomax 0.03% 0.00% 43.98% 56.00%

Bayesian lognormal 100.00% 0.00% 0.00% 0.00%

gamma 1.90% 93.90% 3.14% 1.06%

log-skew-t 0.00% 0.00% 100.00% 0.00%

Lomax 0.23% 0.00% 38.54% 61.23%

In each 4×4 matrix in Table 4.1, if the probabilities on the diagonals are close to 100%, the method

accurately selects the true model. From the results, we can observe and compare level of the model

uncertainty and prediction power over different methods. Though the most computationally intense of

the three methods, on an average sense, Bayesian performs best because it exactly identifies lognormal

and log-skew-t distributions and it is slightly less certain about gamma and Lomax compared to AIC

weights. AIC weights did a good job on average. Random Forest performs slightly more poorly than

the other two, but it still can almost surely identify the model with the best fit. Especially when we

need to deal with big data sets, its efficiency is valuable without losing much accuracy.

5 Results

The weights wAIC

i
are known as AIC weights or Akaike weights. Similarly, the weights wBIC

i
are called

the BIC weights. For illustrative purposes, the AIC values and Akaike weights on four models for

selected ETGs (see Table 2.2) are provided in Table 5.1.

10



Table 5.1: Akaike weights and AIC values for the four candidate models and selected ETGs.

ETG Akaike weights AIC values

Code lognormal gamma log-skew-t Lomax lognormal gamma log-skew-t Lomax

1301 0.000 0.000 1.000 0.000 288,909 289,613 286,796 287,556

1635 0.000 0.000 1.000 0.000 44,022 46,907 43,765 43,808

1640 0.000 0.000 1.000 0.000 18,640 19,920 18,567 18,617

2068 0.000 0.000 1.000 0.000 286,108 299,983 285,891 285,954

2070 0.882 0.000 0.118 0.000 17,897 18,309 17,901 17,930

2080 0.000 0.000 0.998 0.002 14,755 15,835 14,684 14,697

2082 0.000 0.000 1.000 0.000 725,294 760,699 724,756 726,749

2394 0.000 0.000 1.000 0.000 25,175 26,374 25,144 25,182

3144 0.001 0.000 0.990 0.009 328 344 315 324

3169 0.000 0.000 1.000 0.000 2,508,992 2,606,074 2,508,562 2,511,985

3868 0.000 0.000 1.000 0.000 797,694 837,377 797,623 799,257

4370 0.002 0.087 0.816 0.095 1,416 1,408 1,404 1,408

4744 0.000 0.000 1.000 0.000 80,732 81,476 80,539 80,580

7112 0.000 0.000 0.973 0.027 30,786 32,166 30,766 30,773

For those randomly selected ETGs, the distributions for some ETGs such as ETG-1301 and ETG-

3868 are immediately apparent. The log-skew-t distribution is also dominant for ETG-2080 and

ETG-3144. It indicates that AIC values and Akaike weights have a strong preference for the log-skew-t

distribution for most of these data sets. However, there are exceptions. For ETG-2070, the probability

spreads between two distributions: 0.882 probability to lognormal model and 0.118 probability to the

log-skew-t. And for ETG-4370, the probability spreads among all four distributions: 0.002 probability

for the lognormal model, 0.087 probability for the gamma distribution, 0.816 probability for the log-

skew-t distribution and 0.095 probability for the Lomax distribution.

Next, we applied parallel model selection to the same randomly selected ETGs; the posterior model

probabilities are given in Table 5.2. The optimal distributions for some ETGs such as hemophilia,

AIDS, and agranulocytosis are immediately apparent. The lognormal distribution is also dominant

for lung transplants and many others. For personality disorder, the probability spreads between two

distributions: 0.783 probability to lognormal model and 0.217 probability to the log-skew-t.

In addition to improved understanding of the data, these probabilities can be used for model

averaging. When one model is dramatically better than the others, only knowing the best model will

be sufficient. When the potential models are very similar in their fit for some data sets, a simulation
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should account for that model uncertainty by drawing a proportion of the simulations from each of

the models that fit the data well. For example, to simulate future ETG cost streams for personality

disorder, 78.3% samples can be drawn from lognormal distribution, and 21.7% of the samples drawn

from log-skew-t. Under the standard methods, the proper model proportions are unknown.

Table 5.2: Posterior model probabilities using parallel model selection for selected ETGs.

ETG Code ETG Description lognormal gamma log-skew-t Lomax

1301 AIDS 0.000 0.000 1.000 0.000

1635 Hyper-functioning adrenal gland 0.000 0.000 1.000 0.000

1640 Hypo-functioning parathyroid gland 0.000 0.000 1.000 0.000

2068 Agranulocytosis 0.000 0.000 1.000 0.000

2070 Hemophilia 1.000 0.000 0.000 0.000

2080 Anemia of chronic diseases 0.000 0.000 1.000 0.000

2082 Iron deficiency anemia 0.000 0.000 1.000 0.000

2394 Personality disorder 0.783 0.000 0.217 0.000

3868 Congestive heart failure 0.450 0.000 0.550 0.000

4370 Lung transplant 0.999 0.000 0.001 0.000

4744 Trauma of stomach or esophagus 0.000 0.000 1.000 0.000

7112 Juvenile rheumatoid arthritis 0.999 0.000 0.001 0.000

The three methodologies vary widely in computational burden. For our entire dataset, the random

forest methodology was very fast (2 minutes), the AIC/BIC weights were somewhat slower (4 hours),

and the parallel model averaging was the slowest (4 weeks). Please note that all these model selections

had to be made in sequence because we were limited to the laptop for computation. If the MCMC

chains were run in parallel, the computational time would likely be reduced by about an order of 300

(4 weeks reduced to a few hours).

Now we explore how consistent the RF and AIC methodologies are in selecting the same model

(for all 320 ETGs). First, in Table 5.3, we only use three distributions (lognormal, gamma, Lomax)

as candidates for model selection. Those three distributions have obvious distinguishable features. In

the 3× 3 matrix, RF and AIC agree on all the 197 ETGs model selections on the diagonal. For some

ETGs, compared to RF, AIC prefers lognormal to Lomax.
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Table 5.3: Comparison of model assignments by RF and AIC for all 320 ETGs
(when three candidate models used).

Distribution Distribution Selected by AIC RF

Selected by RF lognormal gamma Lomax Total

lognormal 100 11 19 130

gamma 1 5 3 9

Lomax 87 2 92 181

AIC Total 188 18 114 320

Next, in Table 5.4, we use four distributions (lognormal, gamma, Lomax, log-skew-t). AIC has an

apparent preference for the log-skew-t distribution because it selects this model for 292 of 320 ETGs.

Random forest also selects the log-skew-t distribution for most ETGs, but at the same time it assigns

131 ETGs to lognormal distribution. One common theme is that none of the methods select the gamma

distribution for any ETG. That is understandable because compared to other distributions, gamma is

relatively light tailed. Given the heavy tails for most ETG costs, once the log-skew-t distribution is

one of the candidates, no method selected the gamma distribution as the best model.

Table 5.4: Comparison of model assignments by RF and AIC for all 320 ETGs
(when four candidate models used).

Distribution Distribution Selected by AIC RF

Selected by RF lognormal gamma Lomax log-skew-t Total

lognormal 23 0 2 106 131

gamma 0 0 0 0 0

Lomax 1 0 1 25 27

log-skew-t 0 0 1 161 162

AIC Total 24 0 4 292 320

6 Conclusions

Predictive modeling has grown to be a powerful tool in healthcare in terms of cost control, pricing,

reserving, marketing and risk management. ETGs (Episode Treatment Groups) were introduced

for identifying and classifying an entire episode of care for evidence-based medicine and healthcare

management reporting. In spite of ETGs wide use, how to effectively use ETGs for health plan risk

management is still an outstanding and interesting issue from the insurers point of view. This research
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aims to investigate the application of ETGs in health plan risk management, with a focus on model

selection for those ETG-based costs. In this paper, we compared four potential models: lognormal,

gamma, log-skew-t, and Lomax; where gamma is the default distribution for positive continuous

explanatory variables in practice. None of the methods select the gamma distribution as the best

model for any of the 320 different ETGs. Thus, one needs to be cautious when using a gamma model

for heavy-tailed data.

In addition to model selection and averaging, this paper also contributes by recommending vari-

ous model selection techniques for different data sizes and goals of the analyst. The four techniques

considered in this paper are AIC weights, BIC weights, Bayesian parallel model selection and Random

Forest feature classification. AIC and BIC are commonly used maximum likelihood driven information

criteria, and try to balance good fit with parsimony. BIC generally penalizes free parameters more

strongly than AIC, but in our experiments their results are quite similar. Parallel model selection

can yield us the probabilities of each model being the best given the data among all models under

consideration, enabling model averaging and providing deeper insights into the relationships between

the models. Since we have 33 million ETG cost observations from 9 million claimants, we proposed

random forest feature classification in order to achieve greater computational efficiency. Since the

random forest model selection is based on summary statistics rather than the original big data sets,

computing time is significantly reduced. Our results show that random forest only takes 2 minutes

for the whole dataset, but AIC/BIC needs around 4 hours. Parallel model selection may need ap-

proximately 4 weeks with our computing constraints. With better computing resources, especially the

ability to run more processes in parallel, can reduce the computing time for parallel model selection

to a few hours. Furthermore, we compared the accuracy among the four methods. On average, the

parallel model selection approach performs best because it exactly identifies lognormal and log-skew-t

distribution, though is less certain about gamma and Lomax compared to AIC weights. AIC weights

also did a good job on average. Random Forest performs a little bit worse than the other two, but it

still can generally identify the model with the best fit. Especially when we need to deal with big data,

its efficiency is valuable without losing much accuracy.

When looking to implement these methods, please note that model averaging has as one of its

special cases using a single model to fit a dataset (i.e., all of the probability mass ends up with a single
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model). Because our methods are finding the best model to fit (and predict from) our data, if a single

model is best it will be selected. We actually saw that occur in a good number of our ETGs. Model

averaging is only a superior approach when it beats using a single model, and it has to compete every

time. There is also a non-zero structural cost to using a more complicated model. The modelers will

have to be educated on the method and IT staff will have to implement it. The size of this cost varies

greatly depending on the company and the application. Because of that variance, we chose to exclude

that consideration from our model.

As a part of our future work, we plan to investigate the possible dependence among ETGs, and

try to incorporate ETGs into risk assessment regression framework, as well as disease specific product

design and pricing.
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