
Comparing the Riskiness of Dependent Portfolios

via Nested L-Statistics

Ranadeera Gamage Madhuka Samanthi1

Central Michigan University

Wei Wei2

University of Wisconsin-Milwaukee

Vytaras Brazauskas3

University of Wisconsin-Milwaukee

To appear in Annals of Actuarial Science

( Submitted : December 18, 2015 Revised : May 17, 2016; August 11, 2016 Accepted : August 25, 2016 )

Abstract. A nonparametric test based on nested L-statistics and designed to compare the

riskiness of portfolios was introduced by Brazauskas, Jones, Puri, and Zitikis (2007). Its

asymptotic and small-sample properties were primarily explored for independent portfo-

lios, though independence is not a required condition for the test to work. In this paper, we

investigate how performance of the test changes when insurance portfolios are dependent.

To achieve that goal, we perform a simulation study where we consider three different risk

measures: conditional tail expectation, proportional hazards transform, and mean. Fur-

ther, three portfolios are generated from exponential, Pareto, and lognormal distributions,

and their interdependence is modeled with the three-dimensional t and Gaussian copulas.

It is found that the presence of strong positive dependence (comonotonicity) makes the test

very liberal for all the risk measures under consideration. For types of dependence that

are more common in an insurance environment, the effect of dependence is less dramatic

but the results are mixed, i.e., they depend on the chosen risk measure, sample size, and

even on the test’s significance level. Finally, we illustrate how to incorporate such findings

into sensitivity analysis of the decisions. The risks we analyze represent tornado damages

in different regions of the United States from 1890 to 1999.
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1 Introduction

Comparing the riskiness of insurance portfolios is a practically important area that has received a

fair share of attention from researchers in academia. In this paper, we consider situations where

a problem encountered in practice cannot be solved exactly (i.e., using a specific stochastic model)

because access to complete properly-sampled data is restricted or data even impossible to sample.

Therefore, the solution proposed here involves two steps: (i) solve a simpler (special case) problem for

which data could be acquired, and (ii) use simulations to see how sensitive that solution is. Taking

such a route, businesses would be able to achieve their objectives with a relatively small investment

in terms of money, staff expertise, and time.

As a motivating example, consider an insurance company that has a portfolio of auto collision

policies in one state and explores the opportunity to enter a new market – a neighboring state. As one

of the first steps in its decision-making process the company would like to quickly evaluate how much

risk it would be exposed to had it issued a similar product in the other state. (Of course, assessment of

the regulatory environment in the other state would be equally important, but that is beyond the scope

of the current paper.) If the states are next to each other and there are no obvious differences in their

risk profiles (an example of obvious difference would be if one state is mostly rural while the other has

a large metropolitan area), we suspect they should be not too different. But the statement “not too

different” has to be evaluated statistically. In addition, it is clear that auto collision claims in one state

and those in the other will not represent independent samples due to frequent border crossings by the

driver populations (i.e., drivers from state 1 can cause auto claims in state 2 and vice versa). For initial

market exploration, the company would not want to devote substantial resources (e.g., staff expertise,

IT costs, time) for elaborate statistical modeling. Moreover, it is hard to think about joint outcome,

matching a claim from one state with a claim from another state. Thus, data that would allow proper

modeling of dependence is practically impossible to sample, and the problem of interest cannot be

solved exactly. Nonetheless, the company can learn about the new market by solving a special-case

problem (treating drivers in two states as independent populations) for which data could be acquired

and then using simulations to see how sensitive that solution is. More specifically, the company would
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have to choose a risk measure, appropriate statistical tools (estimators and test statistics) and perform

the following hypothesis test:

H0 : R1 = R2 versus HA : R1 6= R2. (1.1)

Here R1 = R[F1] and R2 = R[F2] denote the risk measure functionals that are used to capture the

riskiness of states 1 and 2, with their claims following the cumulative distribution functions F1 and F2,

respectively. For testing purposes, F1 and F2 are assumed independent; for sensitivity analysis, they

would be treated as dependent. (More details on risk measures, mathematical problem formulation,

test statistics, and decision making are provided in Sections 3 and 4.) Note that the scenario described

above is not restricted or unique to automobile insurance. Dependencies among two or more portfolios

of risks may also arise due to some common large scale events such as tornadoes or hurricanes that

affect several states simultaneously. Therefore, the problem of dependent portfolios is even more

acute for reinsurance industry, which often deals with the macro level portfolios. To understand what

methods are available at our disposal, let us briefly review the actuarial and statistical literatures on

this and related topics.

There is a vast literature on risk measures and their application to contract pricing, capital alloca-

tion, and risk management. For a quick introduction into these topics, the reader may be referred to

the review papers by Albrecht (2004), Tapiero (2004), and Young (2004). Systematic development of

statistical inferential tools for risk measures is a relatively new area, but it has already seen a number

of nonparametric, parametric and robust parametric techniques being proposed for estimation of risk

measures (see Jones and Zitikis, 2003, Brazauskas and Kaiser, 2004, Kaiser and Brazauskas, 2006,

and Brazauskas, Jones, Puri, and Zitikis, 2008). Among the nonparametric proposals those based

on L-statistics (linear combinations of order statistics) have taken a leading role, which is mostly

due to their computational efficiency and straightforward risk-measure formulations (see Necir, Mer-

aghni, and Meddi, 2007, and Necir and Meraghni, 2009, 2010). Moreover, similar tools have also

been proposed in the empirical finance literature (see Darolles, Gourieroux, and Jasiak, 2009), where

performance of hedge funds is measured using a metric based on L-moments (see Hosking, 1990).

Further, in a parallel literature on the hypothesis testing, several tests similar to (1.1) have been

developed by Jones and Zitikis (2005), Jones, Puri, and Zitikis (2006), and Brazauskas, Jones, Puri,
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and Zitikis (2007). The test proposed in the latter paper (which, as will be seen in Section 4, is an L-

statistic of L-statistics; hence the name ‘nested L-statistic’) is the subject of this work. The asymptotic

and small-sample properties of that test were primarily explored for independent portfolios, though

independence is not a required condition for the test to work. Practical performance of the test was

illustrated using the tornado damage data taken from Brooks and Doswell (2001).

In view of the motivating example, which leads to the hypothesis testing problem (1.1), the test

based on nested L-statistics should be redesigned to accommodate latent dependence between port-

folios. From a theoretical point of view, that is certainly an interesting and challenging mathematical

exercise. But, as our findings in Section 5.2 will demonstrate, in typical practical situations the test

can be applied with appropriate numerical adjustments to its significance level, and thus solving the

theoretical problem may not be worth the effort. In this paper, we perform an extensive simulation

study and investigate how performance of the test changes when insurance portfolios are dependent.

In addition, to see what effect, if any, the manager’s choice of risk measure has on test-based deci-

sions, three different risk measures—conditional tail expectation, proportional hazards transform, and

mean—are considered. Further, three portfolios are generated from exponential, Pareto, and lognor-

mal distributions, and their interdependence is modeled with the three-dimensional t and Gaussian

copulas. It is found that the presence of strong positive dependence (comonotonicity) makes the test

very liberal for all the risk measures under consideration. For types of dependence that are more com-

mon in an insurance environment, the effect of dependence is less dramatic but the results are mixed,

i.e., they depend on the chosen risk measure, sample size, and even on the test’s significance level.

Thus the next question is: what should one do with such knowledge? Our proposal is to use these

findings for sensitivity analysis of the decisions, which is a standard approach in actuarial practice.

We illustrate how to do that on the tornado damage data.

The rest of the paper is organized as follows. In Section 2, various dependence structures between

the portfolios, including tail dependence, are specified. In Section 3, several examples of the risk

measures used to measure the riskiness of portfolios are presented. A brief description of the hypothesis

test based on a nested L-statistic is provided in Section 4. The main findings of the paper are

summarized in a simulation study in Section 5. Then, in Section 6, sensitivity studies are performed
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using the data sets on tornado damages in different regions of the United States for the years 1890 to

1999. Concluding remarks are offered in Section 7.

2 Dependent Portfolios

Perhaps the most common dependence structure used in modeling is independence, and when the

marginal distributions of random variables are continuous, the product copula (usually denoted as Π)

characterizes the independent random variables. Then there are two extreme types of dependence:

perfect positive dependence or comonotonicity, and perfect negative dependence or countermonotonic-

ity. For continuous random variables, the first type is characterized by the comonotonicity copula,

which can capture situations when the random variables are almost surely strictly increasing func-

tions of each other, and the second type by the countermonotonicity copula, which applies to only

two random variables where one is almost surely a decreasing function of the other. Likewise, many

intermediate dependence structures can be described by identifying a relevant type of copula (see Frees

and Valdez, 1998, Nelson, 2006, or Joe, 2014).

In order to determine what effect, if any, the dependence structure between the portfolios has on

the power function of the hypothesis test described in Section 4, we shall perform a simulation study.

For the simulation study, we consider different types of dependent portfolios, which cover the full

spectrum of dependence strength from negative dependence through the perfect positive dependence.

In particular, we select four types of dependent portfolios: negative dependence (for two portfolios,

it corresponds to countermonotonicity), zero dependence, moderate positive dependence, and strong

positive dependence (comonotonicity). These dependence structures can be captured using the well-

known t copula, for which the Gaussian copula represents a limiting case. The following are examples

of the three-dimensional correlation matrix (Σ) for the dependence structures mentioned above. Note

that for the Gaussian copula zero dependence is equivalent to independence.

4



• Negative (Σ1) and Zero (Σ2) Dependence:

Σ1 =





1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1



 and Σ2 =





1 0 0

0 1 0

0 0 1





• Moderate Positive (Σ3) and Strong Positive (Σ4) Dependence:

Σ3 =





1 0.5 0.5

0.5 1 0.5

0.5 0.5 1



 and Σ4 =





1 1 1

1 1 1

1 1 1





In addition, Figure 1 illustrates the difference between the two-dimensional t3 copula (with ν = 3

degrees of freedom) and Gaussian copula, i.e., tν with ν → ∞, for normal marginals and varying

strengths of dependence. (In this particular instance, the three-dimensional plots provide no new

insights.) Notice how the tail dependence manifests itself for ν = 3 and disappears as ν → ∞, i.e., in

the latter case there are essentially no points in the corners of each plot.
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Figure 1: 2D copula realizations for negatively dependent, zero dependent, and moderately

positively dependent normal marginals. Top row: t3 copulas. Bottom row: Gaussian copulas.
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3 Risk Measures

Risk measure is a useful tool for quantifying the riskiness of a portfolio, and we shall use a special

type of coherent risk measures for this study. More specifically, in order to compare the riskiness of

portfolios, spectral risk measures will be utilized. Such measures were first introduced in the finance

literature with the intention that the user may wish to re-weight the initial distribution of the portfolio

in order to reflect his/her risk aversion. In mathematical terms, a spectral risk measure R = R[F ] of

a random variable X, with a cumulative distribution function (cdf) F , is defined as

R[F ] =

∫ 1

0
F−1(u)J(u) du, (3.1)

where J is the weight function which controls the risk aversion, and F−1 denotes the quantile function

of X. Choosing the weight function J(u) = 1 for 0 ≤ u ≤ 1, in equation (3.1), gives the expected

value of X (denoted by mean[F ]); J(u) = r(1 − u)r−1 for 0 ≤ u ≤ 1 yields the Proportional Hazards

Transform of F (denoted by pht[F ]), where r (0 < r ≤ 1) is a real-valued constant known as the

distortion level; and Conditional Tail Expectation of F (denoted by cte[F ]) can be defined as spectral

risk measure by setting J(u) = 0 for 0 ≤ u < t and J(u) = 1/(1− t) for t ≤ u ≤ 1, where t (0 ≤ t < 1)

is a real-valued constant known as the threshold level.

In practice, the cdf F has to be estimated from the observed data. As discussed in the introduc-

tion, one can do that parametrically, non-parametrically, or semi-parametrically and then insert the

estimated F in equation (3.1), which would produce an estimator of R[F ]. In this paper, we will focus

on the empirical nonparametric estimation, i.e., in (3.1) we replace F by the empirical cdf F̂n. That

leads to the following formula for the empirical estimator of a risk measure R[F ]:

R[F̂n] =

n∑

j=1

cjnXj:n, (3.2)

where X1:n ≤ · · · ≤ Xn:n denote the ordered values of data X1, . . . ,Xn, and cjn =
∫

j/n

(j − 1)/n
J(u) du.

Note that R[F̂n], as defined in (3.2), belongs to a general class of L-statistics, theoretical properties of

which are well understood and have been thoroughly studied by Jones and Zitikis (2003), Necir and

Meraghni (2009, 2010), and other authors.
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4 Hypothesis Test

4.1 Problem Formulation

Let X(1), . . . ,X(k) denote k (independent or dependent) portfolios of risks with cdf’s F1, . . . , Fk,

respectively. Suppose their riskiness is measured using the risk measures R1 = R[F1], . . . , Rk = R[Fk],

as defined by (3.1). The hypothesis of interest is to check whether or not the k risk measures are all

equal. That is, we formulate the problem as follows:

H0 : R1 = · · · = Rk versus HA : at least one pair Ri 6= Rj .

To test the above hypothesis, Brazauskas, Jones, Puri, and Zitikis (2007) proposed a nonparametric

test statistic that constructs the Gini index based on R1, . . . , Rk. Hence, all information about the

differences of portfolio riskiness can be summarized by the inequality index

γ =
1

k2

∑

1≤i,j≤k

∣∣Ri − Rj

∣∣ =
1

k2

k∑

i=1

(4i − 2(k + 1))Ri:k, (4.1)

where the second equality follows from a well-known result for order statistics (see, e.g., David and

Nagaraja, 2003, Section 9.4), and R1:k ≤ · · · ≤ Rk:k denote the ordered values of R1, . . . , Rk. This

leads to a more compact formulation of the problem:

H0 : γ = 0 versus HA : γ > 0.

4.2 Test Statistic

A natural way to estimate γ is to replace Ri:k with R̂i:k in (4.1), which yields

γ̂ =
1

k2

k∑

i=1

(4i − 2(k + 1))R̂i:k. (4.2)

That is, γ̂ is defined as an L-statistic based on ordered values of R̂1, . . . R̂k, each of which is an L-

statistic itself (see equation (3.2)). Now we can see that γ̂ is an L-statistic of L-statistics, hence the

name ‘nested L-statistic’.

To test the hypothesis stated in Section 4.1, the following test statistic was proposed:

T =
γ̂√∑k
i=1 n−1

i

,
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where γ̂ is defined by (4.2) and ni denotes the sample size generated by portfolio X(i) with cdf

Fi. Asymptotic properties of the test statistic T are established in Section 2 of Brazauskas, Jones,

Puri, and Zitikis (2007). Those results, however, are too complicated for practical decision making,

i.e., closed form expressions for critical values of the test are difficult to obtain. Therefore, it was

suggested to use a bootstrap approximation instead.

4.3 Decision Making

To accommodate portfolio dependence using copulas, we will assume that all sample sizes are equal,

i.e., n1 = · · · = nk = n. Next, for 1 ≤ j ≤ n, let (Xj(1), . . . ,Xj(k)) denote the jth realization of the

dependent random vector (X(1), . . . ,X(k)). Then, using sampling with replacement, we obtain the

bootstrap samples (marked with a superscript ‘∗’) such that

(
X∗

1 (1), . . . ,X∗
1 (k)

)
=

(
Xj1(1), . . . ,Xj1(k)

)
, . . . . . . ,

(
X∗

n(1), . . . ,X∗
n(k)

)
=

(
Xjn(1), . . . ,Xjn(k)

)
.

Further, using these resampled observations, we can compute the bootstrap estimate R̂∗
i of R̂i, for

every 1 ≤ i ≤ k, by replacing Xj:n with X∗
j:n(i) in formula (3.2). After that, the bootstrap estimate

of the Gini index γ is calculated using the following relationship:

γ̂∗ =
k∑

i=1

(4i − 2(k + 1)) D∗
i:k ,

where D∗
1:k ≤ · · · ≤ D∗

k:k are ordered values of D∗
i = R̂∗

i − R̂i, for i = 1, . . . , k. Combining these

evaluations together, the bootstrap version of the test statistic T is given by

T ∗ =

√
n

k
γ̂∗.

Finally, we repeat the above resampling procedure B times and in this way obtain B replicates of

T ∗, denoted as T ∗
1 , . . . , T ∗

B . The bootstrap estimate of the critical value of the test is the (1−α) level

quantile of T ∗, denoted by xα[T ∗]. It can be estimated by T ∗
⌊B(1−α)⌋:B , the ⌊B(1−α)⌋th order statistic

of T ∗. The decision rule is as follows: we reject the null hypothesis H0 in favor of the alternative

hypothesis HA if the actual value of the test statistic T (the value obtained from the original samples)

exceeds the approximated critical value xα[T ∗]. Otherwise, we do not reject H0.
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5 Simulation Study

Since the sampling distribution of the test statistic does not have a manageable closed form expression,

we use Monte Carlo simulations to investigate how the performance of the test changes when insurance

portfolios are dependent. More specifically, we are interested in quantifying the relationship between

the power of the test and the strength of portfolio dependence, for selected types of alternatives. Note

that the strength of dependence is modeled using tν copula.

5.1 Study Design

We first generate three dependent portfolios of insurance losses such that they are either equally risky

(H0 setting) or unequally risky (HA setting), according to a fixed risk measure. For this study, we

choose mean, pht, and cte as the risk measures (see Section 3). We then perform the hypothesis test

of Section 4 using the generated portfolios and compute its proportion of rejections. (Such a proportion

estimates the nominal level of significance under H0 and the power of the test under HA.) By executing

this process for the four types of dependence listed in Section 2 (negative dependence, zero dependence,

moderate positive dependence, and strong positive dependence), we obtain the proportion of rejections

corresponding to each of the dependence structures. Specific parameters and other details of the study

design are described in Sections 5.1.1 and 5.1.2.

5.1.1 Riskiness of Portfolios

For generation of insurance portfolios with specified riskiness, we follow the simulation studies of

Brazauskas and Kaiser (2004), Kaiser and Brazauskas (2006), Brazauskas, Jones, Puri, and Zitikis

(2007) and choose the following three parametric families:

• Exponential with the cdf

F1(x) = 1 − e−(x−x0)/θ, x > x0, θ > 0. (5.1)

• Pareto with the cdf

F2(x) = 1 − (x0/x)β , x > x0, β > 0. (5.2)

9



• Lognormal with the cdf

F3(x) = Φ
(
log(x − x0) − µ

)
, x > x0, −∞ < µ < ∞, (5.3)

where Φ(·) denotes the standard normal cdf.

The parameter x0 in the above distributions can be interpreted as a deductible or a retention level of

an insurance policy. (Note that due to x0, the distributions F1, F2, and F3 have the same support.)

Although in general x0 could be any positive real number, for this study we set x0 = 1. The other

parameters θ, β, and µ are selected in such a way that the cdfs F1, F2, and F3 follow the hypothesized

portfolio riskiness with respect to a fixed risk measure. In particular, if they are equally risky (under

H0), then they must satisfy the equation

R[F1] = R[F2] = R[F3], (5.4)

where R[·] represents either mean, pht, or cte. (These are three conceptually different risk measures

– mean is a measure of central tendency; pht and cte are tail measures but defined using different

probabilistic principles – that allow us to judge sensitivity of the decisions to the choice of risk measure.)

Evaluation of these measures for the distributions F1, F2, F3 yields the following expressions of (5.4).

• For the mean risk measure (when R[Fi] = mean[Fi]):

x0 + θ =
x0β

β − 1
= x0 + eµ+0.5. (5.5)

• For the pht risk measure (when R[Fi] = pht[Fi]):

x0 +
θ

r
= x0 +

x0

rβ − 1
= x0 + Cre

µ, (5.6)

where for fixed r, the integral Cr =
∫ ∞
−∞ (1 − Φ(z))r ez dz is found numerically. For example,

as reported by Brazauskas and Kaiser (2004), C0.55 = 3.896, C0.70 = 2.665, C0.85 = 2.030,

C0.95 = 1.758. Note that when r = 1, the pht measure becomes the mean.

• For the cte risk measure (when R[Fi] = cte[Fi]):

x0 − θ(log(1 − t) − 1) =
x0β

β − 1
(1 − t)−1/β = x0 +

1

1 − t
eµ+0.5Φ(1 − Φ−1(t)). (5.7)

Note that when t = 0, the cte measure becomes the mean.
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For the simulation study we fix x0 = 1 and β = 5.5, and then compute the corresponding values of θ

and µ for each risk measure. Table 1 provides all distribution related parameters under H0, which are

calculated using equations (5.5), (5.6), and (5.7).

Table 1: The risk measure and distribution related parameters under H0.

Risk Parametric Distribution-Related Parameters Under

Measure Distribution H0 : R[F1] = R[F2] = R[F3]

mean Exponential x0 = 1, θ = 0.222

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.004, σ = 1

pht (r = 0.85) Exponential x0 = 1, θ = 0.231

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.010, σ = 1

cte (t = 0.75) Exponential x0 = 1, θ = 0.240

Pareto x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −1.978, σ = 1

Under HA, the riskiness of portfolios can be unequal in numerous ways. In this study, we consider

the following two types of alternatives:

• Two portfolios are equally risky but the third one differs; that is,

R[F ∗
1 ] = c∗R[F1], R[F ∗

2 ] = R[F2], R[F ∗
3 ] = R[F3], (5.8)

where F ∗
1 , F ∗

2 , and F ∗
3 are parametric distributions of portfolios under this alternative, c∗ 6= 1,

and R[F1] = R[F2] = R[F3].

• Relative riskiness of all three portfolios is equally-spaced; that is,

R[F ∗∗
1 ] = c∗∗R[F1], R[F ∗∗

2 ] = R[F2], R[F ∗∗
3 ] = c2

∗∗R[F3], (5.9)

where F ∗∗
1 , F ∗∗

2 , and F ∗∗
3 are parametric distributions of portfolios under this alternative, c∗∗ > 1,

and R[F1] = R[F2] = R[F3].

To simulate these scenarios, we choose parameters θ and µ to be identical to their values under

H0. Also, constants c∗ and c∗∗ are such that c∗ = 0.85, 0.90, 0.95, 1.05, 1.10, 1.15, 1.25 and c∗∗ =

1.05, 1.10, 1.15, 1.20, 1.25. The remaining distribution related parameters are derived from equations

(5.8) and (5.9), and their values or formulas are presented in Table 2.
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Table 2: The risk measure and distribution related parameters under HA.

Risk Parametric Distribution-Related Parameters Under

Measure Distribution HA specified by (5.8) HA specified by (5.9)

mean Exponential x0 = 1, θ∗ = x0(c∗ − 1) + c∗θ x0 = 1, θ∗∗ = x0(c∗∗ − 1) + c∗∗θ

Pareto x0 = 1, β = 5.5 x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.004, σ = 1 x0 = 1, σ = 1

µ∗∗ = log(x0(c
2
∗∗

− 1) + c2
∗∗

eµ+0.5) − 0.5

pht (r = 0.85) Exponential x0 = 1, θ∗ = x0r(c∗ − 1) + c∗θ x0 = 1, θ∗∗ = x0r(c∗∗ − 1) + c∗∗θ

Pareto x0 = 1, β = 5.5 x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −2.010, σ = 1 x0 = 1, σ = 1

µ∗∗ = log(
x0(c

2

∗∗
−1)

Cr

+ c2
∗∗

eµ)

cte (t = 0.75) Exponential x0 = 1, θ∗ = x0(c∗−1)
1−log(1−t) + c∗θ x0 = 1, θ∗∗ = x0(c∗∗−1)

1−log(1−t) + c∗∗θ

Pareto x0 = 1, β = 5.5 x0 = 1, β = 5.5

Lognormal x0 = 1, µ = −1.978, σ = 1 x0 = 1, σ = 1

µ∗∗ = log(
x0(1−t)(c2

∗∗
−1)

Φ(1−Φ−1(t)) + c2
∗∗

eµ+0.5) − 0.5

5.1.2 Dependence of Portfolios

This section presents algorithms and major steps for generation of dependent portfolios with expo-

nential, Pareto, and lognormal margins and the dependence structures specified by the correlation

matrices of Section 2. Briefly, a key idea is to use the meta-tν distribution which is a multivariate

distribution with arbitrary margins and the dependence structure governed by tν copula. In our ex-

amples, the degrees of freedom parameter is either ν = 3 or ν → ∞ (the latter case corresponds to

the meta-Gaussian distribution). Specifically, we implement the following three-step procedure:

Step 1. For a fixed risk measure and a fixed scenario of riskiness, we first generate a random

realization of the trivariate variable tν , with the location vector 0 and the correlation matrix

Σ (examples of which are specified in Section 2). The sample size of each margin is n, and

we denote this variable as Y = (Y1, Y2, Y3).

Step 2. Next, we transform Y into U = (U1, U2, U3) =
(
Gν(Y1), Gν(Y2), Gν(Y3)

)
, where

Gν is the cdf of the standard tν variable (i.e., with location 0 and scale 1). The distribution

of U is the trivariate tν copula with the correlation matrix Σ.
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Step 3. Finally, as the well-known Sklar’s theorem ensures, the quantile transformation

of the uniform margins returns the output with the desired probabilistic features. That is,

the trivariate vector X = (X1,X2,X3) =
(
F−1

1 (U1), F−1
2 (U2), F−1

3 (U3)
)
, where

F−1
1 (u) = x0 − θ log(1− u), F−1

2 (u) = x0(1− u)−1/β , F−1
3 (u) = x0 + exp

(
Φ−1(u) + µ

)
,

represents portfolios X1,X2,X3 with marginal cdfs F1, F2, F3, defined by (5.1)–(5.3), and

their interdependence governed by tν copula with the correlation matrix Σ.

Further, since tν copula is fully characterized by its correlation matrix Σ, one can easily see that

setting Σ equal to Σ1,Σ2,Σ3, or Σ4 (see Section 2) in Step 1 produces portfolio realizations with

negative dependence, zero dependence, moderate positive dependence, or strong positive dependence,

respectively. Also, to generate equally and unequally risky portfolios, we change the parameters of

the quantile functions according to the specifications of Tables 1 and 2, respectively.

Finally, while Steps 2 and 3 are straightforward transformations of random variables, Step 1

requires a more careful explanation. For Σ’s with non-diagonal elements strictly less than 1, we

generate the trivariate variable tν (with the location vector 0) by implementing Algorithm 5.2 of

Embrechts, Lindskog, and McNeil (2003):

(a) Find the Cholesky decomposition M of Σ.

(b) Simulate three independent standard normal random variables Z1, Z2, Z3.

(c) Simulate a random variable V from χ2
ν that is independent of Z = (Z1, Z2, Z3).

(d) Then Y =
√

ν/V MZ is the trivariate tν variable with location 0 and correlation Σ.

In the case when ν → ∞, the (c) step can be skipped and the transformation of variables in (d) replaced

with Y = MZ. This results in the trivariate Gaussian variable with location 0 and correlation Σ. In

addition, for commonotonic cases (e.g., Σ4 in Section 2), the tail-dependence differences between the tν

and Gaussian copulas vanish (see McNeil, Frey, Embrechts, 2005, Section 5.3.1). Thus the strong posi-

tively dependent portfolios can be generated by ignoring Steps 1 and 2 and modifying Step 3 as follows:

simulate a standard uniform random variable U and then compute X =
(
F−1

1 (U), F−1
2 (U), F−1

3 (U)
)
,
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where F−1
1 , F−1

2 , F−1
3 are defined as in Step 3 above (see McNeil, Frey, Embrechts, 2005, Proposition

5.16). For alternative specifications of the algorithms of this section, see Joe (2014, Section 6.9 and

Section 2.5).

5.2 Numerical Findings

Once a set of portfolios is generated then they are resampled according to the bootstrap procedure

of Section 4.3, an α-level test is performed, and its decision—reject H0 or not—is recorded. This

procedure is repeated 5000 times, for each of the three risk measures, four dependence structures, and

for each of the hypothesized scenarios. Using the recorded 5000 decisions for the tests based on the

mean, pht, and cte measures, respectively, we estimate the proportion p̂ of test’s rejections. Under

H0, if p̂ falls within the 99% confidence interval α ± z0.005

√
α(1 − α)/5000, where z0.005 is a critical

value of the standard normal variable, then the test performs as expected. If p̂ exceeds the upper

bound of the interval, then the test is labeled as liberal. And if it is below the lower bound, then the

test is called conservative. The study is performed for the following choices of simulation parameters:

• Level of significance: α = 0.01, 0.05, 0.10.

• Sample size: n = 50, 100, 200.

• Number of bootstrap samples: B = 1000.

Our simulation results are summarized in Table 3, where probabilities of type I error are reported,

as well as in Figures 2 and 3, where estimated power curves are plotted. Specifically, we notice from

Table 3 that in the presence of strong positive dependence (comonotonicity), the probability of the

type I error exceeds the nominal level several times, sometimes even more than ten times (see, e.g., the

entries for α = 0.01), for all the risk measures under consideration. This means that the test is very

liberal under this scenario of dependence, which is most extreme. For the less extreme strengths of

dependence, however, the results are mixed. That is, they depend on the chosen risk measure (mean

is never liberal, pht almost always, and cte sometimes), sample size (liberal performances are most

common for n = 50, less for n = 100, and least for n = 200), and even on the test’s significance

level (for α = 0.10, the bold entries are most frequent, but their frequency declines as α decreases).

Further, outside of the comonotonic case, there is no statistical evidence to suggest that the strength of
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dependence monotonically affects the test’s level. Finally, except for several borderline cases, the effect

of tail dependence is also undetectable (compare the corresponding entries for ν = 3 and ν → ∞).

Table 3: Estimated probabilities of the type I error of the tests based on

the mean, pht, cte measures, for selected n, α, ν, and various dependence structures.

n α Risk Measure Dependence Structure (characterized by Σi’s of Section 2 )

Negative Zero Mod. Positive Strong Positive

ν = 3 ν → ∞ ν = 3 ν → ∞ ν = 3 ν → ∞ ν = 3 ν → ∞

50 0.01 mean 0.008 0.010 0.012 0.008 0.009 0.008 0.213 0.213

pht (r = 0.85) 0.013 0.015 0.017 0.012 0.017 0.015 0.358 0.358

cte (t = 0.75) 0.014 0.013 0.018 0.013 0.014 0.015 0.236 0.236

0.05 mean 0.049 0.053 0.051 0.047 0.050 0.046 0.287 0.287

pht (r = 0.85) 0.062 0.070 0.068 0.065 0.073 0.069 0.421 0.421

cte (t = 0.75) 0.057 0.066 0.063 0.054 0.059 0.058 0.310 0.310

0.10 mean 0.101 0.106 0.105 0.103 0.105 0.106 0.332 0.332

pht (r = 0.85) 0.121 0.134 0.136 0.132 0.145 0.140 0.450 0.450

cte (t = 0.75) 0.116 0.127 0.129 0.115 0.129 0.126 0.358 0.358

100 0.01 mean 0.008 0.012 0.010 0.008 0.007 0.009 0.158 0.158

pht (r = 0.85) 0.014 0.016 0.014 0.014 0.013 0.014 0.270 0.270

cte (t = 0.75) 0.012 0.013 0.011 0.010 0.011 0.009 0.173 0.173

0.05 mean 0.048 0.052 0.050 0.048 0.050 0.046 0.219 0.219

pht (r = 0.85) 0.059 0.068 0.063 0.061 0.072 0.071 0.343 0.343

cte (t = 0.75) 0.052 0.059 0.054 0.052 0.054 0.056 0.249 0.249

0.10 mean 0.103 0.108 0.105 0.100 0.101 0.104 0.266 0.266

pht (r = 0.85) 0.123 0.128 0.128 0.127 0.133 0.136 0.385 0.385

cte (t = 0.75) 0.111 0.118 0.111 0.110 0.120 0.118 0.292 0.292

200 0.01 mean 0.008 0.011 0.008 0.008 0.007 0.008 0.104 0.104

pht (r = 0.85) 0.012 0.015 0.012 0.011 0.014 0.014 0.199 0.199

cte (t = 0.75) 0.009 0.013 0.010 0.007 0.010 0.011 0.111 0.111

0.05 mean 0.047 0.050 0.049 0.045 0.050 0.050 0.168 0.168

pht (r = 0.85) 0.058 0.060 0.060 0.060 0.069 0.067 0.272 0.272

cte (t = 0.75) 0.048 0.051 0.051 0.051 0.055 0.057 0.181 0.181

0.10 mean 0.098 0.103 0.096 0.102 0.111 0.105 0.216 0.216

pht (r = 0.85) 0.112 0.120 0.119 0.121 0.135 0.125 0.314 0.314

cte (t = 0.75) 0.104 0.103 0.097 0.110 0.115 0.112 0.232 0.232

Note: The 99% margins of error are: ±0.004 (for α = 0.01), ±0.008 (for α = 0.05), ±0.011 (for α = 0.10).

The bold entries correspond to the cases when the test performance is liberal.

Figures 2 and 3 provide power estimates against the two types of alternatives described above, for

n = 200 and α = 0.05. Similar to the type I error investigations, we notice that the power of the test
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is uniformly highest in the strong positive dependence case, for all risk measures and both types of

copulas. Of course, this finding is not unexpected because the test exceeds the nominal level under H0

and its power curve is simply shifted across all scenarios of riskiness. We also notice that the power

of the test depends on the underlying risk measure. That is, all things being equal, the test is more

powerful for the ‘light’ measure (such as the mean) than for the ‘heavy’ one (such as the pht or cte).

There is no effect of tail dependence on the power curves, i.e., t3 and Gaussian copulas produce similar

power curves, but there is some effect of the strength of dependence. In particular, while negative

dependence slightly decreases the power of the test when compared to the zero dependence case, the

positive dependence improves the test’s performance. Other features of the estimated power curves

are typical: the test becomes more powerful as c∗ (c∗∗) moves further away from c∗ = 1 (c∗∗ = 1),

i.e., when data go deeper into the alternative. Further, comparison of the two types of alternatives

reveals that the test is more powerful against the second type of alternatives, which can be anticipated

because under the second scenario the differences in portfolio riskiness are more pronounced. Finally,

we conclude that the test—which was designed for independent portfolios—performs adequately when

portfolios are dependent, and it will successfully detect, with the probability substantially above 0.50,

the differences in portfolio riskiness of at least 15% (corresponding to c∗ ≤ 0.85 or c∗ ≥ 1.15, and

c∗∗ ≥ 1.15) for portfolios of n ≥ 200 losses. Of course, a caveat to this conclusion is the comonotonic

case which requires a separate analysis. (That is being carried out by the authors in a parallel paper.)
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Figure 2: The first type of alternatives. Estimated power curves of the tests based on

the mean, pht, cte measures, for various dependence structures, n = 200, and α = 0.05.

Top row: t3 copulas. Bottom row: Gaussian copulas.
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Figure 3: The second type of alternatives. Estimated power curves of the tests based on

the mean, pht, cte measures, for various dependence structures, n = 200, and α = 0.05.

Top row: t3 copulas. Bottom row: Gaussian copulas.
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6 Practical Considerations

In this section, we illustrate how to apply the findings of Section 5 in practice. Using the tornado

damage data of Brooks and Doswell (2001), normalized values of which (i.e., data adjusted for wealth

and inflation) are available in Table A.3 of Brazauskas, Jones, Puri, and Zitikis (2007), we reanalyze

the real-data example of the latter paper by investigating potential effects of portfolio dependence on

the decision making procedure.

The portfolios from given data are formed for two regions—Midwest and South—with the respective

sample sizes nmidwest = 47 and nsouth = 86. (The data set also contains a third region, Northeast, but it

has only four observations, which is way too small to assure valid statistical inference.) The hypothesis

that the portfolios are equally risky was tested by applying the procedure of Section 4. We used the

same risk measures as in the simulation study: mean, pht (r = 0.85), and cte (t = 0.75). Also,

B = 1000 bootstrap samples were generated to calculate the critical values at 1%, 5%, and 10% levels

of significance. Table 4 provides summary estimates and decisions of the tornado damage data sorted

by region.

Table 4: Estimates and decisions for analysis of the tornado damage data sorted by region.

mean pht (r = 0.85) cte (t = 0.75)
(
R̂midwest; R̂south

)
(12,287; 5,787) (14,819; 7,381) (31,315; 16,884)

γ̂ 3,250 3,719 7,215
(
x0.10[γ̂

∗]; x0.05[γ̂
∗]; x0.01[γ̂

∗]
)

(1,940; 2,332; 3,122) (2,421; 2,918; 3,788) (6,580; 7,671; 10,106)

Reject H0 (at level α)? Yes (α = 0.01, 0.05, 0.10) Yes (α = 0.05, 0.10) Yes (α = 0.10)

Several conclusions emerge from the table. As the point estimates of all three risk measures

suggest, the Midwest region is roughly twice as risky as the South. More formally, according to the

mean measure, the difference is statistically significant at all typical levels of significance. And the

pht (r = 0.85) and cte (t = 0.75) measures reject H0 at α = 0.05, 0.10 and α = 0.10, respectively.

Further, we need to check how sensitive these decisions are due to (potentially) misspecified portfolio

dependence. Aside from the comonotonic case, the results of Section 5.2 suggest that the decision

to reject H0 at the significance level α will remain at that level as long as portfolios are compared

according to the mean measure. For the pht (r = 0.85) and cte (t = 0.75) measures, a premium of
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20%–40% has to be added to α. That is, in many practical situations, the actual probability of type

I error for pht (r = 0.85) and cte (t = 0.75) can reach 1.20α to 1.40α. Finally, the comonotonic

case—no matter how rare it may be—represents a perfect-storm scenario that can break down the

test and easily yield probabilities for the type I error as high as 0.30 or even higher. Thus the user of

the test should keep such a possibility in mind.

7 Concluding Remarks

In this paper, we have considered a hypothesis testing problem about the equality of risk measures

using a nested L-statistic. Asymptotic and small-sample properties of the test have been studied by

Brazauskas, Jones, Puri, and Zitikis (2007) under the assumption of independent insurance portfolios.

Here, using Monte Carlo simulations, we have investigated the performance of the test when portfolios

are dependent. We have concluded that the presence of strong positive dependence (comonotonicity)

makes the test very liberal for the pht, cte, and mean risk measures, when marginal portfolios

follow exponential, Pareto, and lognormal distributions and their interdependence is governed by the

three-dimensional t and Gaussian copulas. For non-comonotonic scenarios of dependence, the test

performs adequately, with its probabilities of type I error being on target for the mean measure and

getting inflated by about 20% to 40% for the pht and cte measures. In addition, for the alternative

hypotheses considered in this paper, we have not observed any significant effects of tail dependence,

but detected some effect of the strength of dependence. In particular, while negative dependence

slightly decreases the power of the test when compared to the zero dependence case, the positive

dependence improves the test’s performance. Finally, we have also demonstrated how to incorporate

such findings into sensitivity analysis of the decisions by providing a real-data example.

The results of this paper generate several ideas for further research. First, the comonotonic case

has a devasting effect on the test and thus requires a separate analysis. Second, it is of interest

to understand the mathematical phenomenon of how the power function of the test behaves due

to changes in the correlation matrix that controls the interdependence of portfolios. This problem

is related to various versions of stochastic ordering of random variables. Some preliminary results

on this topic are reported by Samanthi, Wei, and Brazauskas (2016). Third, a natural extension
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of the test is to redesign it for discontinuous data that may include excessive number of zeros, but

otherwise are continuous. (This is a common situation in personal lines insurance.) Going this route,

one would have to revisit the fundamental theorems on the asymptotic behavior of L-statistics (see

Chernoff, Gastwirth, and Jones, 1967). Fourth, one may abandon the idea of using the Gini index

on risk measures and construct a completely different test. There may, of course, be many more

generalizations and improvements of the approach presented in this paper.
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