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Abstract. Gini index is a well-known tool in economics that is often used for measur-

ing income inequality. In insurance, the index and its modifications have been used to

compare the riskiness of portfolios, to order reinsurance contracts, and to summarize in-

surance scores (relativities). In this paper, we establish several stochastic orders between

the Gini indexes of multivariate elliptical risks with the same marginals but different

dependence structures. This work is motivated by the applied studies of Brazauskas

et al (2007) and Samanthi et al (2015), who employed the Gini index to compare the

riskiness of insurance portfolios. Based on extensive Monte Carlo simulations, these

authors have found that the power function of the associated hypothesis test increases

as portfolios become more positively correlated. The comparison of the Gini indexes

(of empirically estimated risk measures) presented in this paper provides a theoreti-

cal explanation to this statistical phenomenon. Moreover, it enriches the studies of

the problem of central concentration of elliptical distributions and generalizes the pd-1

order proposed by Shaked and Tong (1985).
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1 Introduction

Over a hundred years ago, Corrado Gini introduced an index to measure concentration or inequality

of incomes (see Gini, 1936, for English translation of the original article). It later became known

as the Gini index and has been extensively studied in many fields such as economics, insurance,

finance, and statistics. At the intersection of insurance and statistics, for example, the index has

been used for comparing distributions of risks and prices (see Frees et al, 2011). The comparisons

are usually based on insurance scores relative to price, also known as “relativities,” that point to

areas of potential discrepancies between risk and price distributions. After ordering both risks

and prices based on relativities, one arrives at an ordered Lorenz curve that can be summarized

using a Gini index. Interestingly, the Lorenz curve and Gini index defined via relativities can

cope with adverse selection, help measure potential profit, and serve as useful tools in predictive

modeling (for more information, see Frees et al, 2014). Moreover, Lorenz curve and Lorenz order,

the concepts closely related to Gini index, have been employed by Denuit and Vermandele (1999)

to order reinsurance contracts.

Other statistical applications in insurance have emphasized the fact that the Gini index is

an L-statistic, theoretical properties of which are well-established and thus can be employed to

construct statistical inferential tools. For instance, Jones and Zitikis (2005), Jones et al (2006),

and Brazauskas et al (2007) have designed several hypothesis tests to compare the riskiness of

insurance portfolios by using the Gini index. Samanthi et al (2015) have conducted an extensive

simulation study by incorporating various types of dependence between portfolios and found that

the power function of the associated hypothesis test increases as portfolios become more positively

correlated. The comparison of the Gini indexes (of empirically estimated risk measures) presented

in this paper provides a theoretical explanation to this statistical phenomenon.

As described by Samanthi et al (2015), the power function of the hypothesis test under consid-

eration is a probability event involving the Gini index 1
n2

∑
1≤i,j≤n |Xi − Xj |, where the random

variables X1, . . . , Xn represent empirical risk measures estimated from observations on n insurance

portfolios. It is also known that the random vector X = (X1, . . . , Xn) follows an asymptotically

multivariate normal distribution. For more details about the design of the hypothesis test, the

reader may be referred to Samanthi et al (2015) and Brazauskas et al (2007). In order to explain
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the monotonicity of the test power function, with respect to the strength of dependence, we propose

the following conjecture.

Conjecture 1.1. Let (X1, . . . , Xn) follow a multivariate normal distribution with mean 0 and

covariance matrix Σ, i.e., (X1, . . . , Xn) ∼MVN(0,Σ). Then its Gini index 1
n2

∑
1≤i,j≤n |Xi −Xj |

decreases in the sense of usual stochastic order (see Section 2 for definition) as the covariance matrix

Σ increases componentwise with diagonal elements remaining unchanged.

Basically, Conjecture 1.1 aims to order Gini indexes of multivariate normal risks with same

marginals but different strength of dependence. Proving Conjecture 1.1 is a challenging task. This

paper partially completes this task and generalizes the conclusion to elliptical distributions, yet

still leaves some open problems.

Besides its usefulness in actuarial applications, the comparison of Gini indexes of multivariate

elliptical risks shows its own independent interest. Intuitively, Conjecture 1.1 suggests that the

probability P
{

1
n2

∑
1≤i,j≤n |Xi −Xj | ≤ t

}
increases as Σ increases for any t ≥ 0. In this sense,

the study of Conjecture 1.1 falls into the scope of the problem of central concentration of elliptical

distributions, which is formulated as follows: how the probability

PΣ(C) = P{(X1, . . . , Xn) ∈ C} (1.1)

changes according to the change of Σ, where (X1, . . . , Xn) follows an elliptical distribution with

mean 0 and dispersion matrix Σ?

This problem was first studied by Slepain (1962), which states that if (X1, . . . , Xn) follows a

multivariate normal distribution with mean 0 and covariance matrix Σ, then PΣ(C) increases as Σ

increases componentwise with diagonal elements remaining unchanged for any lower orthant set C.

Later literature has generalized the study to elliptical distributions while regions of different shapes

have been considered, such as upper orthant sets, rectangles, and convex and centrally symmetric

regions. Interested readers are referred to Das Gupta et al (1972), Joe (1990), Eaton and Perlman

(1991), and Anderson (1996). All these studies imposed certain assumptions on the structure of

the covariance matrix. The results derived in this paper enriches the studies on this problem in

the sense that it broadens the choice of the set C.

In addition, comparison of Gini index has another fold of meaning. The methodologies can
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be used to generalize the pd-1 order. The pd-1 order was proposed by Shaked and Tong (1985)

and used to compare the strength of dependence of exchangeable random vectors. Chang (1992)

extended this concept from the perspective of stochastic majorization and explored applications in

operations research. Readers are referred to Chapter 9 of Shaked and Shanthikumar (2007) for a

conclusive summary of the studies on the pd-1 order. In the existing literature, the application of

pd-1 order is very restrictive since the comparison applies only to exchangeable random vectors.

In this paper, we manage to generalize the pd-1 order to non-exchangeable random vectors.

The rest of the paper is organized as follows. Section 2 introduces some basics about stochastic

orders, elliptical distributions, and comonotonicity. Section 3 compares Gini indexes of multivariate

elliptical risks in the sense of a relatively weaker order: the increasing convex order. Section

4 imposes certain assumptions on the structure of covariance matrices and establishes the usual

stochastic orders between Gini indexes. In Section 5, we discuss the pd-1 order and its generalization

by using similar techniques before. Section 6 provides concluding remarks of the paper.

2 Preliminaries

Throughout the paper, we use bold letters to denote vectors or matrices. For example, x =

(x1, . . . , xn) is a row vector and Σ = (σij)n×n is an n × n matrix. In particular, the symbol 0

denotes the row vector with all entries equal to 0, and 1n×n denotes the n × n matrix with all

entries equal to 1. The inequality between vectors or matrices denotes componentwise inequalities.

For example, (x1, . . . , xn) ≤ (y1, . . . , yn) implies that xi ≤ yi for all i = 1, . . . , n.

Consider a random vector X = (X1, . . . , Xn). Its Gini index is defined to be 1
n2

∑n
1≤i,j≤n |Xi −

Xj |. Gini index measures how dispersive the components of the random vector are. For example, if

all the components are identical, then the Gini index is 0, which indicates a perfect concentration.

For notational convenience, denote

G(X) =

n∑
1≤i,j≤n

|Xi −Xj |. (2.1)

G(X) is the scaled Gini index and is the random variable we shall study throughout the paper. It

is easy to see that G(X) can be rewritten in terms of order statistics as follows.

G(X) =
n∑
i=1

(4i− 2n− 2)X(i), (2.2)
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where X(i) denotes the ith largest component of {X1, . . . , Xn}.

In order to compare Gini indexes, we recall definitions of some stochastic orders.

Definition 2.1. Let X and Y be two random variables.

X is said to be smaller than Y in usual stochastic order, denoted as X ≤st Y , if P{X > t} ≤

P{Y > t} for all t ∈ R.

X is said to be smaller than Y in increasing convex order, denoted as X ≤icx Y , if E[u(X)] ≤

E[u(Y )] for any increasing convex function u such that the expectations exist.

The above definitions are taken from Shaked and Shanthikumar (2007), which also provide the

following characterization for the usual stochastic order.

Proposition 2.2. Let X,Y be two random variables. X ≤st Y if and only if E[u(X)] ≤ E[u(Y )]

for any increasing function u such that the expectations exist.

Furthermore, in order to compare random vectors, the concept of supermodular order is needed.

There is rich literature on the subject of supermodular order, see, for example, Marshall et al

(2010), Müller and Stoyan (2002), and Shaked and Shanthikumar (2007). We cite the definition of

supermodular function and supermodular order from Shaked and Shanthikumar (2007).

Definition 2.3. A function f : Rn → R is said to be supermodular if for any x,y ∈ Rn it holds

that

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y),

where the operators ∧ and ∨ denote coordinatewise minimum and maximum respectively, i.e.,

(x1, . . . , xn) ∧ (y1, . . . , yn) = (min(x1, y1), . . . ,min(xn, yn)),

(x1, . . . , xn) ∨ (y1, . . . , yn) = (max(x1, y1), . . . ,max(xn, yn)).

Random vector X is said to be smaller than random vector Y in the supermodular order, denoted

as X ≤sm Y, if E[f(X)] ≤ E[f(Y)] for any supermodular function f such that the expectations

exist.

It is easy to verify that, if X ≤sm Y and X ≥sm Y, then X
d
= Y, where

d
= denotes “equal in

distribution”. According to Kemperman (1977, Assertion (i)), we have the following result.
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Proposition 2.4. A function f : Rn → R is supermodular if and only if f(x1, . . . , xn) is super-

modular as a function of (xi, xj) for any other fixed xk, k 6= i, j for any 1 ≤ i < j ≤ n.

To investigate the effect of dependence on the test statistic of the hypothesis test proposed

by Brazauskas et al (2007), it suffices to study multivariate normal distribution since that is the

asymptotic distribution of empirical risk measures. However, because of its independent interest,

we want to extend the study to elliptical distributions. We first state some basics about elliptical

distributions. The following definition and characterization of elliptical distribution are taken from

McNeil et al (2005).

Definition 2.5. An n−dimensional random vector X has an elliptical distribution if its character-

istic function has the following form:

E[eit
′X] = eit

′µψ(t′Σt),

where µ ∈ Rn, Σ ∈ Rn×n is a positive semidefinite matrix.

In this case we denote X ∼ ECn(µ,Σ, ψ). ψ is referred to as the characteristic generator of

the elliptical distribution. µ is referred to as location vector and is equal to the mean of X if exists,

and Σ is referred to as dispersion matrix.

McNeil et al (2005) point out that, generally, characteristic generators may be used only in

certain dimensions. In this paper, we shall focus on a special class of generators and the elliptical

distributions induced by this class. Specifically, we consider all the generators that can be used in

any arbitrary dimension and denote this class by Ψ∞.

The elliptical distribution family induced by Ψ∞ includes many important distributions, such

as multivariate normal distribution and multivariate t distribution. For more discussion about this

family, readers are referred to Chapter 3 of McNeil et al (2005). Furthermore, a useful property

about this family is that it has a stochastic representation in terms of multivariate normal distri-

bution, as shown by Proposition 2.6. Proposition 2.6 is essentially a combination of Theorem 3.25

and Definition 3.26 of McNeil et al (2005), and the proof is thus omitted.

Proposition 2.6. Random vector X ∼ ECn(µ,Σ, ψ) with ψ ∈ Ψ∞ if and only if there exist

random vector Z and random variable R such that

X
d
= µ +RZ, (2.3)
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where Z ∼MVN(0,Σ) and R ≥ 0 is a random variable independent of Z.

Proposition 2.6 presents an important relationship between the multivariate normal and ellipti-

cal distributions. With this representation, many properties of the multivariate normal distribution

can be easily generalized to elliptical distribution. In later sections, we shall see some examples.

This paper concerns dependence structure. Comonotonicity is a perfect positive dependence

and has important applications in actuarial science and finance. Dhaene et al (2002) conduct a

comprehensive study on the concept of comonotonicity and its applications. Below we cite their

definition and several equivalent characterizations of comonotonicity.

Definition 2.7. A set A ⊂ Rn is said to be comonotonic, if for any x,y ∈ A, either x ≤ y or

y ≤ x holds.

Intuitively, a set is comonotonic if and only if it is totally ordered.

Definition 2.8. For a random vector, its support is defined by

supp(X) = {x ∈ Rn : P{X ∈ B(x, r)} > 0, for any r > 0},

where B(x, r) denote the ball centered at x with radius r.

Definition 2.9. A random vector X is comonotonic if its support is comonotonic.

Dhaene et al (2002) also develop several well-known characterizations of comonotonicity. For

example, the following statements (a), (b), and (c) are equivalent. (a) X = (X1, . . . , Xn) is

comonotonic, (b) there exist a random variable Z and increasing functions f1, . . . , fn such that

(X1, . . . , Xn)
d
= (f1(Z), . . . , fn(Z)), (c) P{X1 ≤ x1, . . . , Xn ≤ xn} = min{P{X1 ≤ x1}, . . . ,P{Xn ≤

xn}} for all (x1, . . . , xn) ∈ Rn.

In addition, Theorem 5 of Dhaene et al (2002) provides a characterization of the comonotonicity

for multivariate normal distribution by its covariance matrix. Specifically, X = (X1, . . . , Xn) ∼

MVN(µ,Σ) is comonotonic if and only if corr(Xi, Xj) = 1 for all i, j (i.e., rank(Σ) = 1).

Furthermore, if all marginal distributions have the same variance 1, then the comonotonicity of X

is equivalent to Σ = 1n×n.

As a matter of fact, this characterization can be generalized to elliptical distributions induced by

Ψ∞. Specifically, an elliptical distribution with ψ ∈ Ψ∞ is comonotonic if and only if its dispersion
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matrix has rank 1. McNeil et al (2005) point out this fact for multivariate-t distribution (in Chapter

5). Below, we formally state the characterization and prove it in general case.

Proposition 2.10. Let X ∼ ECn(µ,Σ, ψ) with ψ ∈ Ψ∞. X is comonotonic if and only if

rank(Σ) = 1.

Proof. Recalling the stochastic representation (2.3), there exists Z ∼ MVN(0,Σ) and R ≥ 0

independent of Z such that X
d
= µ +RZ.

The “if” part. Assume rank(Σ) = 1, then corr(Zi, Zj) = 1 for all i, j. Therefore, there exists

Z ∼ N(0, 1) such that Zi = aiZ with ai ≥ 0 for all i = 1, . . . , n. It immediately follows that

X is comonotonic from the stochastic representation (2.3) and the functional characterization of

comonotonicity.

The “only if” part. Assume that X is comonotonic. Consider any y, z ∈ supp(Z). Since R is

independent of Z, then µ+ry,µ+rz ∈ supp(X) for any 0 < r ∈ supp(Z). From the comonotonicity

of X, it holds that µ + ry ≤ µ + rz or µ + ry ≥ µ + rz, which implies that y ≤ z or y ≥ z.

Therefore, we conclude that Z is comonotonic and thus rank(Σ) = 1.

3 Ordering Gini indexes according to ≤icx

Lemma 3.1. Let G(x) = G(x1, . . . , xn) be defined as in (2.1), i.e., G(x) =
∑

1≤i,j≤n |xi − xj |.

Then −G(x) is supermodular.

Proof. See Appendix.

Lemma 3.2. Let G : R3 → R be defined as in (2.1), i.e., G(x1, x2, x3) = 2(|x1 − x2|+ |x2 − x3|+

|x3 − x1|). Then −u(G(x1, x2, x3)) is supermodular for any increasing convex u.

Proof. See Appendix.

Müller (2001) develops a sufficient and necessary condition for the supermodular order between

multivariate normal distributions, cited in Lemma 3.3 below.

Lemma 3.3. Let X = (X1, . . . , Xn) ∼ MVN(µ1,Σ1) and Y = (Y1, . . . , Yn) ∼ MVN(µ2,Σ2).

Then X ≤sm Y if and only if µ1 = µ2 and Σ1 ≤ Σ2 with all diagonal elements equal.
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Based on Block and Sampson (1988, Corollary 2.3) together with Müller and Scarsini (2000),

we get a similar sufficient and necessary condition for elliptical distributions.

Proposition 3.4. Let X ∼ ECn(µ1,Σ1, ψ) and Y ∼ ECn(µ2,Σ2, ψ) with ψ ∈ Ψ∞.Then X ≤sm Y

if and only if µ1 = µ2 and Σ1 ≤ Σ2 with all diagonal elements equal.

By combining Proposition 3.4 and Lemma 3.2, we obtain the following result.

Proposition 3.5. Let X = (X1, X2, X3) ∼ EC3(0,Σ1, ψ) and Y = (Y1, Y2, Y3) ∼ EC3(0,Σ2, ψ)

with ψ ∈ Ψ∞. If Σ1 ≤ Σ2 with all diagonal elements equal, then G(X) ≥icx G(Y).

Similarly, by combining Proposition 3.4 and Lemma 3.1, we obtain the following result for high

dimensional risks.

Proposition 3.6. Let X ∼ ECn(0,Σ1, ψ) and Y ∼ ECn(0,Σ2, ψ) with ψ ∈ Ψ∞. If Σ1 ≤ Σ2

with all diagonal elements equal, then E[G(X)] ≥ E[G(Y)] given the expectations exist.

Our ultimate objective is to show that G(X) decreases in the sense of usual stochastic order

as the dispersion matrix increases with diagonal elements fixed for multivariate elliptical risk X.

Now Proposition 3.5 completes a significant step to this objective in 3-dimensional case. However,

the arguments of proving Proposition 3.5 can not be generalized to higher-dimensional case. The

main problem is that, when it comes to higher dimension, the composite function −u(G(x)) is not

necessarily supermodular for any increasing function u as in the three dimension case, i.e., Lemma

3.2 can not be generalized to higher dimension. The following example demonstrates this point.

Therefore, we remark that ordering G(X) in the increasing convex order for higher dimensional

risk is still an open problem.

Example 3.7. Consider n = 4. Let u(x) = x2. Then u is increasing convex in x ≥ 0. We shall

show that −u(G(x1, x2, x3, x4)) is not supermodular. To this end, set x = (3, 1, 0, 0),y = (2, 2, 0, 0).

Then x∧y = (2, 1, 0, 0) and x∨y = (3, 2, 0, 0). Direct calculations yield that u(G(x)) = 202 = 400,

u(G(y)) = 162 = 256, u(G(x ∧ y)) = 142 = 196, and u(G(x ∨ y)) = 222 = 484, which does not

satisfy −u(G(x))− u(G(y)) ≤ −u(G(x ∧ y))− u(G(x ∨ y)).
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4 Ordering Gini indexes according to ≤st

In this section, we will discuss the monotonicity of G(X) in the usual stochastic order with imposing

certain assumptions on the dispersion matrix.

4.1 Conditional exchangeable case

Proposition 4.1. Let X = (X1, . . . , Xn) follow a multivariate normal distribution with mean 0

and positive definite covariance matrix Σ = (σij) ∈ Rn×n. If σ1k = σ2k for all k = 3, . . . , n and

σ11 = σ22, then P{G(X) ≤ t} is increasing in σ12 for any t ≥ 0.

Proof. See Appendix.

Proposition 4.1 suggests that if we impose a conditional exchangeable structure on the mul-

tivariate normal random vector X, i.e., (X1, X2) is exchangeable conditional on the remaining

components, then G(X) is stochastically decreasing in Cov[X1, X2], which is one component of

the covariance matrix. In the following, we derive an analogous result for elliptical distribution by

using Proposition 2.6.

Proposition 4.2. Let X ∼ ECn(0,Σ, ψ) with Σ = (σij) ∈ Rn×n and ψ ∈ Ψ∞. If σ1k = σ2k for

all k = 3, . . . , n and σ11 = σ22, P{G(X) ≤ t} is increasing in σ12 for any t ≥ 0.

Proof. Let X′ ∼ ECn(0,Σ′, ψ) with Σ′ = (σ′ij) ∈ Rn×n, where σ′12 ≥ σ12 and σ′ij = σij for all

1 ≤ i < j ≤ n and (i, j) 6= (1, 2). According to Proposition 2.6, there exist Y ∼ MVN(0,Σ),

Y′ ∼ MVN(0,Σ′) and a random variable R ≥ 0 independent of Y,Y′ such that X
d
= RY and

X′
d
= RY′.

Note that for any given r > 0, rY and rY′ follow multivariate normal distributions with

covariance matrices satisfying the condition in Proposition 4.1. Therefore, we have P{G(rY) ≤

t} ≤ P{G(rY′) ≤ t}. Thus,

P{G(X) ≤ t} = P{G(RY) ≤ t} = E[P{G(RY) ≤ t}|R]

≤ E[P{G(RY′) ≤ t}|R] = P{G(RY′) ≤ t} = P{G(X′) ≤ t}.
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4.2 Quasi dominance between covariance matrices

We first cite Theorem 4.1 of Eaton and Perlman (1991) below.

Lemma 4.3. Let Xi ∼ MVN(0,Σi) for i = 1, 2. If Σ2 − Σ1 is positive semidefinite, then

P{X2 ∈ C} ≤ P{X1 ∈ C} for any convex and centrally symmetric set C (i.e., C = −C).

A matrix P is said to dominate another matrix Q if P − Q is positive semidefinite. In this

sense, Condition (4.1) is referred to as “quasi” dominance. Intuitively, Lemma 4.3 indicates that

the covariance matrix determines the degree of central concentration of a multivariate normal

distribution. Specifically, the “smaller” the covariance matrix is, the more concentrated the normal

random vector is on a convex and centrally symmetric region.

Proposition 4.4. Let X ∼MVN(0,ΣX) and Y ∼MVN(0,ΣY ). If there exists a ∈ R such that

a1n×n + ΣX −ΣY is positive semidefinite, (4.1)

where 1n×n denotes the n× n matrix with all entries equal to 1, then G(X) ≥st G(Y).

Proof. See Appendix.

In this paper, we focus on the comparison of dependence structure without changing marginals.

That means the dispersion matrices we compare have the same diagonal elements. When taking

difference, the diagonal elements become 0. In this sense, we do not expect one dispersion matrix to

dominate another since the difference matrix is not positive semidefinite. Therefore, the dominance

condition in Lemma 4.3 is relaxed to “quasi” dominance condition (4.1) to deal with this situation.

Example 4.5. Examples satisfying condition (4.1).

(i) All the off-diagonal elements of the covariance matrix increase by the same amount, i.e.,

ΣY = ΣX + σ(1n×n − In) with σ > 0. This includes the case that X and Y are both

exchangeable. The conclusion of Proposition 4.4 for exchangeable X and Y has been verified

using other approaches, see for example, Theorem 6.25 of Tong (1990).

(ii) The off-diagonal elements of the covariance on the kth row and column increase by the same

amount, i.e., ΣY = ΣX + σ
∑

j 6=k(∆jk + ∆kj) with σ > 0, where ∆kj denotes the matrix

with 1 in the (k, j) position and 0 in others.
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Using the same argument as in Proposition 4.2, it is easy to generalize the conclusion of Propo-

sition 4.4 to elliptical distributions. The proof is similar to that of Proposition 4.2 and thus is

omitted.

Proposition 4.6. Let X ∼ ECn(0,ΣX , ψ) and Y ∼ ECn(0,ΣY , ψ) with ψ ∈ Ψ∞. If there exists

a ∈ R such that

a1n×n + ΣX −ΣY is positive semidefinite,

where 1n×n denotes the n× n matrix with all entries equal to 1, then G(X) ≥st G(Y).

4.3 Comparison with comonotonicity

In the above, we manage to order Gini indexes of multivariate elliptical risks when the disper-

sion matrices follow special structures. On the other hand, it is difficult to deal with dispersion

matrices with general structure. In this section, we shall prove that comonotonicity produces the

stochastically smallest Gini index among all multivariate elliptical risks with common marginals.

The geometric argument used in this section is motivated by Theorem A2 of Joe (1990), which

establishes the concordance order between elliptical distributions.

Proposition 4.7. Let X = (X1, X2, X3) and Y = (Y1, Y2, Y3) follow multivariate normal dis-

tributions with mean 0 and common marginal distributions. If (Y1, Y2, Y3) is comonotonic, then

G(Y) ≤st G(X).

Proof. See Appendix.

Similarly to Proposition 4.1 and Proposition 4.4, Proposition 4.7 can also be generalized to

elliptical distributions. As before, the proof is omitted.

Proposition 4.8. Let X = (X1, X2, X3) and Y = (Y1, Y2, Y3) follow elliptical distributions with

mean vector 0, common marginal distributions and a common generator ψ ∈ Ψ∞. If Y is comono-

tonic, then G(Y) ≤st G(X).
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5 Discussion on the pd-1 order

The methods used to analyze the Gini index in the above sections can be used to generalize the

pd-1 order proposed by Shaked and Tong (1985). The pd-1 order is a partial order which compares

the degree of dispersion of exchangeable random vectors. We cite the definition of pd-1 order below.

Definition 5.1. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two exchangeable random vectors

with common marginals. We write X ≤pd−1 Y if∣∣∣∣∣
n∑
i=1

ciX(i)

∣∣∣∣∣ ≥st
∣∣∣∣∣
n∑
i=1

ciY(i)

∣∣∣∣∣ whenever
n∑
i=1

ci = 0.

Shaked and Tong (1985) give several examples satisfying this order, such as multivariate normal,

t, exponential distributions. For more details about this order and other related orders, readers are

referred to Shaked and Tong (1985) and Shaked and Shanthikumar (2007).

Note that this order is restrictive in the sense that it only applies to exchangeable random

vectors. In order to apply it to non-exchangeable random vectors, we propose a weaker order

≤wpd−1 and establish this order among elliptical random vectors.

Definition 5.2. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random vectors with common

marginals. We write X ≤wpd−1 Y if∣∣∣∣∣
n∑
i=1

ciX(i)

∣∣∣∣∣ ≥st
∣∣∣∣∣
n∑
i=1

ciY(i)

∣∣∣∣∣ ,
for all c1 ≤ · · · ≤ cn such that {c1, . . . , cn} = {−c1, . . . ,−cn}.

Clearly, X ≤pd−1 Y implies X ≤wpd−1 Y since {c1, . . . , cn} = {−c1, . . . ,−cn} implies
∑n

i=1 ci =

0. Since the weak pd-1 order is defined for general random vector, the constraint {c1, . . . , cn} =

{−c1, . . . ,−cn} is added to remedy the loss of symmetry by relaxing the assumption of exchange-

ability.

Proposition 5.3. Let X ∼ ECn(0,ΣX , ψ), Y ∼ ECn(0,ΣY , ψ) with ψ ∈ Ψ∞ and X and Y have

common marginal distributions. If there exists a ∈ R such that

a1n×n + ΣX −ΣY is positive semidefinite,

where 1n×n denotes the n× n matrix with all entries equal to 1, then X ≤wpd−1 Y

12



Proof. Note that the arguments in the proof of Proposition 4.4 still hold for any {c1, . . . , cn} satis-

fying the conditions in Definition 5.2. The conclusion is reached by simply combining Propositions

4.4 and 4.6. Details are omitted.

Similar as Proposition 4.8, it can be proved that comonotonic elliptical risk is the lower bound

of all multivariate elliptical risks with common marginals in the sense of the weak pd-1 order.

Proposition 5.4. Let Y = (Y1, Y2, Y3),X = (X1, X2, X3) follow elliptical distributions with com-

mon marginals and a common generator ψ ∈ Ψ∞. If Y is comonotonic, then X ≤wpd−1 Y.

Proof. For any c1 ≤ c2 ≤ c3 such that {c1, c2, c3} = {−c1,−c2,−c3}, we have c2 = 0 and c3 =

−c1 ≥ 0. Therefore,
∑3

i=1 ciX(i) = c3(X(3) − X(1)) = c3
4 G(X). According to Proposition 4.8, we

know that G(X) ≥st G(Y) and thus c3
4 G(X) ≥st c34 G(Y), which implies that X ≤wpd−1 Y.

An interesting application of the weak pd-1 order is to measure how far a random vector is from

the comonotonic dependence structure. For a random vector X = (X1, . . . , Xn), we introduce a

new index: H(X) =
∑[n+1

2
]

i=1 (X(n+1−i)−X(i)). Clearly, the coefficients of the order statistics satisfy

the conditions in Definition 5.2. Therefore, X ≤wpd−1 Y implies that H(X) ≥st H(Y).

From the geometric perspective, the comonotonic dependence structure is represented by the

line l = {(t, . . . , t), t ∈ R}, and the distance between the dependence structure of X and the comono-

tonic dependence structure can be measured by the geometric distance between (X1, . . . , Xn) and

the line l. If we use the Minkowski norm of order 1, that is d1((x1, . . . , xn), (y1, . . . , yn)) =∑n
i=1 |xi − yi|, then the distance between (X1, . . . , Xn) and the line l is d1((X1, . . . , Xn), l) =

inft d1((X1, . . . , Xn), (t, . . . , t)) = inft
∑n

i=1 |Xi − t|. Note that

n∑
i=1

|Xi − t| =
n∑
i=1

|X(i) − t| =
[n+1

2
]−1∑

i=1

(|X(i) − t|+ |X(n+1−i) − t|) +

n+1−[n+1
2

]∑
i=[n+1

2
]

|X(i) − t|

≥
[n+1

2
]∑

i=1

(X(n+1−i) −X(i)) = H(X).

The equality is obtained at t ∈ [X([n+1
2

]), X(n+1−[n+1
2

])]. Therefore, d1(X, l) = H(X). In this sense,

the index H(X) measures the distance of a random vector from the comonotonic dependence

structure, or degree of comonotonicity. Intuitively, the smaller H(X) is, the higher degree of

comonotonicity the random vector has.

13



The dependence structure of comonotonicity has wide applications. In finance and insurance,

comonotonicity usually serves as the most conservative assumption when the underlying dependence

structure is unknown. On the other hand, it is still important to evaluate the appropriateness of

the assumption of comonotonicity by investigating the distance between the underlying dependence

structure and comonotonicity. Dhaene et al (2012) studied the herd behavior in the stock market,

which is essentially the degree of comonotonicity of certain stocks. They proposed the herd behavior

index, defined to be the ratio of the variance of a portfolio and the variance of the same portfolio

but with comonotonicity, to measure the degree of co-movement of stocks. The results presented

in this section show that the index H(X) or its related quantity (such as E[H(X)]) also serves as

a measure of degree of comonotonicity and thus supplements the studies in Dhaene et al (2012).

6 Concluding remarks

The studies of Brazauskas et al (2007) and Samanthi et al (2015) motivate the comparison of Gini

indexes of multivariate elliptical risks with common marginals but different dispersion matrices.

In this paper, we first generally establish the increasing convex order between Gini indexes of

multivariate elliptical risks. Then we manage to order Gini indexes in the usual stochastic order

when the dispersion matrices follow special structures. Furthermore, we demonstrate that among

all dependence structures, comonotonicity produces the smallest Gini index in the sense of usual

stochastic order.

Apart from its usefulness in actuarial applications, the comparison of Gini indexes presents its

own interests. First, it enriches the studies on the concentration of elliptical random vectors on

convex centrally symmetric regions. Second, it generalizes the concept of pd-1 order and permits

further applications in operations research.

On the other hand, this paper motivates open problems. For example, to what extent can Gini

indexes of multivariate elliptical risks be ordered in the sense of usual stochastic order? Does the

conclusion still hold for high dimensional risks with general elliptical distribution? Investigation of

these problems will be presented in the future papers.
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Appendix

Proof of Lemma 3.1. According to Proposition 2.4, it suffices to show that −Gij(xi, xj) :=

−G(x1, . . . , xn) is supermodular as a bivariate function of (xi, xj) for any fixed xk, k 6= i, j and any

1 ≤ i < j ≤ n. Specifically, we want to show that for any 1 ≤ i < j ≤ n and any xi ≤ yi and

xj ≤ yj ,

Gij(xi, xj) +Gij(yi, yj) ≤ Gij(yi, xj) +Gij(xi, yj).

Noting that Gij(xi, xj) = 2|xi − xj |+ 2
∑

k 6=i,j(|xi − zk|+ |xj − zk|) +
∑

k,l:{k,l}∩{i,j}=∅ |zk − zl|, it

is equivalent to show

2|xi − xj |+ 2|yi − yj | ≤ 2|yi − xj |+ 2|xi − yj |,

which is easy to verify. �

Proof of Lemma 3.2. Noting that u◦G is permutational invariant, it is sufficient to show that

u(G(x1, x2, x3)) + u(G(y1, y2, y3)) ≤ u(G(y1, x2, x3)) + u(G(x1, y2, y3)), (A.1)

for any (x1, x2, x3) ≤ (y1, y2, y3).

According to Lemma 3.1, we have G(x1, x2, x3) + G(y1, y2, y3) ≤ G(y1, x2, x3) + G(x1, y2, y3).

Recall that it holds for an increasing convex function that u(a)+u(b) ≤ u(c)+u(d) for any a, b, c, d

such that a+ b ≤ c+ d and max{a, b} ≤ max{c, d}. It suffices to show

max{G(x1, x2, x3), G(y1, y2, y3)} ≤ max{G(y1, x2, x3), G(x1, y2, y3)}, (A.2)

for any (x1, x2, x3) ≤ (y1, y2, y3).

Note that G(x1, x2, x3) = 4(max{x1, x2, x3} − min{x1, x2, x3}). If x1 > min{x2, x3}, then

y1 ≥ x1 > min{x2, x3}, and thus

G(x1, x2, x3) = 4(max{x1, x2, x3} −min{x1, x2, x3})

≤ 4(max{y1, x2, x3} −min{y1, x2, x3}) = G(y1, x2, x3).
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Figure 1: ∂C+ (solid) and ∂C− (dashed)
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Figure 2: ∂C ′+ (solid) and ∂C− (dashed)

Otherwise, if x1 ≤ min{x2, x3}, then x1 ≤ min{y2, y3}, and thus

G(x1, x2, x3) = 4(max{x1, x2, x3} −min{x1, x2, x3}) = 4(max{x2, x3} − x1)

≤ 4(max{y2, y3} − x1) = 4(max{x1, y2, y3} −min{x1, y2, y3}) = G(x1, y2, y3).

Therefore, we conclude that G(x1, x2, x3) ≤ max{G(y1, x2, x3), G(x1, y2, y3)}. Similarly, we can

show that G(y1, y2, y3) ≤ max{G(y1, x2, x3), G(x1, y2, y3)}. �

In order to prove Proposition 4.1, we propose the following lemma.

Lemma A.1. Assume (X,Y ) have an exchangeable bivariate normal random vector with corre-

lation coefficient ρ. Let C ⊂ R2 be any convex set such that {(x, y)|(y, x) ∈ C} = C. Then

P{(X,Y ) ∈ C} is increasing in ρ.

Proof. For simplicity, assume C is bounded. The unbounded case can be approached by limiting

argument. Denote by ∂C the boundary of C with positive (counterclockwise) orientation. Then ∂C

is piecewise smooth due to the convexity of C. Furthermore, denote ∂C+ = {(x, y) ∈ ∂C|y ≥ x}

and ∂C− = {(x, y) ∈ ∂C|y ≤ x}, then ∂C = ∂C+ ∪ ∂C−. Let ∂C ′+ be same as ∂C+ but with the

opposite (clockwise) orientation. Then ∂C ′+ and ∂C− are reflections to each other with respect to

the line y = x. Figure 1 and Figure 2 provide an illustration (not an accurate representation) of

these orientated curves.

Without loss of generality, assume E[X] = E[Y ] = 0 and Var[X] = Var[Y ] = 1. Then the

density function of (X,Y ) by f(x, y) = 1

2π
√

1−ρ2
exp

{
−x2+y2−2ρxy

2(1−ρ2)

}
. Plackett’s identity (Plackett,
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1954) states that ∂
∂ρf(x, y) = ∂2

∂x∂yf(x, y). According to Fubini’s theorem, we have

∂

∂ρ
P{(X,Y ) ∈ C} =

∂

∂ρ

∫
C
f(x, y)dxdy =

∫
C

∂

∂ρ
f(x, y)dxdy

=

∫
C

∂2

∂x∂y
f(x, y)dxdy

(∗)
=

∮
∂C

∂

∂y
f(x, y)dy

=

(∫
∂C+

+

∫
∂C−

)
∂

∂y
f(x, y)dy

=

(
−
∫
∂C′+

+

∫
∂C−

)
∂

∂y
f(x, y)dy, (A.3)

where Equality (∗) follows from Green’s theorem.

Note that ∂
∂yf(x, y) = ρx−y

1−ρ2 f(x, y). Following (A.3), we have

∂

∂ρ
P{(X,Y ) ∈ C} = −

∫
∂C′+

ρx− y
1− ρ2

f(x, y)dy +

∫
∂C−

ρx− y
1− ρ2

f(x, y)dy

= −
∫
∂C′+

f(x, y)dy ×
∫
∂C′+

ρx− y
1− ρ2

f(x, y)∫
∂C′+

f(x, y)dy
dy +

∫
∂C−

f(x, y)dy ×
∫
∂C−

ρx− y
1− ρ2

f(x, y)∫
∂C−

f(x, y)dy
dy

= −
∫
∂C′+

f(x, y)dy × E
[
ρX − Y
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C ′+
]

+

∫
∂C−

f(x, y)dy × E
[
ρX − Y
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C−
]

Due to the symmetry between ∂C+ and ∂C ′− and the exchangeability of (X,Y ) (or f(x, y)), we

know that
∫
∂C′+

f(x, y)dy =
∫
∂C−

f(x, y)dy and

E
[
ρX − Y
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C ′+
]

= E
[
ρY −X
1− ρ2

∣∣∣∣ (Y,X) ∈ ∂C ′+
]

= E
[
ρY −X
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C−
]
.

Therefore,

∂

∂ρ
P{(X,Y ) ∈ C} =

∫
∂C−

f(x, y)dy ×
(
−E

[
ρX − Y
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C ′+
]

+ E
[
ρX − Y
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C−
])

=

∫
∂C−

f(x, y)dy ×
(
−E

[
ρY −X
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C−
]

+ E
[
ρX − Y
1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C−
])

=

∫
∂C−

f(x, y)dy × E
[

(1 + ρ)(X − Y )

1− ρ2

∣∣∣∣ (X,Y ) ∈ ∂C−
]
≥ 0.

The last inequality holds because (X,Y ) ∈ ∂C− implies X ≥ Y . It immediately follows that

P{(X,Y ) ∈ C} is increasing in ρ. �

Proof of Proposition 4.1. We shall use conditioning argument. According to the property of

multivariate normal distribution, we know that conditioning on {X3 = x3, . . . , Xn = xn}, (X1, X2)

has an exchangeable bivariate normal distribution with covariance σ∗12 = σ12 − s, where s is deter-

mined by other components of the covariance matrix.
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For any fixed x3, ..., xn and t ≥ 0, denote C = {(x1, x2)|G(x1, x2, x3, . . . , xn) ≤ t}. Note that

C ⊂ R2 is a convex polygon and symmetric with respect to the line x1 = x2. According to Lemma

A.1, P{G(X) ≤ t|X3 = x3, . . . , Xn = xn} = P{(X1, X2) ∈ C|X3 = x3, . . . , Xn = xn} is increasing

in σ∗12 and thus in σ12. Therefore, P{G(X) ≤ t} = E[P{G(X) ≤ t|X3, . . . , Xn}] is also increasing in

σ12. �

Proof of Proposition 4.4. Recall expression (2.2),

G(X) =
n∑
k=1

(4k − 2n− 2)X(k) ,
n∑
k=1

ckX(k),

where ck = 4k − 2n − 2. Noting that {ck, k = 1, 2, . . . , n} is an increasing sequence, according to

arrangement inequality, we have

G(X) = max
π∈P

{
n∑
k=1

ckXπ(k)

}
= max

π∈P

{
n∑
k=1

cπ(k)Xk

}
,

where P denotes the collection of all permutations of (1, 2, . . . , n). Let C ∈ Rn!×n be the matrix

generated by all different permutations of (c1, . . . , cn). Then G(X) and G(Y) are the largest order

statistics of random vectors CXT and CYT , respectively. On the other hand, since X and Y follow

multivariate normal distributions, so do CXT and CYT . Specifically, CXT ∼MVN(0,CΣXCT )

and CYT ∼MVN(0,CΣY CT ).

Noting that C1n×nC
T = 0 since

∑n
k=1 ck = 0, comparing covariance matrices of CXT and

CYT yields that

CΣXCT −CΣY CT = CΣXCT −CΣY CT + aC1n×nC
T = C(ΣX −ΣY + a1n×n)CT ,

which is positive semidefinite since ΣX −ΣY + a1n×n is positive semidefinite.

Recall that G(X) = max{rowiC.XT , i = 1, . . . , n!}. Since {c1, . . . , cn} = {−c1, . . . ,−cn}, then

{rowiC.XT , i = 1, . . . , n!} = {−rowiC.XT , i = 1, . . . , n!}. Therefore,

P{G(X) ≤ t} = P{CXT ≤ (t, .., t)T } = P{−CXT ≤ (t, .., t)T }

= P{(−t, . . . ,−t)T ≤ CXT ≤ (t, .., t)T } , P{CXT ∈ Qt},

where Qt is a super cube centered at origin with side length of 2t. It is clear that Qt is convex and

centrally symmetric. According to Lemma 4.3,

P{G(X) ≤ t} = P{CXT ∈ Qt} ≤ P{CYT ∈ Qt} = P{G(Y) ≤ t},
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for any t, which implies that G(X) ≥st G(Y) from Definition 2.1. �

Proof of Proposition 4.7. Denote the variances of the marginal distributions by σ2
1 ≤ σ2

2 ≤ σ2
3.

There exists {Z1, Z2, Z3}
i.i.d.∼ N(0, 1), such that (Y1, Y2, Y3)

d
= (σ1Z1, σ2Z1, σ3Z1) and

(X1, X2, X3)
d
=


σ1 0 0

0 σ2 0

0 0 σ3




l11 0 0

l21 l22 0

l31 l32 l33




Z1

Z2

Z3



where LX =


l11 0 0

l21 l22 0

l31 l32 l33

 is the Cholesky decomposition of the correlation matrix of (X1, X2, X3),

which means that l11 = 1, l221 + l222 = 1 and l231 + l232 + l233 = 1.

Therefore, P{G(X) ≤ t} = P{(Z1, Z2, Z3) ∈ RX(t)} and P{G(Y) ≤ t} = P{(Z1, Z2, Z3) ∈

RY (t)}, where

RY (t) = {(z1, z2, z3) : 4(σ3 − σ1)|z1| ≤ t}

RX(t) = {(z1, z2, z3) : 2|σ1z
′
1 − σ2z

′
2|+ 2|σ2z

′
2 − σ3z

′
3|+ 2|σ3z

′
3 − σ1z

′
1| ≤ t}

= {(z1, z2, z3) : 4|σ1z
′
1 − σ2z

′
2| ≤ t} ∩ {(z1, z2, z3) : 4|σ2z

′
2 − σ3z

′
3| ≤ t}

∩{(z1, z2, z3) : 4|σ3z
′
3 − σ1z

′
1| ≤ t},

with z′1 = z1, z
′
2 = l21z1 + l22z2 and z′3 = l31z1 + l32z2 + l33z3.

Now we compare the two regions RY (t) and R1
X(t) = {(z1, z2, z3) : 4|σ3z

′
3 − σ1z

′
1| ≤ t}. Note

that both of them are regions between a pair of parallel planes. For RY (t), the distance be-

tween the boundary planes is t
2(σ3−σ1) . For R1

X(t), the distance between the boundary planes is

t

2
√
σ2
1+σ3

3−2l31σ1σ3
≤ t

2(σ3−σ1) . Since both RY (t) and R1
X(t) are centered at the origin, we conclude

that R1
X(t), and thus RX(t) as a subset of R1

X(t), can be moved inside RY (t) through certain

rational transformations. Since the distribution of (Z1, Z2, Z3) is rational invariant, it immediately

follows that P{(Z1, Z2, Z3) ∈ RX(t)} ≤ P{(Z1, Z2, Z3) ∈ RY (t)}, i.e., P{G(X) ≤ t} ≤ P{G(Y) ≤ t}

for any t ≥ 0, which implies that G(X) ≥st G(Y). �
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