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Abstract. The probabilistic behavior of the claim severity variable plays a fundamental

role in calculation of deductibles, layers, loss elimination ratios, effects of inflation, and

other quantities arising in insurance. Among several alternatives for modeling severity, the

parametric approach continues to maintain the leading position, which is primarily due to

its parsimony and flexibility. In this paper, several parametric families are employed to

model severity of Norwegian fire claims for the years 1981 through 1992. The probability

distributions we consider include: generalized Pareto, lognormal-Pareto (two versions),

Weibull-Pareto (two versions), and folded-t. Except for the generalized Pareto distribution,

the other five models are fairly new proposals that recently appeared in the actuarial

literature. We use the maximum likelihood procedure to fit the models, and assess the

quality of their fits using basic graphical tools (quantile-quantile plots), two goodness-of-

fit statistics (Kolmogorov-Smirnov and Anderson-Darling), and two information criteria

(AIC and BIC). In addition, we estimate the tail risk of ‘ground up’ Norwegian fire claims

using the value-at-risk and tail-conditional median measures. We monitor the tail risk

levels over time, for the period 1981 to 1992, and analyze predictive performances of the

six probability models. In particular, we compute the next-year probability for a few upper

tail events using the fitted models and compare them with the actual probabilities.

1 Corresponding author: Vytaras Brazauskas, Ph.D., ASA, is a Professor in the Department of Mathematical

Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA. e-mail : vytaras@uwm.edu

2 Andreas Kleefeld, Ph.D., is a Postdoctoral Fellow in the Institute for Applied Mathematics and Scientific Computing,

Brandenburg University of Technology, Cottbus, Germany. e-mail : kleefeld@tu-cottbus.de



1 Introduction

The implementation of sound quantitative risk models is a vital concern for insurance industry, banks

and other financial services companies. This process has accelerated over the last decade due to the

revised regulatory frameworks such as Solvency II and Basel II/III . Among various methods used

for measuring tail risk, those based on the Generalized Pareto Distribution (GPD) play a central role

(see, e.g., McNeil, Frey, and Embrechts, 2005). Over the years, a number of authors have persuasively

argued that the choice of GPD is natural and supported by rigorous theorems from extreme value

theory, which is certainly true. In practice, however, implementation of this model is not as “smooth”

as one would hope. Indeed, as discussed by Resnick (1997), the sensitivity of various model-fitting

methods to the choice of threshold (that defines where the model tail starts) is a problem, and that the

use of graphical tools such as the Hill plot is often “more guesswork than science.” Some authors have

tried to manage this problem by employing robust procedures to estimate the parameters of GPD (see,

for example, Dupuis, 1998, Peng and Welsh, 2001, Juárez and Schucany, 2004, and Brazauskas and

Kleefeld, 2009). In this paper, however, we take a different approach – we assume that the probability

distributions under consideration are appropriate for all (extreme and non-extreme) data. And since

Norwegian fire claims data were observed above a known and fairly large threshold, we fit truncated

versions of the GPD and several alternative models.

As is well known, the probabilistic behavior of the claim severity variable plays fundamental role not

only in measuring tail risk, but also in calculation of deductibles, layers, loss elimination ratios, effects

of inflation, and other quantities arising in insurance. A number of reasons explaining why parametric

models are preferred over other alternatives have been outlined by Klugman, Panjer, and Willmot

(2012). These authors also provide a catalog of standard probability distributions that are used in

actuarial work. And even though the catalog is indeed comprehensive, the search for, and development

of, new distributions continues in the actuarial and statistical literatures. The chief objective of such

attempts is to have parsimonious yet sufficiently flexible models that exhibit excellent goodness-of-fit

properties for the entire range—not just the extreme right tail—of real insurance data. Also, if such

distributions are successfully constructed or identified, the above-mentioned challenges encountered
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with the GPD would be eliminated.

Three major approaches have emerged in the actuarial literature for tackling these problems. The

first approach is purely mathematical where one introduces a more complicated model and then checks

if that solves the problem at hand. Prominent examples of this approach are skew-normal and skew-t

models (see Eling, 2012) and log-phase-type distributions (see Ahn, Kim, and Ramaswami, 2012).

Both papers used the well-known Danish fire claims data set (see McNeil, 1997) to illustrate that the

proposed models provide reasonable fits. The second approach aims at fixing the issues associated with

the GPD and pursues the composite models that are constructed using model splicing. In particular,

researchers assume that smaller claims follow some standard distribution such as lognormal or Weibull,

but larger claims are modeled with a type of Pareto distribution. As demonstrated in numerical

examples of Scollnik (2007) and Scollnik and Sun (2012), the assumption of a Pareto-type model for

the larger claims yields promising results. The third approach is guided by a different philosophy,

the one of simplicity. The rationale of this approach is that the more complex the model, the higher

the chance it will present analytical and/or computational challenges. Indeed, complex models are

based on stronger assumptions and they have more parameters. This results in more uncertainty since

usually the values of parameters are unknown and need to be estimated from the data. Currently,

the most promising probability distributions in this research venue are the folded-symmetric models,

which represent the positive half of normal, Cauchy, or, more generally, t distributions (for details, see

Psarakis and Panaretoes, 1990, Brazauskas and Kleefeld, 2011, 2014, and Scollnik, 2014).

There is a vast literature on risk measures and their application to contract pricing, capital alloca-

tion, and risk management. For a quick introduction into these topics, the reader may be referred to

Albrecht (2004), Tapiero (2004), and Young (2004). When measuring risk actuaries have to identify

appropriate risk measures, collect reliable data, and also perform statistical estimation of the selected

risk measures. In the actuarial literature, systematic studies of the statistical aspects in risk estima-

tion were intitiated by Jones and Zitikis (2003), and then followed by Brazauskas and Kaiser (2004),

Kaiser and Brazauskas (2006), and other authors. In this paper, we will adhere to the principles

of sound statistical analysis emphasized by those authors. That is, when measuring tail risk via a

parametrically-estimated risk measure, we will first perform extensive model validation and only then
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employ various tools for evaluation, monitoring and prediction of risk.

This paper could be characterized as a combination of a review article and a case study. Its objec-

tive is three-fold: (a) to review several recently proposed and most effective probability distributions

for modeling heavy-tailed insurance losses; (b) to walk the reader through an extensive model vali-

dation process, with sufficient detail so the empirical findings could be easily reproduced; and (c) to

identify the effects, if any, model selection has on the upper-tail risk measurement. To achieve these

goals, we use the Norwegian fire claims (1981–1992) data which are widely-accessible and well-studied.

The rest of the paper is organized as follows. Section 2 presents key features of the data sets

modeled in this paper. Section 3 introduces the probability distributions under consideration and

provides their parameter estimates for each of the data sets. Quantile-quantile plots along with a

number of model validation and selection criteria are presented in Section 4. Further, in Section 5,

we measure the tail risk of Norwegian fire claims by utilizing value-at-risk, a popular risk metric, and

tail-conditional median, an alternative to the well-known tail-conditional expectation. Final remarks

are made and conclusions are drawn in Section 6.

2 Data

To illustrate how our selected probability distributions work on real data, we will use the well-studied

Norwegian fire claims data which are available at the following website:

http://lstat.kuleuven.be/Wiley (in Chapter 1, file norwegianfire.txt).

The data represent the total damage done by fires in Norway for the years 1972 through 1992. Note

that only damages in excess of a priority of 500,000 Norwegian krones are available. Also, it is not

known whether the claims were inflation adjusted or not. Table 1 provides a summary of the data

sets for the final 12 years, 1981–1992. This shorter period will suffice for our investigations and reduce

possible effects of inflation, if any. We can see from the table that all typical features of insurance

claims appear in these data sets. Specifically: most frequent claims are relatively small (from 40% of

the observations in 1990 to 55% in 1982 fall between 500,000 and 1,000,000), but as severity grows,

claim frequency declines (24%–39% between 1,000,000 and 2,000,000; 12%–18% between 2,000,000 and

3



5,000,000; etc.), and there is a small percentage of extremely large claims. (Notice how remote and

spread out are the top three claims in 1988, with the largest one being almost half a billion Norwegian

krones.) This exploratory analysis suggests that only highly-skewed and heavy-tailed models can

capture most of the characteristics of the given data sets.

Table 1: Summary statistics for the Norwegian Fire Claims (1981–1992) data.

Claim Severity Norwegian Fire Claims for Year

(in 1,000,000’s) 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Relative Frequencies (%)

[0.5; 1.0) 54.5 54.7 53.8 48.3 49.6 50.7 41.9 41.2 41.9 40.4 43.3 45.5

[1.0; 2.0) 23.5 23.8 27.8 29.8 29.2 31.2 34.7 32.8 33.3 39.0 34.0 31.4

[2.0; 5.0) 13.5 14.3 12.0 15.4 14.0 11.9 17.1 16.9 18.0 16.2 17.9 16.4

[5.0; 10.0) 4.4 4.7 3.4 4.8 4.0 3.2 4.2 5.2 3.9 1.9 3.2 4.1

[10.0; 20.0) 2.3 2.1 2.2 1.1 1.6 1.7 1.2 1.9 1.9 1.4 1.3 1.6

20+ 1.6 0.5 0.7 0.5 1.6 1.2 1.0 1.9 1.0 1.0 0.3 1.0

Top 3 Claims (in 1,000,000’s)

43 19 22 22 60 87 35 84 45 26 17 45

62 20 30 56 70 98 38 151 86 41 35 50

78 23 51 106 135 188 45 465 145 79 50 102

Sample Size

429 428 407 557 607 647 767 827 718 628 624 615

3 Modeling Severity

The GPD, composite Pareto, and folded-t distributions will be used to fit the Norwegian fire claims

data. To accomplish this task, we employ the truncated maximum likelihood procedures (denoted

MLE). In this section, the most essential distributional properties of the models are introduced and

their MLE parameter estimates for all the data sets are presented.

3.1 Generalized Pareto Distribution

The cumulative distribution function (cdf) of the GPD is given by

FGPD(σ, γ)(x) =





1 − (1 − γx/σ)1/γ , γ 6= 0

1 − exp (−x/σ) , γ = 0,
(3.1)
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and the probability density function (pdf) by

fGPD(σ, γ)(x) =





σ−1 (1 − γx/σ)1/γ−1 , γ 6= 0

σ−1 exp (−x/σ) , γ = 0,
(3.2)

where the pdf is positive for x ≥ 0, when γ ≤ 0, or for 0 ≤ x ≤ σ/γ, when γ > 0. The parameters

σ > 0 and −∞ < γ < ∞ control the scale and shape of the distribution, respectively. Note that when

γ = 0 and γ = 1, the GPD reduces to the exponential distribution (with scale σ) and the uniform

distribution on [0, σ], respectively. If γ < 0, then the Pareto distributions are obtained. Also, the

mean and variance of the GPD random variable, XGPD(σ, γ), are given by

E
[
XGPD(σ, γ)

]
=

σ

1 + γ
, γ > −1, and Var

[
XGPD(σ, γ)

]
=

σ2

(2γ + 1)(γ + 1)2
, γ > −1/2. (3.3)

Further, besides functional simplicity of its cdf and pdf, another attractive feature of the GPD is

that its quantile function (qf) has an explicit formula. This is especially useful for model diagnos-

tics (e.g., quantile-quantile plots) and for portfolio risk evaluations based on value-at-risk measures.

Specifically, for 0 < u < 1, the qf is given by

F−1
GPD(σ, γ)(u) =





(σ/γ) (1 − (1 − u)γ) , γ 6= 0

−σ log(1 − u), γ = 0.
(3.4)

Let X1, . . . ,Xn denote a sample of independent and identically distributed (i.i.d.) random variables

from the GPD(σ, γ) model. Note that all the observed Xi’s exceed a known threshold d. (For the

Norwegian fire claims data, we have d = 500, 000.) Then, a maximum likelihood estimator of (σ, γ) is

found by numerically maximizing the left truncated (at d = 500, 000) log-likelihood function:

logLGPD(σ, γ |X1, . . . ,Xn) =

n∑

i=1

log

(
fGPD(σ, γ)(Xi)

1 − FGPD(σ, γ)(d)

)

= − n log σ +
1 − γ

γ

n∑

i=1

log
(
1 − γ

σ
Xi

)
− n log

(
1 − FGPD(σ, γ)(d)

)
, (3.5)

where expression (3.5) is derived by taking into account (3.2). For the data sets under consideration,

the following MLE estimates resulted (see Table 2).
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Table 2: Parameter MLEs of the GPD model for the Norwegian Fire Claims (1981–1992) data.

GPD Norwegian Fire Claims for Year

parameters 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

σ (×10−3) 70.5 160.5 127.3 344.4 170.8 174.8 489.0 382.5 488.2 555.0 526.0 396.6

γ -0.83 -0.70 -0.71 -0.56 -0.75 -0.71 -0.51 -0.69 -0.56 -0.42 -0.42 -0.58

As is evident from Table 2, the distribution of Norwegian fire claims, when modeled using the

GPD assumption, has a heavy right tail. Indeed, except for the years 1990 and 1991, the estimates

of the shape parameter γ range from -0.83 in 1981 to -0.51 in 1987. According to (3.3), these models

have infinite variance. The GPD models fitted for the years 1990 and 1991 do have finite variances,

but their third and higher order moments are infinite.

3.2 Composite Pareto Models

Building on the work of Cooray and Ananda (2005) and Cooray (2009), Scollnik (2007) and later

Scollnik and Sun (2012) proposed several composite models for modeling insurance losses. Specifically,

they assumed that the claim severity variable has the following pdf:

f(x) =





wf1(x)/F1(θ), if 0 < x ≤ θ,

(1 − w)f2(x), if x > θ,
(3.6)

where w (0 ≤ w ≤ 1) is a mixing weight, f1 and F1 are the pdf and cdf, respectively, of the “small”

and “medium” claims distribution, and f2 is the pdf of the “large” claims distribution. The cdf and

qf are given by

F (x) =





wF1(x)/F1(θ), if 0 < x ≤ θ,

w + (1 − w)F2(x), if x > θ,
(3.7)

and

F−1(u) =





F−1
1

(
uF1(θ)

w

)
, if 0 < u ≤ w,

F−1
2

(
u − w

1 − w

)
, if u > w,

(3.8)

respectively, where F−1
1 and F−1

2 denote the respective qf’s. An appealing characteristic of this model

is that the threshold level θ is treated as an unknown parameter, hence allowing the data to define
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which claims are small, medium, and which ones are large. Note also that the tail heaviness and the

number of finite moments for f depends on the tail behavior of the second distribution f2.

Further, by requiring that the pdf f be continuous and differentiable at θ, one can eliminate some

of the parameters of f1 and f2 and thus simplify the composite model. That is, the number of free

parameters in (3.6) can be reduced by imposing the following conditions:

wf1(θ)/F1(θ) = (1 − w)f2(θ), wf ′
1(θ)/F1(θ) = (1 − w)f ′

2(θ). (3.9)

In this paper, we will consider only the most competitive composite models: lognormal-Pareto, with

f1 lognormal and f2 either Pareto I (denoted LNPa2) or GPD (denoted LNPa3), and Weibull-Pareto,

with f1 Weibull and f2 either Pareto I (denoted WePa2) or GPD (denoted WePa3).

3.2.1 Lognormal-Pareto Models

The pdf, cdf, and qf of the LNPa2 model are obtained by inserting the pdf’s

f1(x) =
1

σx
√

2π
exp

{
−1

2

(
log x − µ

σ

)2
}

, x > 0 , (3.10)

f2(x) =
αθα

xα+1
, x > θ , (3.11)

and the corresponding cdf’s and qf’s into (3.6), (3.7), and (3.8). Here θ > 0 represents the threshold

level at which splicing of the two distributions occurs, σ > 0 is a scale parameter for small and medium

log-claims (i.e., claims below θ), and α > 0 denotes the shape parameter which controls the heaviness

of the tail. The remaining two parameters, µ > 0 and 0 ≤ w ≤ 1, are determined from the continuity

and differentiability conditions (3.9) and given by

µ = log θ − ασ2 , w =

√
2π ασ Φ(αθ) exp{ασ2/2}

1 +
√

2π ασ Φ(αθ) exp{ασ2/2}
,

where Φ denotes the cdf of the standard normal distribution. Note that the tail behavior of this model

is driven by the Pareto distribution, which implies that the LNPa2 model has k finite moments when

α > k.

For the LNPa3 model, the pdf f1 is given by (3.10) and f2 is a truncated and reparametrized

version of (3.2). More specifically, if in expression (3.2) one left truncates the pdf at θ and chooses
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α = −1/γ and λ = σα, then the following density function will result:

f2(x) =
α (λ + θ)α

(λ + x)α+1 , x > θ , (3.12)

where θ > 0, σ > 0, α > 0 have the same interpretation as in the case of LNPa2, and λ > −θ is a

second location parameter. The remaining two parameters, µ > 0 and 0 ≤ w ≤ 1, are determined

from the continuity and differentiability conditions (3.9) and given by

µ = log θ −
(

αθ − µ

λ + θ

)
σ2 , w =

√
2π αθσ Φ

(
log θ−µ

σ

)
exp

{(
log θ−µ

σ

)2/
2

}

λ + θ +
√

2π αθσ Φ
(

log θ−µ
σ

)
exp

{(
log θ−µ

σ

)2/
2

} .

Similar to the LNPa2 model, the tail behavior of this model is driven by the Pareto distribution, which

implies that the LNPa3 model has k finite moments when α > k.

3.2.2 Weibull-Pareto Models

The pdf of the WePa2 model is obtained by inserting the pdf’s

f1(x) =
(τ

x

)(x

φ

)τ

exp

{
−
(

x

φ

)τ}
, x > 0 , (3.13)

and f2, given by (3.11), into (3.6). Then the corresponding cdf’s and qf’s are derived and inserted into

(3.7) and (3.8). Here parameters θ > 0 and α > 0 have the same interpretation as before, i.e., as in

Section 3.2.1, and τ > 0 is the shape parameter for small and medium severity claims. The remaining

two parameters, φ > 0 and 0 ≤ w ≤ 1, are again determined from the continuity and differentiability

conditions (3.9) and given by

φ = θ
(
α/τ + 1

)−1/τ
, w =

exp {α/τ + 1} − 1

exp {α/τ + 1} + τ/α
.

Further, for the WePa3 model, we choose f1 as in (3.13) and f2 as in (3.12). The remaining steps

are identical to those of the previously described composite models. Also, parameters θ > 0, α > 0,

τ > 0, λ > −θ have the same interpretations as before, and φ > 0 and 0 ≤ w ≤ 1 are given by

φ = θ

(
αθ − λ

(λ + θ) τ
+ 1

)−1/τ

, w =
exp {(θ/φ)τ} − 1

(τ/α) (λ/θ + 1) (θ/φ)τ + exp {(θ/φ)τ} − 1
.

Finally, similar to the lognormal-Pareto models, the tail behavior of the Weibull-Pareto models is

also driven by the Pareto distribution, which implies that these models have k finite moments when

α > k.
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3.2.3 Numerical Results

Let X1, . . . ,Xn denote a sample of i.i.d. random variables from a composite Pareto model; all Xi’s

exceed d = 500, 000. Then, a maximum likelihood estimator of θ and other unknown parameters of the

model is found by numerically maximizing the left truncated (at d = 500, 000) log-likelihood function:

logL
(
θ, other parameters

∣∣X1, . . . ,Xn

)
=

n∑

i=1

log

(
f(Xi)

1 − F (d)

)

=

n∑

i=1

1{Xi ≤ θ} log f1(Xi) +

n∑

i=1

1{Xi > θ} log f2(Xi)

+ log
(
w/F1(θ)

) n∑

i=1

1{Xi ≤ θ} + log (1 − w)

n∑

i=1

1{Xi > θ}

− n log
(
1 − wF1(d)/F1(θ)

)
1{d ≤ θ} − n log

(
(1 − w)(1 − F2(d))

)
1{d > θ}, (3.14)

where 1{} denotes the indicator function and f and F are given by (3.6) and (3.7), respectively.

Particular cases of expression (3.14) are obtained by selecting specific f1, F1 and f2, F2, as described

in Sections 3.2.1 and 3.2.2. For the data sets under consideration, the following MLE estimates for

the parameters of the composite Pareto models resulted (see Table 3).

Note that the three-parameter models, LNPa2 and WePa2, have two parameters in common (θ and

α), which even have the same interpretations within each model. Likewise, the four-parameter models,

LNPa3 and WePa3, have three parameters in common (θ, α, and λ), with identical interpretations

in both models as well. This, of course, is due to the design of the proposed composite models.

We notice from Table 3 that the shared parameters also take similar (but not identical) values at

the corresponding models across all data sets. For example, in 1981, θ = 955, 000 for LNPa2 and

θ = 934, 000 for WePa2; in 1984, α = 1.47 for LNPa2 and α = 1.48 for WePa2. Likewise, in 1991,

θ = 2, 677, 000 for LNPa3 and θ = 2, 545, 000 for WePa3; α = 1.59 for LNPa3 and α = 1.51 for

WePa3; λ = −132, 000 for LNPa3 and λ = −309, 000 for WePa3. It is important to understand

that these shared parameters do not have to yield identical values for different models, as they are

influenced by other features of the composite models. For example, parameter α governs the tail

behavior in all four models, but it may take significantly different values in three- and four-parameter
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models. For instance, in 1985, it is equal to 1.21 for LNPa2 and 1.20 for WePa2, but 0.99 for LNPa3

and 0.98 for WePa3. On the other hand, in all four models α < 2, implying that for all the years

under consideration Norwegian fire claims are heavy tailed (i.e., their variances are infinite). Even

more dramatically, according to LNPa3 and WePa3, in 1981 and 1985 the means were infinite as well

(because α < 1).

Table 3: Parameter MLEs of the composite Pareto models for the Norwegian Fire Claims (1981–1992) data.

Model Norwegian Fire Claims for Year

parameters 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Lognormal-Pareto I model, LNPa2 (θ, α, σ)

θ (×10−3) 955 1018 1122 2428 1230 1412 1927 1839 2303 2057 2596 2297

α 1.19 1.25 1.29 1.47 1.21 1.31 1.43 1.21 1.40 1.63 1.67 1.40

σ 0.70 0.74 0.84 1.03 0.84 0.89 0.78 0.89 0.89 0.71 0.86 0.97

Weibull-Pareto I model, WePa2 (θ, α, τ)

θ (×10−3) 934 994 1066 2297 1122 1324 1685 1685 2063 1778 2344 2023

α 1.19 1.26 1.29 1.48 1.20 1.31 1.42 1.21 1.39 1.63 1.68 1.40

τ 1.19 1.07 0.92 0.64 1.00 0.87 1.16 0.94 0.92 1.32 0.89 0.79

Lognormal-GPD model, LNPa3 (θ, α, σ, λ)

θ (×10−3) 1085 991 1237 2700 2444 1789 1903 2035 3161 2543 2677 2588

α 0.98 1.33 1.19 1.33 0.99 1.02 1.44 1.14 1.21 1.27 1.59 1.32

σ 0.60 0.82 0.81 1.00 1.07 0.81 0.78 0.90 0.93 0.71 0.85 0.97

λ (×10−3) -254 84 -124 -293 -550 -462 24 -145 -540 -635 -132 -198

Weibull-GPD model, WePa3 (θ, α, τ, λ)

θ (×10−3) 1041 966 1187 2621 2339 1668 1690 1785 2331 2153 2545 2327

α 0.97 1.32 1.18 1.30 0.98 1.00 1.42 1.14 1.29 1.27 1.51 1.31

τ 1.47 0.99 0.94 0.65 0.58 0.95 1.16 0.96 0.89 1.27 0.89 0.75

λ (×10−3) -268 68 -137 -378 -561 -486 -8 -148 -254 -607 -309 -206

3.3 Folded-t Family

The folded-t family of distributions has been introduced by Psarakis and Panaretoes (1991). These

models were designed for situations in which data measurements were recorded without their algebraic

signs. Although such situations rarely (if ever) occur in insurance, it was noticed by Brazauskas and

Kleefeld (2011) that they may be artificially constructed by appropriately transforming the observed
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claim amounts. In particular, if X denotes the claim sizes and d is the corresponding deductible, then

the histogram of the log-folded claims, log(X/d), can be accurately approximated by the pdf of the

folded-t distribution (see Figure 1).
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Figure 1: Left-hand panel: The histogram of the log-folded Norwegian fire claims for the year 1984.

Right-hand panel: Shapes of the pdf of folded-t distributions for σ = 0.4 (dashed line),

σ = 0.7 (solid line), σ = 1.2 (dash-dotted line) and ν = 2.

Further, due to its close relation to the Student t distribution, the folded-t model has simple

analytic expressions for its pdf, cdf, and qf:

pdf: fFT(σ, ν)(x) = (2/σ) fT(ν)(x/σ), x > 0, (3.15)

cdf: FFT(σ, ν)(x) = 2
[
FT(ν)(x/σ) − 0.5

]
, x > 0, (3.16)

qf: F−1
FT(σ, ν)(u) = σ F−1

T(ν)((u + 1)/2), 0 < u < 1, (3.17)

where fT(ν), FT(ν), and F−1
T(ν) denote the standard pdf, cdf, and qf, respectively, of the underlying

Student t distribution with ν degrees of freedom. (Note that the standard pdf and cdf have location

0 and scale equal to 1.) Moreover, the choice ν = 1 yields the folded Cauchy distribution, and the

folded-t model converges to the folded normal as ν → ∞.

Let X1, . . . ,Xn denote a sample of i.i.d. random variables from the folded-t (σ, ν) model; all

Xi’s exceed d = 500, 000. Then, a maximum likelihood estimator of (σ, ν) is found by numerically

11



maximizing the left truncated (at d = 500, 000) log-likelihood function:

logLFT(σ, ν |X1, . . . ,Xn) =

n∑

i=1

log

(
fFT(σ, ν)(Xi)

1 − FFT(σ, ν)(d)

)

= n log

(
2
√

ν Γ(ν+1
2 )

Γ(ν
2 ) Γ(1

2 )

)
− ν + 1

2

n∑

i=1

log
(
σ2 ν + X2

i

)
− n log

(
1 − FFT(σ, ν)(d)

)
, (3.18)

where expression (3.18) is derived by taking into account (3.15) and the formula of fT(ν). For the data

sets under consideration, the following MLE estimates resulted (see Table 4).

Table 4: Parameter MLEs of the folded-t model for the Norwegian Fire Claims (1981–1992) data.

Folded-t Norwegian Fire Claims for Year

parameters 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

σ (×10−3) 266.2 341.1 324.8 565.2 400.0 411.4 722.0 630.9 728.0 803.5 744.4 626.7

ν 1.19 1.32 1.33 1.52 1.26 1.35 1.60 1.29 1.50 1.88 1.82 1.48

Similar to the previously studied models, the folded-t model also suggests that the Norwegian fire

claims (1981–1992) data are heavy tailed. For ν ≤ 2, variance and higher order moments for the FT

model are infinite, and as one can see from Table 4, the estimates of the tail parameter ν range from

1.19 in 1981 to 1.88 in 1990.

Of course, our conclusion about the heavy-tailed nature of Norwegian fire claims is an outcome

of the assumed models. Although our informal prior knowledge hints at the appropriateness of the

GPD, composite Pareto, and the folded-t models for the data sets at hand, that has to be augmented

with a formal analysis. This leads us to the topic of the next section, i.e., model validation.

4 Model Validation

To evaluate the quality of fits, we first employ quantile-quantile plots, then two goodness-of-fit statistics

(Kolmogorov-Smirnov, KS, and Anderson-Darling, AD), and finally two information-based criteria

(Akaike information criterion, AIC, and Bayesian information criterion, BIC).

4.1 Quantile-Quantile Plots

To get a feel for how the fitted models “work” on the given data, we will start with basic visualization,

namely, quantile-quantile plots. In Figure 2, we present plots of the fitted-versus-observed quantiles
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for the six models of Section 3. In order to avoid visual distortions due to large spacings between the

most extreme observations, both axes in all the plots are measured on the logarithmic scale. That is,

the points plotted in those graphs are the following pairs:

(
log
(
F̂−1

[
uik + F̂ (d)(1 − uik)

])
, log

(
x(ik)

))
, ik = 1, . . . , nk,

where F̂ (d) is the estimated parametric cdf evaluated at d = 500, 000, F̂−1 is the estimated parametric

qf, x(1) < · · · < x(nk) denote the ordered claim severities, uik = (ik − 0.5)/nk is the quantile level, and

nk, for k = 1, . . . , 12, represent the sample sizes. Note that each data set has a relatively small number

of observations that are exactly equal to the priority d = 500, 000. For the purposes of parameter

estimation, construction of quantile-quantile plots, and for computation of other model validation

measures, such data clusters were de-grouped using the method described in Brazauskas and Serfling

(2003). Also, the cdf and qf functions were evaluated using the MLE estimates from Tables 2–4.

As one can see from Figure 2, all the models do a reasonably good job for the 12 data sets. That

is, most of the points in the plots do not deviate from the 45◦ line, but there are a few notable

exceptions. For example, in years 1982 and 1987 (and to a lesser degree in year 1985), the 45◦ lines

show a downward bending at the extreme right tail, which implies that all the models overestimate

the observed extreme quantiles. This should be viewed as a good thing – the models chosen for the

Norwegian fire claims data are conservative (i.e., they are capable of capturing heavier right tails

than that of the observed losses). Also, since both axes in all the plots have the same range, one can

immediately see for which years claims had very long tails (e.g., 1988) and for which shorter ones (e.g.,

1982, 1983, 1987, 1990, 1991).
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Figure 2: Fitted-versus-observed log-claims for the years 1981–1992. In all 72 plots,

the horizontal and vertical axes range from 12.5 to 20 (with ticks at 13, 15, 17, 19).
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4.2 Goodness-of-Fit Statistics

To formally assess the “closeness” of the fitted model to data, we will measure the distance (according

to a selected measure) between the empirical distribution function F̂n(x) = n−1
∑n

i=1 1{xi ≤ x} and

the parametrically estimated left-truncated (at d = 500, 000) distribution function

F̂ ∗(x) =
F̂ (x) − F̂ (d)

1 − F̂ (d)
, x ≥ d.

There are multiple options available to accomplish this task, but in this paper we choose to work

with two popular distances: (i) maximum absolute distance, and (ii) cumulative weighted quadratic

distance, with more weight on the tails. The first measure leads to the well-known Kolmogorov-

Smirnov statistic, which for the left-truncated data problem is defined as

D = max
x≥d

∣∣∣F̂n(x) − F̂ ∗(x)
∣∣∣.

Note that for the computational purposes, the following formula is more convenient:

Dn = max
1≤j≤n

{∣∣∣F̂ ∗(x(j)) −
j − 1

n

∣∣∣,
∣∣∣F̂ ∗(x(j)) −

j

n

∣∣∣
}

,

where x(1) < · · · < x(n) denote the ordered claim severities.

And the second measure leads to the Anderson-Darling statistic, which for the left-truncated data

problem is defined as

A2 = n

∫ ∞

d

(
F̂n(x) − F̂ ∗(x)

)2

F̂ ∗(x)
(
1 − F̂ ∗(x)

) dF̂ ∗(x).

For the computational purposes, the following formula is more convenient:

A2
n = − n + n

n∑

j=1

F̂ 2
n(x(j)) log

(
F̂ ∗(x(j+1))

F̂ ∗(x(j))

)
− n

n−1∑

j=0

(
1 − F̂n(x(j))

)2
log

(
1 − F̂ ∗(x(j+1))

1 − F̂ ∗(x(j))

)

= − n + n

n∑

j=1

(
j/n
)2

log

(
F̂ ∗(x(j+1))

F̂ ∗(x(j))

)
− n

n−1∑

j=0

(
1 − j/n

)2
log

(
1 − F̂ ∗(x(j+1))

1 − F̂ ∗(x(j))

)
,

where d = x(0) < x(1) < · · · < x(n) < x(n+1) = ∞ denote the ordered claim severities.

Table 5 provides the goodness-of-fit measures of the six fitted models for the years 1981–1992. We

first note that, for a fixed data set, comparison of the KS and AD values across the models confirms

the well-known fact that models with more parameters adapt to data better, i.e., they have smaller
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values of the goodness-of-fit statistics. For instance, in 1988 the AD values for the 2-parameter models

are 1.93 (for GPD) and 1.41 (for FT), but they range between 1.21 (for WePa3) and 1.28 (for LNPa2)

for the 3- and 4-parameter models. On the other hand, such comparisons are not very useful as those

statistics in general do not follow the same probability distribution when applied to different models.

Therefore, we should examine the p-values (reported in Table 5), which we computed using parametric

bootstrap with 1000 simulation runs. For a brief description of the parametric bootstrap procedure,

see, for example, Klugman, Panjer, Willmot (2012, Section 20.4.5).

Table 5: Goodness-of-fit measures of the fitted models for the Norwegian Fire Claims (1981–1992) data.

Fitted Norwegian Fire Claims for Year

Model 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Kolmogorov-Smirnov statistic (p-value∗)

GPD 0.05 0.05 0.04 0.03 0.04 0.05 0.04 0.03 0.03 0.05 0.03 0.03
(0.01) (0.02) (0.13) (0.12) (0.01) (0.00) (0.01) (0.01) (0.10) (0.00) (0.04) (0.10)

LNPa2 0.04 0.04 0.03 0.02 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02
(0.03) (0.07) (0.44) (0.43) (0.27) (0.01) (0.23) (0.29) (0.76) (0.25) (0.49) (0.47)

WePa2 0.04 0.04 0.03 0.03 0.02 0.04 0.02 0.02 0.02 0.02 0.02 0.02
(0.03) (0.08) (0.52) (0.26) (0.29) (0.01) (0.27) (0.31) (0.67) (0.35) (0.53) (0.33)

LNPa3 0.04 0.04 0.03 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.02
(0.02) (0.02) (0.29) (0.48) (0.12) (0.00) (0.17) (0.23) (0.78) (0.47) (0.50) (0.40)

WePa3 0.04 0.04 0.03 0.02 0.03 0.04 0.02 0.02 0.02 0.02 0.02 0.02
(0.02) (0.02) (0.35) (0.30) (0.08) (0.00) (0.18) (0.21) (0.58) (0.79) (0.56) (0.26)

FT 0.05 0.04 0.03 0.02 0.03 0.04 0.02 0.03 0.02 0.04 0.03 0.02
(0.01) (0.03) (0.25) (0.65) (0.13) (0.01) (0.32) (0.07) (0.77) (0.02) (0.36) (0.62)

Anderson-Darling statistic (p-value∗)

GPD 0.87 1.50 1.06 0.53 1.16 5.35 2.34 1.93 1.01 2.41 1.09 1.26
(0.01) (0.00) (0.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

LNPa2 0.61 1.43 0.88 0.28 0.75 4.73 1.35 1.28 0.27 0.29 0.56 0.92
(0.01) (0.00) (0.00) (0.05) (0.00) (0.00) (0.00) (0.00) (0.06) (0.03) (0.01) (0.00)

WePa2 0.62 1.43 0.87 0.31 0.75 4.69 1.27 1.22 0.27 0.19 0.56 0.91
(0.01) (0.00) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.05) (0.07) (0.01) (0.00)

LNPa3 0.36 1.44 0.84 0.27 0.68 4.57 1.35 1.26 0.25 0.22 0.56 0.92
(0.01) (0.00) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.05) (0.04) (0.01) (0.00)

WePa3 0.35 1.44 0.83 0.29 0.68 4.50 1.27 1.21 0.26 0.10 0.55 0.91
(0.01) (0.00) (0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.04) (0.11) (0.01) (0.00)

FT 0.76 1.46 0.96 0.29 0.88 4.96 1.53 1.41 0.35 0.83 0.59 0.96
(0.01) (0.00) (0.01) (0.10) (0.00) (0.00) (0.00) (0.00) (0.07) (0.01) (0.02) (0.00)

∗ The p-values are reported in parentheses; they are computed using parametric bootstrap with 1000 simulation runs.

Several conclusions emerge from Table 5. First, the p-values are higher for the KS statistic than
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the corresponding p-values for the AD statistic. (Note that a higher p-value means a closer fit.) This is

not surprising because usually the AD test is more powerful than the KS test. Second, while according

to the KS criterion most models are acceptable for most of the data sets, one would reach the opposite

conclusion if the AD criterion were used. This is also not surprising and could be explained by the fact

that the data sets we analyzed are fairly large (see Table 1), in conjunction with the AD test being more

powerful. Third, performance of the GPD model, which is a 2-parameter model, is not competitive

when compared to the other five models. Fourth, it might be surprising but the most flexible 4-

parameter models, LNPa3 and WePa3, are not dominating the competition – the top performers are

the 3-parameter models, LNPa2 and WePa2. Their advantage, however, is quite minimal. Indeed,

according to the KS test, LNPa2 is ranked first or second six times, WePa2 seven times, FT four times,

LNPa3 three times, and WePa3 two times. Plus, in 1986, there is a three-way tie for the first spot

between LNPa2, WePa2, and FT. If one uses the AD criterion, then for half of the data sets all six

models are tied (and strongly rejected). However, when there are more or less meaningful differences

among the models (1984, 1989, 1990), LNPa2 is ranked second twice, WePa2 is second once, WePa3

is first once, and FT is ranked first twice.

4.3 Information Criteria

One way for selecting the best model among those under consideration is to evaluate their likelihood

functions and choose the model with the highest value of the likelihood. This approach, however, is

flawed because models with more parameters tend to have a higher likelihood value, all other things

being equal. Therefore, in such situations information-based decision rules such as the AIC and BIC,

which extract a penalty for introducing additional parameters, come in handy.

The Akaike Information Criterion, AIC, penalizes the log-likelihood function with the number of

parameters and is defined as follows:

AIC = 2NLL + 2dim(θ),

where NLL stands for ‘negative log-likelihood’ and dim(θ) denotes the dimension of θ, i.e., the number

of components of the vector parameter θ. Models with smaller values of AIC are preferred.
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The Bayesian Information Criterion, BIC, penalizes the log-likelihood function with the number

of parameters times the logarithm of the sample size n:

BIC = 2NLL + dim(θ) log(n),

where NLL and dim(θ) have the same meaning as in the AIC definition, and models with smaller

values of BIC are preferred.

Table 6: Information measures of the fitted models for the Norwegian Fire Claims (1981–1992) data.

Fitted Norwegian Fire Claims for Year

Model 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Negative Log-Likelihood , NLL

GPD 3,439 3,393 3,214 4,457 4,891 5,160 6,232 6,849 5,886 5,066 5,008 4,985

LNPa2 3,437 3,393 3,213 4,456 4,889 5,157 6,228 6,845 5,882 5,057 5,005 4,983

WePa2 3,437 3,393 3,213 4,456 4,889 5,157 6,227 6,844 5,882 5,056 5,005 4,983

LNPa3 3,436 3,393 3,212 4,456 4,888 5,155 6,228 6,845 5,882 5,056 5,005 4,983

WePa3 3,436 3,393 3,212 4,456 4,888 5,155 6,227 6,844 5,882 5,055 5,005 4,983

FT 3,438 3,394 3,213 4,456 4,890 5,159 6,229 6,846 5,883 5,060 5,006 4,983

Akaike Information Criterion, AIC

GPD 6,881 6,791 6,431 8,919 9,786 10,325 12,469 13,701 11,776 10,137 10,020 9,973

LNPa2 6,880 6,793 6,431 8,918 9,784 10,320 12,462 13,696 11,770 10,119 10,017 9,972

WePa2 6,880 6,792 6,431 8,918 9,784 10,320 12,460 13,695 11,770 10,118 10,016 9,971

LNPa3 6,880 6,794 6,433 8,920 9,785 10,318 12,464 13,698 11,772 10,120 10,019 9,973

WePa3 6,879 6,794 6,433 8,920 9,785 10,317 12,462 13,696 11,772 10,118 10,018 9,973

FT 6,881 6,791 6,430 8,916 9,784 10,321 12,462 13,696 11,770 10,124 10,016 9,970

Bayesian Information Criterion, BIC

GPD 6,889 6,799 6,439 8,927 9,795 10,334 12,478 13,711 11,785 10,146 10,029 9,982

LNPa2 6,892 6,805 6,443 8,931 9,798 10,333 12,476 13,710 11,784 10,133 10,030 9,985

WePa2 6,892 6,804 6,443 8,931 9,798 10,333 12,474 13,709 11,784 10,132 10,030 9,985

LNPa3 6,896 6,810 6,449 8,937 9,802 10,336 12,482 13,716 11,790 10,138 10,036 9,991

WePa3 6,895 6,810 6,449 8,937 9,802 10,335 12,481 13,715 11,790 10,136 10,036 9,991

FT 6,889 6,799 6,438 8,925 9,792 10,330 12,471 13,706 11,779 10,133 10,024 9,979

Using the log-likelihood functions and parameter estimates from Section 3, we evaluated the

information-based measures of the fitted models for all the data sets under consideration. The re-

sults are summarized in Table 6, where several patterns can be observed. First, under the NLL

criterion, the 4-parameter models perform better than the other models for most of the data sets.
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But when the AIC criterion is used the 2- and 3-parameter models start to appear more competitive.

Finally, when the BIC criterion is employed, the 2-parameter models take over the leading positions,

with the FT model exhibiting extremely strong performance: 9 times absolute first, 2 times tied for

first with GPD, and 1 time tied for second with LNPa2.

Clearly, the BIC criterion favors more parsimonious models than the AIC does. To make a choice

between the two criteria is not a trivial exercise, but the following quote, taken from Claeskens (2004),

may shed some light about the BIC’s properties: “If the true data generating model belongs to the finite

parameter family of models under investigation, the Bayesian information criterion consistently selects

the correct model . . . If this assumption does not hold, models selected by the Bayesian information

criterion will tend to underfit, that is, will use too few parameters.”

5 Measuring Tail Risk

In this section we focus on measuring the tail risk of ‘ground up’ Norwegian fire claims for the years

1981 through 1992. In Section 5.1, point estimates of the value-at-risk and tail-conditional median

measures are provided. In Section 5.2, the probability of a few upper tail events is calculated and

compared to the actual next-year probabilities.

5.1 Risk over Time

Point estimates for the value-at-risk at the 90% confidence level,

VaR0.90[X] = F−1
X (0.90),

are presented in Table 7. In addition, we also provide estimates of the 90% tail-conditional median:

TCM0.90[X] = median
[
X
∣∣X > VaR0.90[X]

]
= F−1

X (0.95).

The estimates of these measures are obtained using the six fitted models of Section 3. That is, they

are computed using the following formulas of F−1
X (u) and the MLE values: for GPD, equation (3.4)

and Table 2; for composite models, equation (3.8) and Table 3; for FT, equation (3.17) and Table 4.

The TCM risk measure helps to address the traditional ‘what-if’ question: If the VaR event

happens, what is the expected loss? The answer is that in case such an unlikely event occurs, half of
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the time the loss is expected to be between the VaR and TCM values and the remaining 50% of the

time to exceed the TCM value. Notice that for the Norwegian fire claims data, the TCM is a better

suited risk measure than the well-established tail-conditional expectation, E
[
X
∣∣X > VaRα[X]

]
, as

for some of the fitted models the latter is sometimes infinite; hence, non-informative.

Further, in our examples the chosen time horizon, 1 year, is in line with a typical (re)insurance

company’s business cycle and consistent with Solvency Capital Requirement (see European Insurance

and Occupational Pensions Authority, 2014, pp. 6–7). However, the confidence level we use (90%) is

more appropriate for the model-backtesting purposes, not capital reserving. Finally, we note in passing

that the underlying assumptions in Solvency Capital Requirement specify a confidence level at 99.5%.

Such a high level is interpreted as a 1-in-200 year event, or for some risks it may be related to historical

credit-default probabilities (used by the leading agencies in issuing companies’ credit ratings).

Table 7: Value-at-Risk, VaR0.90[X ], and Tail-Conditional Median, TCM0.90[X ] (in parentheses),

for the Norwegian Fire Claims (1981–1992) data. The risk estimates, measured in millions of

Norwegian krones, are based on the six fitted models of Section 3, using a 1-year time horizon.

Fitted Norwegian Fire Claims for Year

Model 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

GPD 0.49 0.92 0.74 1.62 1.06 1.01 2.15 2.16 2.28 2.17 2.05 1.91
(0.94) (1.63) (1.33) (2.69) (1.94) (1.81) (3.47) (3.83) (3.77) (3.36) (3.17) (3.18)

LNPa2 2.42 2.16 1.87 2.12 2.33 2.09 2.93 3.20 3.00 2.83 2.57 2.52
(4.33) (3.76) (3.20) (3.39) (4.14) (3.56) (4.75) (5.68) (4.93) (4.33) (3.89) (4.13)

WePa2 1.94 1.66 1.43 1.43 1.88 1.60 2.55 2.59 2.44 2.54 2.10 1.94
(3.47) (2.89) (2.45) (2.32) (3.34) (2.72) (4.14) (4.59) (4.02) (3.90) (3.17) (3.20)

LNPa3 2.65 1.98 1.92 2.15 1.87 2.17 2.93 3.16 2.89 2.75 2.57 2.50
(5.11) (3.39) (3.33) (3.43) (3.23) (3.83) (4.75) (5.67) (4.71) (4.28) (3.89) (4.09)

WePa3 2.20 1.57 1.45 1.47 1.12 1.68 2.54 2.59 2.25 2.43 2.09 1.88
(4.21) (2.70) (2.49) (2.36) (1.92) (2.87) (4.14) (4.64) (3.57) (3.76) (3.14) (3.06)

FT 1.29 1.45 1.37 2.07 1.79 1.70 2.52 2.77 2.69 2.45 2.33 2.35
(2.33) (2.50) (2.33) (3.34) (3.15) (2.90) (3.98) (4.81) (4.36) (3.68) (3.53) (3.84)

Several patterns can be noticed by examining the VaR and TCM values in Table 7. First, for a

fixed model, the riskiness of Norwegian fire claims does not exhibit any obvious trend, neither upward

nor downward. Second, for a fixed year, the models yield wide ranging estimates of risk. Surely, there

are years when the estimates are fairly close to each other (e.g., in 1991, VaR0.90[X] ranges from 2.05

for GPD to 2.57 for LNPa2 and LNPa3), but most of the time they are quite different, in some cases

substantially (e.g., in 1981, VaR0.90[X] ranges from 0.49 for GPD to 2.65 for LNPa3). As expected,
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these ranges are even wider for TCM0.90[X] which is a more extreme quantile than VaR0.90[X]. Third,

the GPD-based risk estimates are usually the lowest and those based on LNPa2 and LNPa3 are the

highest, with the other models producing risk estimates in the middle between the two extremes.

Fourth, according to the GPD model, in 1981 there was observed less than 10% of claims (because

VaR0.90[X] = 0.49 is below the priority point of 0.50 millions).

5.2 Risk Prediction

To see how successful the six probability models are at predicting next-year risk, we evaluate the

following upper tail probabilities:

P
{
X > V̂aRα[X]

∣∣∣X > 500, 000
}

=
1 − α

P
{
X > 500, 000

} , V̂aRα[X] > 500, 000,

for α = 0.90, 0.95. (If V̂aRα[X] ≤ 500, 000, the conditional probability is 1.) The next-year predictions

of the tail probability P
{
X > 500, 000

}
are obtained using the six fitted models of Section 3. That

is, they are computed using the following formulas of FX(x) and the MLE values: for GPD, equation

(3.1) and Table 2; for composite models, equation (3.7) and Table 3; for FT, equation (3.16) and Table

4. These computations are based on year t data and then compared with the actual probability for

year t + 1 (t = 1981, . . . , 1991). Note that the actual probability, P
{
X > V̂aRα[X]

∣∣X > 500, 000
}
,

can be evaluated directly from the data (no model fitting is needed) using the empirical approach:

P̂
{

X > V̂aRα[X]
∣∣∣X > 500, 000

}
=

1

nt+1

nt+1∑

i=1

1
{
Xi > V̂aRα[X]

}
,

where nt+1 denotes the sample size for year t + 1 (t = 1981, . . . , 1991) and the value-at-risk estimates

for year t, V̂aRα[X], are available in Table 7. However, since V̂aRα[X] values are model dependent,

each distribution has its own ‘actual’ probability.

The results of the computations described above are summarized in Table 8. Comparison of the

predicted and actual probabilities reveals several patterns. First, for a fixed year, the models yield

wide ranging predictions of the tail probabilities. The predictions are more spread out for the level

α = 0.90 than for α = 0.95. Also, those differences are more pronounced in the earlier years than in

the later ones. Second, the tail risk predictions based on the GPD model are typically quite remote

from those of the other five models, which yield (more or less) similar predictions. Third, for each
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model the next-year predictions are fairly accurate for all the years. For example, if we take the

relative prediction error, rpe =
(

predicted
actual − 1

)
100%, as a measure of accuracy, then the medians of

the absolute values of rpe are 7% (GPD), 13% (LNPa2), 12% (WePa2), 15% (LNPa3), 8% (WePa3),

and 9% (FT) for α = 0.90. Likewise, they are 14% (GPD), 11% (LNPa2), 8% (WePa2), 11% (LNPa3),

11% (WePa3), and 10% (FT) for α = 0.95. To get a sense of how volatile rpe’s are, we will look at

the first and third quartile (i.e., the middle 50%) of the absolute values of rpe. For α = 0.90, they

are: 3% and 16% (GPD), 4% and 16% (LNPa2), 6% and 13% (WePa2), 8% and 16% (LNPa3), 4%

and 14% (WePa3), 8% and 14% (FT). And for α = 0.95: 6% and 25% (GPD), 4% and 27% (LNPa2),

3% and 22% (WePa2), 3% and 27% (LNPa3), 4% and 23% (WePa3), 7% and 19% (FT). In summary,

all six models are reasonably successful at predicting next-year’s tail probabilities.

Table 8: Predicted and actual (in parentheses) upper tail probabilities,

P
{
X > V̂aRα[X ]

∣∣X > 500, 000
}
, for the Norwegian Fire Claims (1982–1992) data.

Confidence Fitted Norwegian Fire Claims for Year

Level Model 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

α = 0.90 GPD 1.00 0.52 0.65 0.29 0.47 0.48 0.23 0.25 0.22 0.21 0.22
(1.00) (0.51) (0.72) (0.27) (0.46) (0.57) (0.23) (0.22) (0.16) (0.18) (0.22)

LNPa2 0.17 0.18 0.21 0.19 0.18 0.19 0.13 0.15 0.14 0.12 0.14
(0.17) (0.17) (0.23) (0.19) (0.15) (0.22) (0.16) (0.12) (0.11) (0.11) (0.16)

WePa2 0.22 0.24 0.29 0.34 0.23 0.27 0.16 0.19 0.19 0.15 0.20
(0.21) (0.22) (0.33) (0.33) (0.20) (0.31) (0.19) (0.17) (0.15) (0.13) (0.21)

LNPa3 0.15 0.20 0.19 0.19 0.23 0.17 0.13 0.15 0.15 0.12 0.14
(0.14) (0.19) (0.23) (0.19) (0.20) (0.20) (0.16) (0.12) (0.11) (0.11) (0.16)

WePa3 0.18 0.27 0.28 0.32 0.44 0.23 0.16 0.19 0.21 0.15 0.20
(0.17) (0.25) (0.33) (0.32) (0.42) (0.28) (0.19) (0.17) (0.16) (0.15) (0.21)

FT 0.36 0.30 0.31 0.20 0.25 0.25 0.17 0.18 0.17 0.17 0.17
(0.33) (0.28) (0.35) (0.20) (0.21) (0.28) (0.19) (0.16) (0.12) (0.15) (0.18)

α = 0.95 GPD 0.51 0.26 0.33 0.14 0.23 0.24 0.11 0.13 0.11 0.11 0.11
(0.49) (0.23) (0.37) (0.14) (0.18) (0.26) (0.13) (0.10) (0.07) (0.09) (0.11)

LNPa2 0.08 0.09 0.10 0.10 0.09 0.09 0.07 0.07 0.07 0.06 0.07
(0.09) (0.09) (0.10) (0.11) (0.08) (0.10) (0.09) (0.05) (0.04) (0.06) (0.09)

WePa2 0.11 0.12 0.14 0.17 0.12 0.13 0.08 0.10 0.09 0.07 0.10
(0.11) (0.12) (0.14) (0.17) (0.10) (0.15) (0.11) (0.07) (0.06) (0.08) (0.11)

LNPa3 0.07 0.10 0.10 0.09 0.11 0.08 0.07 0.07 0.07 0.06 0.07
(0.07) (0.10) (0.09) (0.11) (0.11) (0.09) (0.09) (0.05) (0.04) (0.06) (0.09)

WePa3 0.09 0.13 0.14 0.16 0.22 0.12 0.08 0.09 0.11 0.07 0.10
(0.09) (0.13) (0.14) (0.16) (0.19) (0.14) (0.11) (0.07) (0.08) (0.08) (0.11)

FT 0.18 0.15 0.16 0.10 0.13 0.13 0.09 0.09 0.09 0.08 0.09
(0.17) (0.14) (0.17) (0.11) (0.11) (0.14) (0.11) (0.07) (0.05) (0.08) (0.10)
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6 Concluding Remarks

In this paper, six parametric families have been employed to model severity and measure tail risk

of Norwegian fire claims for the years 1981 through 1992. Among the probability distributions we

have used, two are 2-parameter (generalized Pareto, GPD, and folded-t, FT), two are 3-parameter

(composite lognormal, LNPa2, and composite Weibull, WePa2; both with Pareto I upper tail), and

two are 4-parameter models (composite lognormal, LNPa3, and composite Weibull, WePa3; both

with GPD upper tail). Overall, all six models have done a good job. However, as a formal model-

validation analysis has demonstrated, the most flexible 4-parameter models, LNPa3 and WePa3, do

not consistently yield a statistically closer fit when compared to that of the simpler models. Similar

conclusions have also emerged from the analysis of risk predictions. That is, minor advantages in

terms of model fits have not produced more accurate predictions by the corresponding models.

Further, it is certainly tempting to conclude that simpler distributions, such as GPD and FT, are

preferred for the task of measuring tail risk of the Norwegian fire claims (1981–1992) data. However,

one has to be careful here. A primary reason for caution is that the six fitted models, even after

undergoing extensive statistical validation (e.g., quantile-quantile plots, goodness-of-fit tests, infor-

mation criteria), have lead to substantially different risk evaluations, which in turn would produce

wide ranging estimates of reserves. Hence, a more appropriate conclusion should be that formal sta-

tistical analysis is a necessary but not sufficient condition for measuring and pricing tail risk. Model

uncertainty is difficult to eliminate, but using multiple models for sensitivity checks is reassuring.

Finally, the risk prediction exercise considered in this paper can be extended into a number of

directions. For instance, one could use all available data (i.e., for all previous years) to make a next-

year risk prediction. This approach has various choices too. For example: (a) data for all previous

years is combined into one data set that is used to build a model (this effectively makes the i.i.d.

assumption); (b) data from year-to-year is not i.i.d. but stationary; (c) data from year-to-year is

dependent with numerous options to model dependency. An alternative way to make next-year risk

predictions would be to bypass the model-fitting step and go directly into combining all available

annual estimates (e.g., make a regression-type prediction using tail probability estimates from earlier
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years). Yet another way to extend and refine the models would be to construct confidence intervals

and track how often they cover future VaR or tail probability values. Such extensions are beyond the

scope of the present paper, but certainly interesting venues for future research.
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