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We thank Dr. Scollnik for reading our paper carefully and for pointing out an important issue in the

numerical example of the paper. Yes, we agree that our comparison of the newly proposed model with

its closest competitors was “quick” and a bit unfair to the other distributions. Indeed, using the log-

transformed data instead of original data for comparing the fits of various distributions gives a home-

court advantage to the folded-t7 (FT7) model. As one can see from Tables 1 and 2 in Scollnik (2012),

the logarithmic transformation changes the values of statistical performance measures for the truncated

generalized Pareto distribution (GPD), as it should, and makes the GPD a much more competitive

model for the data under consideration. Moreover, we see that the fit of the truncated lognormal

model is borderline and that of the truncated composite lognormal-Pareto (LNPa) is excellent.

Using the fminsearch function in MATLAB for finding maximum likelihood estimators, we were

able to replicate (within a small margin of rounding error) all numbers in Table 2 of the discussion

paper. The direct fit of the GPD to the Norwegian fire claims now clearly passes the χ2 test and the

values of its (appropriately transformed) negative log-likelihood, NLL, and the Akaike information

criterion (AIC) are substantially smaller. However, while the GPD looks more competitive now, it

is still uniformly outperformed by the FT7 model, according to the NLL, AIC and the χ2 criteria.

Consequently, since the truncated lognormal model yields inferior fit when compared to that of the

GPD, it is also uniformly outperformed by the FT7 model.

Further, since the LNPa model has three parameters (all other distributions under consideration

have at most two parameters), it was not viewed in our paper as one of the “closest competitors”.

Nonetheless, it certainly fits the Norwegian data very well and thus merits further investigation. To

this end, we first note that, under reasonable circumstances, one would expect the model with more

parameters to fit the given data set better and to have a smaller NLL than a more parsimonious

model. Therefore, in such situations information-based decision rules, such as the AIC and Schwarz

Bayesian criterion (SBC), come in handy. According to the AIC measure, the penalty to the LNPa

model for having an additional parameter is relatively small and thus the LNPa outperforms the

FT7 model (AICLNPa = 1688.521 < 1690.834 = AICFT7
). On the other hand, according to the SBC

measure, the conclusion is opposite: the FT7 outperforms the LNPa model (SBCFT7
= 1700.270 <

1702.674 = SBCLNPa). Note that in all these comparisons the FT7 was treated as a two-parameter

model, although its degrees of freedom were fixed (ν = 7). When both parameters are estimated using
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the maximum likelihood approach, the NLL, AIC and SBC for the folded-t model are practically

unchanged: NLLFT = 843.413, AICFT = 1690.827, SBCFT = 1700.262. For extensive discussion on

the appropriateness of the AIC and SBC measures in actuarial science, see Brockett (1991) and a

discussion to that paper by Bradley Carlin.

Furthermore, apart from the formal statistical measures, in practice we also want to get a feel

for how the model “works” on the given data. For such purposes, various graphical tools and simple

prediction of claims (typically, most extreme claims) are useful. Therefore, in Figure 1 below we

present six plots of the fitted-versus-observed claim sizes for the GPD, LNPa, and the log-folded-t

(LFT, with both parameters treated as unknown and estimated from the data using the maximum

likelihood method) models. In order to avoid visual distortions due to large spacings between the

most extreme observations, plots in the left-hand column are restricted to approximately the lowest

90% of data (measured on the original scale, i.e., in millions of Norwegian krones, nok) and those in

the right-hand column focus on the top 10% of data (measured on the logarithmic scale). In addition,

the percentage values marked on the data show where the 50th, 75th, 90th, 95th, and 99th percentiles

occur. The points plotted in those graphs are the following pairs:

(
F̂−1(ui), x(i)

)
, i = 1, 2, . . . , 827,

where x(1) ≤ x(2) ≤ · · · ≤ x(827) denote the ordered claim sizes and F̂−1(ui) is the parametric quantile

function evaluated at ui = (i − 0.5)/827. The cluster of observations at 500,000 (i.e., x(1) = · · · =

x(14) = 500, 000) was de-grouped using the method described in Brazauskas and Serfling (2003).

For evaluation of the quantile functions we used the following maximum likelihood estimates of the

parameters: σ̂ = 382.490, γ̂ = 0.691 (GPD), θ̂ = 1838.982, α̂ = 1.205, σ̂ = 0.893 (LNPa), and

σ̂ = 1.154, ν̂ = 6.866 (LFT). As one can see from Figure 1, all three distributions do a good job for

the lowest 99% of the data (i.e., those points do not deviate from the 45◦ line). The differences in

their performance emerge at the top 1% of the claim sizes—the segment that is most uncertain, most

costly, and thus most interesting in practice. For the latter segment of claim sizes, we observe that

while the GPD and LNPa distributions underestimate the risk, the LFT model stays right on target.

Just to make sure the looks do not deceive us, in Table 1 we list the eight largest claims, observed

and predicted, which corresponds to the top 1% of the data. (In the table, the above-described

formulas and parameter values were not changed.) We see once again that the LFT model yields more

accurate predictions for the extreme claims than its competitors.

It is of course premature to draw far-reaching conclusions about the LFT distribution because all

these favorable remarks are based on only one data set. However, the design of the model, combined

with its mathematical tractability and computational attractiveness, makes us optimistic about the

model’s future. We believe the LFT can add value to the actuarial practice and thus it deserves a

place in the actuary’s toolbox along with the GPD, LNPa, and other well-established distributions.
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Figure 1: Fitted-versus-observed claim sizes for the GPD, LNPa, and LFT models.

Left-hand column: lowest 90% of claim sizes. Right-hand column: top 10% of claim sizes.
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Table 1: Top 1% of claim sizes (in 1000s), observed and predicted.

Observed Parametrically Estimated Claim Sizes

Claim Sizes GPD(σ̂, γ̂) LNPa(θ̂, α̂, σ̂) LFT(σ̂, ν̂)

x(820) = 30,000 26,609.4 32,644.2 31,794.2

x(821) = 30,849 29,432.6 36,760.5 36,074.1

x(822) = 31,628 33,101.7 42,226.9 41,890.0

x(823) = 43,752 38,107.5 49,878.5 50,283.1

x(824) = 61,937 45,439.6 61,445.5 63,522.6

x(825) = 84,464 57,478.4 81,237.7 87,680.3

x(826) = 150,597 82,043.5 124,126.5 146,273.2

x(827) = 465,365 175,910.2 308,898.6 488,864.5

Finally, we shall note that there is no error in an equation on page 64 of Brazauskas and Kleefeld

(2011), as stated by Dr. Scollnik. According to the following mathematical derivations, both log-

likelihood equations are equivalent though they look markedly different. One approach leads to:
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Thus, the roots of (2) and (3) are the same. Therefore, either equation can be used to find σ̂.
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