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In this article, we revisit the quantile mechanics approach which was introduced by Stein-

brecher and Shaw [18]. Our objectives are: (i) to derive the method of trimmed moments

(MTM) estimators for the parameters of gamma and Student’s t distributions, and (ii)

to examine their large- and small-sample statistical properties. Since trimmed moments

are defined through the quantile function of the distribution, quantile mechanics seems

like a natural approach for achieving the objective (i). To accomplish the second goal, we

rely on the general large-sample results for MTMs, which were established by Brazauskas,

Jones, and Zitikis [3], and then use Monte Carlo simulations to investigate small-sample

behaviour of the newly derived estimators. We find that, unlike the maximum likelihood

method which usually yields fully efficient but non-robust estimators, the MTM estima-

tors are robust and offer competitive trade-offs between robustness and efficiency. These

properties are essential when one employs gamma or Student’s t distributions in such

outlier-prone areas as insurance and finance.

Key Words: Point estimation (62F10), Asymptotic properties of estimators (62F12), Robust-

ness and adaptive procedures (62F35), Method of trimmed moments (62F99), Computational
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1 Introduction

A plot based on percentiles, or what we now call a quantile function, was introduced by

Galton [4]. Actually, according to Hald [6], many facts about quantiles were known before

1900. After the intial popularity, however, the use of quantiles for statistical modelling

has been eclipsed by the likelihood-based techniques and partially by methods related

to moments. Nonetheless, quantile statistical thinking has its own modern proponents

who argued that a unification of the theory and practice of statistical methods of data
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modelling might be possible by a quantile perspective (see Gilchrist [5] and Parzen [15]).

Other authors continue to make contributions to the field of quantile-based inference,

one of which serves as motivation for this article.

The quantile mechanics approach was recently introduced by Steinbrecher and Shaw

[18]. The authors of that article noticed that for standard probability distributions the

quantile function satisfies a nonlinear ordinary differential equation of the second order.

Their proposal was to approximate its solution using a power series expansion. It was

found that this kind of approximation is computationally tractable and more reliable

than other well-established approaches, e.g., Cornish-Fisher expansion (see Abramowitz

and Stegun [1]). For illustrative purposes, they considered the standard normal, Student’s

t, gamma, and beta distributions. In addition, extensions of the quantile mechanics ap-

proach to more general situations (e.g., multivariate quantiles, quantile dynamics gov-

erned by stochastic differential equations) were also discussed. Among several venues of

application the relevance of such results and tools to Monte Carlo simulations in financial

risk management was emphasized.

Besides being used in financial applications, the aforementioned probability distribu-

tions and their variants (e.g., log-gamma, log-normal, log-t, log-folded-normal, log-folded-

t) are commonly pursued for fitting insurance claims data. For various real-data examples

in actuarial science, the reader can be referred to Klugman, Panjer, and Willmot [11],

Brazauskas, Jones, and Zitikis [3], and Brazauskas and Kleefeld [2]. The attractiveness

of these parametric families for insurance modeling is two-fold: (i) parsimony, i.e., they

have few parameters that have to be estimated from the data, and (ii) flexibility, i.e.,

they can capture the highly asymmetric and heavy-tailed nature of insurance data. It

is not hard to imagine that similar qualities of a probability distribution may appeal to

researchers working in quantitative risk management (see McNeil, Frey, and Embrechts

[13]), reliability engineering, econometrics, applied mathematics, and statistics, among

others. For a comprehensive survey of continuous univariate distributions, associated

statistical inference, along with numerous areas of application, see Johnson, Kotz, and

Balakrishnan [9].

In this article, we revisit the quantile mechanics approach with the main objective to

introduce robust and efficient estimators for the parameters of Student’s t and gamma

distributions. Robust and efficient estimation of parameters of a probability distribution

is not a new area of mathematical statistics. Fundamental contributions to this field date

back to the 1960’s (see Huber [8] and Hampel [7]), and the literature has been steadily

growing ever since. For comprehensive treatment of robust statistics, one should consult

a recent book by Marrona, Martin and Yohai [12]. Typically, robust and efficient esti-

mators belong to one of three general classes of statistics – L-, M -, or R-statistics (see

Serfling [16]). (Here: L stands for linear in the “linear combinations of order statistics”;

M stands for maximum in the “maximum likelihood type statistics”; R stands for ranks

in the “statistics based on ranks”.) It is not uncommon, however, to have estimators that

can be reformulated within more than one of these classes. On the other hand, despite the

existing overlap each type of these statistics has its own appeal.M -statistics, for example,

are arguably the most amenable to generalization and often lead to theoretically optimal

procedures. R-statistics can be recast in the context of hypothesis testing and enjoy a

close relationship with the broad field of nonparametric statistics. L-statistics are fairly
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simple computationally and have a straightforward interpretation in terms of quantiles.

Moreover, the latter class is gaining popularity in the actuarial literature owing to its el-

egant treatment of various risk measures (see Jones and Zitikis [10], Necir and Meraghni

[14], and the references cited therein). Thus in view of this discussion, we will pursue

estimators that are based on L-statistics. The method of trimmed moments (MTM), re-

cently introduced by Brazauskas, Jones, and Zitikis [3], is a general parameter-estimation

method which falls within the class of L-statistics. It is computationally simple, it works

like the classical method of moments (hence, it is easy to understand how it operates on

the data), and is particularly effective for fitting location-scale families or their variants.

The gamma and Student’s t distributions are not proper location-scale families since

they both have a shape parameter which appears in the quantile function in a non-linear

fashion (i.e., as the argument of the gamma function). Therefore, for these distributions

a reliable approximation of the quantile function is necessary. These considerations lead

us to the quantile mechanics approach.

The rest of the article is organized as follows. In Section 2, we derive a power se-

ries approximation of the quantile function for general versions of the Student’s t and

gamma distributions. In Section 3, we start with a brief review of the method of trimmed

moments, then construct the MTM estimators for the paramaters of the gamma and

Student’s t distributions. Asymptotic properties of these estimators are also discussed

in Section 3. Corresponding results for the maximum likelihood method are presented

in Section 4. Further, in Section 5, we perform an extensive Monte Carlo simulations

study and use it to investigate small-sample behaviour of the newly derived estimators.

Concluding remarks are provided in Section 6.

2 Quantile Mechanics

We start by first deriving an infinite power series for the quantile function of the Student’s

t (in subsection 2.1) and of the gamma (in subsection 2.2) distributions, which is done by

employing the quantile mechanics approach of Steinbrecher and Shaw [18]. The quantile

functions will be used later to construct the method of trimmed moments estimators for

the parameters of these distributions.

2.1 Student’s t Distribution

The probability density function (pdf) of a location-scale Student’s t distribution is given

by

f(x|θ, σ, ν) =
Γ(ν+1

2 )

Γ(ν
2 )

1

σ
√
νπ

1

(1 + 1
ν ((x− θ)/σ)2)(ν+1)/2

, −∞ < x <∞, (2.1)

where θ ∈ R is the location parameter, σ > 0 is the scale parameter, and ν > 0 is the

shape parameter. In most statistical applications ν emerges as a positive integer and

is called the degrees of freedom. In this paper, however, we will allow a more general

definition of ν. Also, if ν = 1, then (2.1) reduces to the pdf of Cauchy(θ, σ). If ν → ∞,

then it converges to the pdf of normal(θ, σ). Note that Steinbrecher and Shaw [18] derived

a power series expansion of the quantile function F−1
t,0

for the standard case f(x|0, 1, ν)
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and extensions to the general case is just given by F−1
t = θ + σF−1

t,0
. For the sake of

completeness, we briefly review their derivation.

To begin with, let w(u) be the quantile function as a function of u, where 0 < u < 1.

With the relationship dw
du = 1

f(w) between the pdf and the quantile function, we have

dw

du
= σ

√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

(
1 +

1

ν
((w − θ)/σ)2

)(ν+1)/2

. (2.2)

Differentiating (2.2) with respect to u yields

d2w

du2
=
ν + 1

ν

1

1 + 1
ν ((w − θ)/σ)2

w − θ

σ2

(
dw

du

)2

,

which results in the ordinary differential equation (ODE) with centre condition

σ

(
1 +

1

ν
((w − θ)/σ)2

)
d2w

du2
=

(
1 +

1

ν

)
w − θ

σ

(
dw

du

)2

w(1/2) = θ

w′(1/2) = σ
√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

. (2.3)

Applying the transformation

z =
√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

(u− 1/2)

to the nonlinear ODE (2.3) yields

σ

(
1 +

1

ν
((w − θ)/σ)2

)
d2w

dz2
=

(
1 +

1

ν

)
w − θ

σ

(
dw

dz

)2

w(0) = θ

w′(0) = σ. (2.4)

Now, we assume that the solution of (2.4) is given by the infinite power series

w = θ + σ

∞∑

p=0

cpz
2p+1. (2.5)

Substituting this series into the ODE (2.4) and simplifying, yields

σ2
∞∑

p=0

(2p+ 1)(2p)cpz
2p−1

= σ2
∞∑

k=0

∞∑

l=0

∞∑

m=0

ckclcmz
2k+2l+2m+1

(
(1 +

1

ν
)
1

σ
(2l + 1)(2m+ 1) − 1

νσ2
(2k + 1)(2k)

)

and we obtain the explicit cubic recurrence (see [18] for details)

(2p+ 1)(2p)cp

=

p−1∑

k=0

p−k−1∑

l=0

ckclcp−k−l−1

(
(1 +

1

ν
)(2l + 1)(2p− 2k − 2l − 1) − 1

ν
(2k + 1)(2k)

)
.(2.6)
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In the following we list some cp’s.

c0 = 1

c1 =
1

6

ν + 1

ν

c2 =
1

120

(ν + 1)(7ν + 1)

ν2

c3 =
1

5040

(ν + 1)(127ν2 + 8ν + 1)

ν3

c4 =
1

362880

(ν + 1)(4369ν3 − 537ν2 + 135ν + 1)

ν4

c5 =
1

39916800

(ν + 1)(243649ν4 − 90488ν3 + 26238ν2 − 2504ν + 1)

ν5

In summary, the quantile function for the Student’s t distribution is given by

F−1
t (u) = θ + σ

∞∑

p=0

cp

(√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

(u− 1/2)

)2p+1

, 0 < u < 1, (2.7)

where the coefficients cp are given by (2.6).

2.2 Gamma distribution

The pdf of a two-parameter gamma distribution is given by

f(x|α, β) =
βα

Γ(α)
xα−1e−βx, x > 0 (2.8)

where β > 0 is the scale parameter and α > 0 is the shape parameter. Note that a power

series expansion of the quantile function F−1
g,0 has been derived in [18] for the standard

case f(x|α, 1) and the extension to the general case is just F−1
g = F−1

g,0/β for f(x|α, β).

For the sake of completeness, we briefly review their derivation.

Using the relation between the pdf and the quantile function, we obtain

dw

du
=

Γ(α)

βα
w1−αeβw. (2.9)

Differentiating (2.9) with respect to u yields

d2w

du2
=

(
dw

du

)2(
β +

1 − α

w

)
,

which results in the ODE with left condition

w
d2w

du2
− (wβ + 1 − α)

(
dw

du

)2

= 0 (2.10)

w(0) = 0

w(u) ∼ 1

β
[uΓ(α+ 1)]

1/α
as u→ 0.

Applying the transformation

z = [uΓ(α+ 1)]
1/α
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to the nonlinear ODE (2.10) yields

w

(
d2w

dz2
+

1 − α

z

dw

dz

)
− (wβ + 1 − α)

(
dw

dz

)2

= 0 (2.11)

w(0) = 0

w′(0) =
1

β
.

Assume that the solution of (2.11) is given by the infinite power series

w(z) =
1

β

∞∑

p=1

dpz
p with d1 = 1. (2.12)

Substituting the series into the ODE (2.11) yields

p(p+ α)dp+1 =

p∑

k=1

p−k+1∑

l=1

dkdldp−k−l+2l(p− k − l + 2)

− ∆(p)

p∑

k=2

dkdp−k+2k [k − α− (1 − α)(p+ 2 − k)] , (2.13)

where ∆(p) = 0 if p < 2 and ∆(p) = 1 if p > 2. In the following we list some dp’s.

d1 = 1

d2 =
1

1 + α

d3 =
1

2

5 + 3α

(1 + α)2(2 + α)

d4 =
1

3

31 + 33α+ 8α2

(1 + α)3(2 + α)(3 + α)

d5 =
1

4

28888 + 1179α3 + 125α4 + 5661α+ 3971α2

(1 + α)4(2 + α)2(3 + α)(4 + α)

In summary, the quantile function for the gamma distribution is given by

F−1
g (u) =

1

β

∞∑

p=1

dp

(
[uΓ(α+ 1)]

1/α
)p

, 0 < u < 1, (2.14)

where the coefficients dp are given by (2.13).

3 MTM Estimation

Throughout this paper we will consider a sample of n independent and identically dis-

tributed random variables, X1, . . . ,Xn, from a cumulative distribution function (cdf)

denoted by F . We assume that it is given in a parametric form and the k unknown

parameters are denoted by θ1, . . . , θk. Also, the order statistics of X1, . . . ,Xn will be

denoted by X1:n 6 · · · 6 Xn:n. Further, as presented by Brazauskas, Jones, and Zitikis

[3], the MTM procedure is similar to the method of moments approach. The inherent

difference is that we match population and sample trimmed moments instead of matching

ordinary moments. That is:
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• First, we compute k sample trimmed moments

µ̂j =
1

n−mn(j) −m∗
n(j)

n−m∗

n(j)∑

i=mn(j)+1

hj(Xi:n), j = 1, . . . , k,

where mn(j) and m∗
n(j) are integers satisfying 0 6 mn(j) < n − m∗

n(j) 6 n, and

mn(j)/n → aj and m∗
n(j)/n → bj as n → ∞. The proportions aj and bj are chosen

by the researcher as well as the functions hj : R → R.

• Second, the corresponding population trimmed moments

µj := µj(θ1, . . . , θk) =
1

1 − aj − bj

∫ 1−bj

aj

hj(F
−1(u)) du, j = 1, . . . , k,

are derived with F−1 denoting the quantile function of F .

• Finally, the population and sample trimmed moments are equated, and the resulting

system of equations

µj(θ1, . . . , θk) = µ̂j , j = 1, . . . , k,

is solved with respect to θ1, . . . , θk. The solution of the system of equations is denoted

by

θ̂j = gj(µ̂1, . . . , µ̂k), j = 1, . . . , k,

and is, by definition, the MTM estimator of the parameters θ1, . . . , θk.

The MTM estimator (θ̂1, . . . , θ̂k) is consistent and asymptotically normal (AN ) with

mean (θ1, . . . , θk) and the covariance matrix n−1 DΣD′,
(
θ̂1, . . . , θ̂k

)
∼ AN

(
(θ1, . . . , θk), n−1 DΣD′

)
,

where D = [dij ]
k
i,j=1 is the Jacobian of the transformations g1, . . . , gk evaluated at

(µ1, . . . , µk), that is, dij = ∂gi/∂µ̂j

∣∣
(µ1,...,µk)

, and Σ :=
[
σ2

ij

]k
i,j=1

is a covariance ma-

trix with

σ2
ij =

1

(1 − ai − bi)(1 − aj − bj)

∫ 1−bi

ai

∫ 1−bj

aj

(
min{u, v}−uv

)
dhj

(
F−1(v)

)
dhi

(
F−1(u)

)
.

For further technical details and examples, see [3].

3.1 Student’s t distribution

To obtain the MTM estimator of θ, σ and ν, we first compute the following three sample

trimmed moments:

µ̂1 =
1

n−mn(1) −m∗
n(1)

n−m∗

n(1)∑

i=mn(1)+1

Yi:n,

µ̂2 =
1

n−mn(1) −m∗
n(1)

n−m∗

n(1)∑

i=mn(1)+1

Y 2
i:n,
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µ̂3 =
1

n−mn(2) −m∗
n(2)

n−m∗

n(2)∑

i=mn(2)+1

Y 2
i:n.

Note that by choosing h2(x) = h3(x) = x2 we can ensure that the estimates of σ and

ν will be positive, which is desirable since these two parameters are positive. Next, we

derive the three corresponding population trimmed moments with the quantile function

given by (2.7). We have

µ1 =
1

1 − a1 − b1

∫ 1−b1

a1

F−1
t (u) du

= θ + σ
1

1 − a1 − b1

∫ 1−b1

a1

∞∑

p=0

cp

(√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

(u− 1/2)

)2p+1

du.

(3.1)

With the definition

λi,q :=
1

1 − ai − bi

∫ 1−bi

ai

[
∞∑

p=0

cp

(√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

(u− 1/2)

)2p+1
]q

du

we can write (3.1) as

µ1 = θ + σλ1,1(ν),

and similarly

µ2 = θ2 + 2θσλ1,1(ν) + σ2λ1,2(ν),

µ3 = θ2 + 2θσλ2,1(ν) + σ2λ2,2(ν).

Equating µ̂1 to µ1, µ̂2 to µ2 and µ̂3 to µ3, and solving the resulting system of equations

with respect to θ, σ and ν yields the MTM estimator:

θ̂MTM = µ̂1 − λ1,1(ν̂MTM)σ̂MTM (3.2)

σ̂MTM =

√
µ̂2 − µ̂2

1

λ1,2(ν̂MTM) − λ2
1,1(ν̂MTM)

(3.3)

µ̂3 = µ̂2
1 + 2µ̂1(λ2,1(ν̂MTM) − λ1,1(ν̂MTM))

√
µ̂2 − µ̂2

1

λ1,2(ν̂MTM) − λ2
1,1(ν̂MTM)

+
µ̂2 − µ̂2

1

λ1,2(ν̂MTM) − λ2
1,1(ν̂MTM)

×

× (λ2
1,1(ν̂MTM) − 2λ1,1(ν̂MTM)λ2,1(ν̂MTM) + λ2,2(ν̂MTM)). (3.4)

In summary, we first have to solve the nonlinear equation (3.4) for ν̂MTM. Then we can

obtain σ̂MTM, defined by (3.3), and after that θ̂MTM, defined by (3.2).

Note that by interchanging summation and integration we can simplify λi,1 and λi,2

to

λi,1 =
1

1 − ai − bi

∞∑

p=0

{
Λ2p+1

2p+ 2

[(
1

2
− bi

)2p+2

−
(
ai −

1

2

)2p+2
]
cp

}
, (3.5)
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λi,2 =
1

1 − ai − bi

∞∑

p=0

{
Λ2p+2

2p+ 3

[(
1

2
− bi

)2p+3

−
(
ai −

1

2

)2p+3
]

p∑

k=0

ckcp−k

}
, (3.6)

where

Λ =
√
νπ

Γ(ν
2 )

Γ(ν+1
2 )

.

Finally note that we can and have to approximate λ1,1(ν), λ1,2(ν), λ2,1(ν) and λ2,2(ν) by

calculating a finite number of terms in the infinite series. Our numerical studies presented

in Section 5 are based on a fifty-term approximation, which guarantees a relative error

of 10−5 for our considered MTMs (see Appendix for details).

3.2 Gamma distribution

To obtain the MTM estimator of α and β, we first compute the two sample trimmed

moments:

µ̂1 =
1

n−mn(1) −m∗
n(1)

n−m∗

n(1)∑

i=mn(1)+1

Yi:n,

µ̂2 =
1

n−mn(2) −m∗
n(2)

n−m∗

n(2)∑

i=mn(2)+1

Yi:n,

where the choice h1(x) = h2(x) = x ensures that the estimates of α > 0 and β > 0 are

positive. Then we derive the two corresponding population trimmed moments with the

help of the quantile function given by (2.14). We have

µ1 =
1

1 − a1 − b1

∫ 1−b1

a1

F−1
g (u) du

=
1

1 − a1 − b1

∫ 1−b1

a1

1

β

∞∑

p=1

dp (uΓ(α+ 1))
p/α

du

=
1

β

1

1 − a1 − b1

∫ 1−b1

a1

∞∑

p=1

dp (uΓ(α+ 1))
p/α

du

:=
1

β
δ1(α)

and similarly

µ2 =
1

β
δ2(α).

Equating µ̂1 to µ1 and µ̂2 to µ2, and solving the resulting system of equations with

respect to α and β yields the MTM estimator

β̂MTM =
δ1(α̂MTM)

µ̂1
(3.7)

δ1(α̂MTM)

δ2(α̂MTM)
=
µ̂1

µ̂2
. (3.8)
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In summary, we first have to solve the nonlinear equation (3.8) for α̂MTM. Then we can

obtain β̂MTM, defined by (3.7).

Note that by interchanging summation and integration we can simplify δi to

δi =
1

1 − ai − bi

∞∑

p=1

{
αΓp/α(α+ 1)

p+ α

[
(1 − bi)

p/α+1 − a
p/α+1
i

]
dp

}
. (3.9)

Finally, in our numerical studies presented in Section 5 are based on a fifty-term approx-

imation for δ1(α) and δ2(α), which guarantees a relative error of 10−5 for our considered

MTMs with the exception of δ1(2.5) and δ2(2.5), where we have to use a ninety-term

approximation (see Appendix for details).

4 Maximum Likelihood Estimation

Under some standard regularity conditions (see, e.g., Serfling [16, Section 4.2]), the maxi-

mum likelihood estimators (MLE) are consistent and asymptotically fully-efficient. Since

the gamma and Student’s t distributions do satisfy those regularity conditions, in Section

5 we will use the MLEs for the parameters of these two families as benchmark estima-

tors. That is, we will monitor performance of the MTM estimators relative to that of the

corresponding MLEs. In the following two subsections we briefly present the key facts of

the MLEs for Student’s t and gamma distributions.

4.1 Student’s t distribution

Given a sample ~X = (X1, . . . ,Xn) the MLE estimator is found by (numerically) maxi-

mizing the log-likelihood function

logL
(
θ, σ, ν

∣∣ ~X
)

= n log Γ

(
ν + 1

2

)
− n log Γ

(ν
2

)
− n

2
log π + νn log σ

− ν + 1

2

n∑

i=1

log
(
νσ2 + (Xi − θ)2

)
+
νn

2
log ν.

A straightforward calculation shows that
(
θ̂MLE, σ̂MLE, ν̂MLE

)
∼ AN

(
(θ, σ, ν), n−1Σ0

)
,

where Σ0 is the inverse of the Fisher information matrix which is given by

Σ−1
0 =





ν+1
σ2(ν+3) 0 0

0 2ν
σ2(ν+3) − 2

σ(ν+1)(ν+3)

0 − 2
σ(ν+1)(ν+3) Σ0,33(ν)





with

Σ0,33(ν) = −1

4

[
ψ

(
1,
ν + 1

2

)
− ψ

(
1,
ν

2

)
+

2(ν + 5)

ν(ν + 1)(ν + 3)

]
.

Here, ψ(1, · ) denotes the first polygamma function, which is the the first derivative of

the digamma function ψ(· ) = Γ′(· )/Γ(· ).
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4.2 Gamma distribution

Given a sample ~X = (X1, . . . ,Xn), the MLE estimator for α and β is found by (numeri-

cally) maximizing the log-likelihood function

logL
(
α, β

∣∣ ~X
)

= nα log β − n log Γ(α) + (α− 1)

n∑

i=1

logXi − β

n∑

i=1

Xi.

Similar to the previous case, a straightforward calculation shows that
(
α̂MLE, β̂MLE

)
∼ AN

(
(α, β), n−1Σ1

)

with

Σ1 =
1

αψ(1, α) − 1

(
α β

β ψ(1, α)β2

)
,

where ψ(1, · ) denotes the first polygamma function.

5 Simulations

In this section, we use Monte Carlo simulations to augment the theoretical (large-sample)

results with small-sample investigations. In particular, we are interested in the following

questions. First, for how large the sample size n the asymptotic unbiasedness of the MLE

and MTM becomes valid? Second, what impact does the robustness or non-robustness

of an estimator have on its bias and relative efficiency when the underlying model is

contaminated?

To answer the questions of interest, we will use the following contamination model

Fε = (1 − ε)F0 + εG, (5.1)

where F0 is the central model which in this paper will be assumed to be either a Student’s

t distribution with (θ, σ, ν) or a gamma distribution with (α, β). Also, G is a contami-

nating distribution that generates observations violating the distributional assumption,

and the contamination level ε represents the probability that a sample observation comes

from the distribution G rather than F0. Note that by choosing ε = 0 we can simulate a

contamination free scenario which will allow us to answer the first question raised at the

beginning of this section.

The general design of our Monte Carlo study is as follows. We generate 10,000 samples

of size n using the underlying model (5.1). For each sample, we estimate the unknown

parameters via MLE and MTM approaches. That is, for the Student’s t distribution we

estimate the location parameter θ, the scale σ, and the shape ν, and for the gamma

distribution the shape α and the scale β. In the next step we calculate the average mean

and relative efficiency (RE) of those 10,000 estimates. We repeat this process 10 times and

the 10 average means and the 10 REs are again averaged and their standard deviations

are reported. (Such repetitions is a quick way to assess standard errors of the estimated

means and REs.) Thus, the reported standardized means are the average of 100,000

estimates divided by the true value of the parameter that we are trying to estimate. For

computation of REs, we modify the definition of the asymptotic relative efficiency (see,

e.g., Serfling [16, Section 4.1]) by replacing all entries in the relevant covariance matrices
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with the corresponding mean-squared errors. Our Monte Carlo study is based on the

following choice of simulation parameters:

• Distribution F0: t with θ = 1, σ = 1, and ν = 1, 2, 5;

and Gamma with β = 1 and α = 0.5, 1.0, 2.5.

• Distribution G: t with θ = 1, σ = 1, ν = 1 (when F0 is t);

and Gamma with β = 1 and α = 0.2 (when F0 is Gamma).

• Level of contamination: ε = 0, 0.01, 0.05, 0.10.

• Sample size: n = 100, 200, 500, 10000 (when F0 is t);

and n = 25, 50, 100, 500 (when F0 is Gamma).

• Estimators: MLE and MTM with

◦ (a1, b1, a2, b2) = (0.05, 0.05, 0.05, 0.7), denoted mtm1;

◦ (a1, b1, a2, b2) = (0.05, 0.1, 0.3, 0.1), denoted mtm2;

◦ (a1, b1, a2, b2) = (0.1, 0.05, 0.1, 0.55), denoted mtm3;

◦ (a1, b1, a2, b2) = (0.1, 0.1, 0.35, 0.1), denoted mtm4;

◦ (a1, b1, a2, b2) = (0.15, 0.15, 0.3, 0.15), denoted mtm5.

The findings of the simulation study are summarized in Tables 1–4. The entries of

the column n → ∞ in the Tables 1–2 follow from the theoretical results and not from

simulations. They are included as target quantities.

Tables 1 and 2 provide the summarized information which relates to the first question

of interest. The following conclusions emerge. First of all, for the gamma distribution

(see Table 1), the bias of α and β estimators gets within several percentage points of

the target for samples of size 100 or larger. Except for MTM4 and MTM5 estimators,

one can probably claim that the same conclusion is true even for n as small as 50,

but not for n = 25. And clearly, for n = 500 the bias of all estimators is practically

eliminated. Second, for the Student’s t distribution (see Table 2), we notice that all

methods do a good job when estimating θ and σ, but things are less impressive for the

shape parameter ν. When ν = 1, the results become satisfactory for n > 200 and for

the majority of estimators even for n > 100. As the t distribution gets less heavy-tailed

(when ν increases), the bias of all methods vanishes at a much slower rate. For example,

for ν = 5 and n = 500, only the MLE is performing according to the expectations. We

did additional simulations for the case n = 10, 000 and found that a few more MTMs

were within a close range of the target. However, to get the MTM5 estimator for ν within

a reasonable range of the target, we need a very large sample size. This conclusion is not

surprising at all because, as ν gets larger, the Student’s t distributions differ only in the

extreme tails and are essentially indistinguishable in the middle section. The closeness of

t distributions when ν is large can also be inferred from one of the classic “rules of thumb”

in statistics, which says that in most practical situations the t-test can be approximated

by the z-test for n > 30 (i.e., the “infinity” is only 30 observations away).

Next, we illustrate the behaviour of estimators under several data-contamination sce-

narios. Contamination studies for the gamma distribution are summarized in Table 3,

and the corresponding investigations for the Student’s t distribution are reported in Ta-

ble 4. In both cases we choose the central model so that the MTM performances were

worst under the “clean” data scenario (see Tables 1 and 2). This choice, however, did
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Table 1. Standardized mean of MLE and MTM estimators for selected values of α of the

Gamma distribution with β = 1. The entries are mean values based on 100, 000 simulated

samples of size n

α Estimator n = 25 n = 50 n = 100 n = 500 n → ∞

α β α β α β α β α β

0.5 mle 1.19 1.10 1.09 1.04 1.04 1.02 1.01 1.00 1 1
mtm1 1.19 1.13 1.01 1.02 1.04 1.02 1.01 1.00 1 1
mtm2 1.72 1.54 0.93 0.91 1.05 1.03 1.01 1.01 1 1
mtm3 1.22 1.16 1.04 1.05 1.04 1.03 1.01 1.00 1 1
mtm4 1.65 1.48 1.38 1.26 1.05 1.03 1.01 1.01 1 1
mtm5 1.06 1.04 0.84 0.87 1.06 1.03 1.01 1.01 1 1

1.0 mle 1.16 1.11 1.07 1.05 1.04 1.02 1.01 1.00 1 1
mtm1 1.14 1.13 1.00 1.01 1.03 1.02 1.00 1.00 1 1
mtm2 1.36 1.32 0.93 0.93 1.04 1.03 1.01 1.00 1 1
mtm3 1.18 1.15 1.03 1.04 1.03 1.02 1.00 1.00 1 1
mtm4 1.34 1.29 1.23 1.19 1.04 1.03 1.01 1.00 1 1
mtm5 1.00 1.01 0.90 0.91 1.05 1.03 1.01 1.01 1 1

2.5 mle 1.14 1.12 1.07 1.06 1.03 1.03 1.01 1.01 1 1
mtm1 1.09 1.10 0.97 0.98 0.99 1.00 0.97 0.98 1 1
mtm2 1.21 1.22 0.94 0.94 1.02 1.02 0.99 1.00 1 1
mtm3 1.11 1.11 0.99 1.01 0.98 0.99 0.96 0.97 1 1
mtm4 1.20 1.20 1.15 1.15 1.01 1.02 0.99 0.99 1 1
mtm5 0.97 0.98 0.91 0.92 1.03 1.03 1.00 1.00 1 1

Note: The ranges of standard errors for the simulated entries of α and β, respectively, are:

0.15–4.90, 0.22–7.60 (×10−3, for α = 0.5); 0.18–2.20, 0.20–2.40 (×10−3, for α = 1.0);

0.18–2.00, 0.18–2.20 (×10−3, for α = 2.5).

not prevent the MTM estimators to outperform the MLE under the non-clean scenarios.

Indeed, by comparing the case ε = 0 with ε = 0.01 in Tables 3 and 4 we see that just

1% of outliers can completely erase the great advantage of the non-robust MLE method,

which is true in terms of both the bias and the efficiency. Further, for the gamma dis-

tribution, we observe a joint drift away from the target by all estimators as ε increases.

While the MTMs exhibit smaller bias than the MLE, their relative efficiencies eventu-

ally become the same as that of the MLE. This is not unexpected for as the level of

data-contamination reaches or exceeds MTMs’ breakdown points, they also become un-

informative. Finally, similar behaviour is observed for the Student’s t distribution as well.

In this case, however, one additional point is noteworthy. It seems that all methods of

estimation are much more successful in separating θ and σ from ν, which is evident from

examining the bias part in Table 4. Indeed, only the MLE of σ underestimates its target

by 2%, 6%, and 8% as ε increases, whereas the MTMs of both θ and σ are completely

unaffected by the contamination of data.
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Table 2. Standardized mean of MLE and MTM estimators for selected values of ν of

the t distribution with θ = 1 and σ = 1. The entries are mean values based on 100, 000

simulated samples of size n.

ν Estimator n = 100 n = 200 n = 500 n → ∞

θ σ ν θ σ ν θ σ ν

1 mle 1.00 1.00 1.02 1.00 1.00 1.01 1.00 1.00 1.00 1 1 1
mtm1 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1 1 1
mtm2 1.00 1.05 1.36 1.00 1.02 1.05 1.00 1.01 1.02 1 1 1
mtm3 1.00 1.02 1.06 1.00 1.01 1.02 1.00 1.00 1.01 1 1 1
mtm4 1.00 1.01 1.05 1.00 1.00 1.01 1.00 1.00 1.01 1 1 1
mtm5 1.00 1.02 1.35 1.00 1.01 1.05 1.00 1.00 1.02 1 1 1

2 mle 1.00 1.00 1.05 1.00 1.00 1.02 1.00 1.00 1.01 1 1 1
mtm1 1.00 1.01 1.18 1.00 1.00 1.04 1.00 1.00 1.02 1 1 1
mtm2 1.00 1.02 2.19 1.00 1.01 1.18 1.00 1.01 1.06 1 1 1
mtm3 1.00 1.01 1.39 1.00 1.01 1.07 1.00 1.00 1.03 1 1 1
mtm4 1.00 1.01 2.02 1.00 1.00 1.18 1.00 1.00 1.05 1 1 1
mtm5 1.00 1.01 4.14 1.00 1.01 2.11 1.00 1.00 1.30 1 1 1

5 mle 1.00 1.01 1.49 1.00 1.00 1.09 1.00 1.00 1.04 1 1 1
mtm1 1.00 1.00 2.52 1.00 1.00 1.69 1.00 1.00 1.28 1 1 1
mtm2 1.00 1.00 3.23 1.00 1.00 2.27 1.00 1.00 1.62 1 1 1
mtm3 1.00 1.00 2.80 1.00 1.00 1.91 1.00 1.00 1.38 1 1 1
mtm4 1.00 0.99 3.35 1.00 1.00 2.58 1.00 1.00 1.94 1 1 1
mtm5 1.00 0.97 3.95 1.00 0.99 3.43 1.00 1.00 2.87 1 1 1

Note: The ranges of standard errors for the simulated entries of θ, σ, ν, respectively, are:

0.04–0.64, 0.02–0.84, 0.03–9.0 (×10−3, for ν = 1); 0.04–0.32, 0.03–0.48, 0.08–25.0 (×10−3, for ν = 2);

0.02–0.31, 0.03–0.53, 0.15–16.4 (×10−3, for ν = 5).

6 Conclusions

In this article, we have developed the method of trimmed moments (or MTM, for short)

estimators for the parameters of a two-parameter gamma distribution and of a three-

parameter Student’s t distribution. Large- and small-sample statistical properties of the

new estimators have been explored and compared to those of the maximum likelihood

procedure. We have seen that the MTM estimators are theoretically sound, computa-

tionally attractive, and provide sufficient protection against various data-contamination

scenarios.

The MTM approach is based on matching trimmed moments of a population with their

sample counterparts. Since trimmed moments are defined through the quantile function

of the distribution which, in our case, required reliable approximations, the quantile

mechanics approach was essential to accomplishing our objectives. We are fully aware that

there remain unanswered questions. For example: (a) how to construct similar estimators

for multivariate distributions? or (b) how to extend these ideas to dynamical systems that

are governed by stochastic differential equations? These problems and related issues we

intend to tackle in future projects.
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Table 3. Standardized means and relative efficiencies of MLE and MTM estimators under

the model Fε = (1 − ε)Gamma(α = 2, β = 1) + εGamma(α = 0.2, β = 1). The entries

are mean values based on 100, 000 simulated samples of size n = 500.

Statistic Estimator ε = 0 ε = 0.01 ε = 0.05 ε = 0.10
α β α β α β α β

mean mle 1.01 1.01 0.87 0.88 0.57 0.60 0.40 0.44
mtm1 0.99 0.98 0.96 0.96 0.83 0.85 0.66 0.71
mtm2 1.00 1.00 0.97 0.97 0.83 0.85 0.66 0.69
mtm3 0.99 0.98 0.96 0.96 0.87 0.89 0.75 0.80
mtm4 1.00 1.00 0.97 0.97 0.86 0.88 0.72 0.76
mtm5 1.00 1.00 0.98 0.98 0.86 0.89 0.72 0.76

re mle 0.97 0.42 0.21 0.19
mtm1 0.82 0.74 0.33 0.20
mtm2 0.76 0.70 0.31 0.19
mtm3 0.78 0.74 0.38 0.22
mtm4 0.72 0.69 0.34 0.20
mtm5 0.62 0.60 0.31 0.19

Table 4. Standardized means and relative efficiencies of MLE and MTM estimators under

the model Fε = (1 − ε)Student(θ = 1, σ = 1, ν = 5) + εStudent(θ = 1, σ = 1, ν = 1).

The entries are mean values based on 100, 000 simulated samples of size n = 10, 000.

Statistic Estimator ε = 0 ε = 0.01 ε = 0.05 ε = 0.10
θ σ ν θ σ ν θ σ ν θ σ ν

mean mle 1.00 1.00 1.00 1.00 0.98 0.87 1.00 0.94 0.63 1.00 0.92 0.51
mtm1 1.00 1.00 1.01 1.00 1.00 0.98 1.00 1.00 0.86 1.00 1.00 0.75
mtm2 1.00 1.00 1.02 1.00 1.00 0.99 1.00 1.00 0.87 1.00 1.00 0.75
mtm3 1.00 1.00 1.02 1.00 1.00 0.98 1.00 1.00 0.87 1.00 1.00 0.75
mtm4 1.00 1.00 1.04 1.00 1.00 1.01 1.00 1.00 0.89 1.00 1.00 0.78
mtm5 1.00 1.00 1.16 1.00 1.00 1.11 1.00 1.00 0.95 1.00 1.00 0.82

re mle 0.98 0.34 0.12 0.09
mtm1 0.37 0.39 0.17 0.09
mtm2 0.26 0.29 0.16 0.09
mtm3 0.32 0.34 0.17 0.09
mtm4 0.16 0.18 0.14 0.08
mtm5 0.03 0.03 0.05 0.06
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Table 5. Comparison of the exact solution with a series approximation with

m = 20, 30, 40, 50 for Student’s t distributions.

m = 20 m = 30 m = 40 m = 50
Parameter Exact value rel. error rel. error rel. error rel. error

λ1,1(1) −2.549321802048
−1 3.7514

−3 3.2380
−4 3.0509

−5 3.0293
−6

λ1,2(1) +2.516925438185+0 1.0779
−2 1.3066

−3 1.5880
−4 1.9306

−5

λ2,1(1) +5.105816042167+0 1.0868
−5 8.6718

−8 7.6478
−10 7.0980

−12

λ2,2(1) +1.018204609708+0 1.2541
−4 1.4459

−6 1.6670
−8 1.9178

−10

λ1,1(2) −1.365216100747
−1 9.0746

−4 6.5314
−5 5.3937

−6 4.8274
−7

λ1,2(2) +1.024507974413+0 1.3028
−3 1.1235

−4 1.0614
−5 1.0560

−6

λ2,1(2) +3.730166685487
−1 2.0003

−6 1.3192
−8 1.0303

−10 2.4702
−12

λ2,2(2) +5.371020314362
−1 1.2700

−5 1.0202
−7 9.0307

−10 8.4768
−12

λ1,1(5) −1.008429908492
−1 3.0003

−4 1.9096
−5 1.4439

−6 1.2065
−7

λ1,2(5) +6.769099301596
−1 2.8021

−4 1.9568
−5 1.5842

−6 1.3949
−7

λ2,1(5) +3.167162238617
−1 5.8876

−7 3.4153
−9 2.4534

−11 7.6103
−13

λ2,2(5) +3.891460670661
−1 2.5993

−6 1.6747
−8 1.2637

−10 1.1546
−12

Appendix

In this appendix we provide a justification for the fifty-term approximations of λi,1(ν) and

λi,2(ν), which are given by (3.5) and (3.6), respectively. First of all, recall that λi,q(ν),

q = 1, 2, is a short-cut notation for

1

1 − ai − bi

∫ 1−bi

ai

F−1
t,0

(u) du,

where parameters ai and bi are used to ensure the robustness of MTMs. They also can

be interpreted as the truncation points of the central power series. In our simulation

studies the smallest trimming proportions are a1 = 0.05 and b1 = 0.1 (for MTM2). If

we choose ai = 0 and bi = 0 (MTM simply becomes the standard method of moments),

our results remain valid but the MTM estimators loose robustness and for ν 6 2 do not

exist. Moreover, under such a scenario one has also to be concerned with an appropriate

approximation of the tail (see [18] for a discussion about this issue). Hence, by choosing

ai > 0 and bi > 0, we can achieve not only the statistical robustness of MTMs against data

contamination, but also the computational robustness as approximation of the quantile

function in the extreme tails (i.e., below ai and above 1 − bi) is not necessary.

To augment the above discussion with quantitative comparisons, we employ Mathe-

matica (see [19]) for computation of a closed form expression of F−1
t,0

, which involves the

inverse of the regularized incomplete beta function (see [17, p. 45, Equation 24]). This

allows us to evaluate λi,q, q = 1, 2, for the parameters of MTM2 and for ν = 1, 2, 5, and

to compare them with (3.5) and (3.6). A summary of those calculations is presented in

Table 5. (In the sequel, we abbreviate const· 10±p by const±p for compactness.) It is save

to conclude that a fifty-term approximation suffices to guarantee a relative error of 10−5

for the MTM2. As expected, even better results are obtained for the other MTM estima-
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Table 6. Comparison of the exact solution with a series approximation with

m = 20, 30, 40, 50 for the gamma distributions.

m = 20 m = 30 m = 40 m = 50
Parameter Exact value rel. error rel. error rel. error rel. error

δ1(0.2) +8.519788165182
−2 1.5724

−7 3.9247
−10 3.0211

−12 1.8413
−12

δ2(0.2) +1.205647654983
−1 1.5741

−7 3.9128
−10 1.4034

−12 2.2239
−13

δ1(0.5) +3.297931967105
−1 1.5027

−4 9.1733
−6 6.7179

−7 5.4638
−8

δ2(0.5) +4.551321416543
−1 1.5425

−4 9.4167
−6 6.8962

−7 5.6086
−8

δ1(1.0) +7.864354357282
−1 1.9251

−3 3.5186
−4 7.5935

−5 1.8049
−5

δ2(1.0) +1.032356585763+0 2.0776
−3 3.7973

−4 8.1948
−5 1.9478

−5

δ1(2.5) +2.223527770333+0 1.2218
−2 4.4929

−3 1.9088
−3 8.8251

−4

δ2(2.5) +2.703673227068+0 1.4235
−2 5.2346

−3 2.2240
−3 1.0282

−3

tor for which higher trimming proportions were used. Admittedly, we are conservative

here; we could have used less than fifty terms for ν = 2 and ν = 5.

A similar analysis was performed for the MTM2 estimator in the gamma model, i.e.,

for δ1(α) and δ2(α) given by (3.9), with α = 0.2, 0.5, 1.0, 2.5. The results are presented

in Table 6. Here we again conclude that a fifty-term approximation guarantees a rel-

ative error of 10−5 for α = 0.2, 0.5, 1.0. However, for α = 2.5 we need a ninety-term

approximation to obtain the relative errors of 6.1850−5 for δ1(2.5) and of 7.2060−5 for

δ2(2.5).

Note that in general (i.e., for arbitrary choice of parameters) we still cannot answer

the question: How many terms should be chosen depending on the trimming proportions

and the parameters to be estimated? This remains a topic of further research that could,

for example, build upon the results of [17]. In that paper, explicit formulas for Student’s

t quantile function were derived assuming ν = 1, 2, 4 and iterative schemes were provided

for arbitrary even ν and low odd ν; the case of non-integer ν was also considered.

References

[1] Abramowitz, M. & Stegun, I. A. (1972) Handbook of Mathematical Functions, National
Bureau of Standards, Applied Mathematics Series, No. 55.

[2] Brazauskas, V. & Kleefeld, A. (2011) Folded and log-folded-t distributions as models
for insurance loss data, Scand. Actuar. J. 1, 59–74.

[3] Brazauskas, V., Jones, B. L. & Zitikis, R. (2009) Robust fitting of claim severity distri-
butions and the method of trimmed moments, J. Statist. Plann. Inference 139, 2028–2043.

[4] Galton, F. (1875) Statistics by intercomparison, with remarks on the law of frequency of
error, Philosophical Magazine 49, 33–46.

[5] Gilchrist, W. (2000) Statistical Modelling with Quantile Functions, Chapman and Hall,
Boca Raton.

[6] Hald, A. (1998) A History of Mathematical Statistics from 1750 to 1930, Wiley, New York.
[7] Hampel, F. R. (1968) Contributions to the theory of robust estimation. Ph.D. Dissertation,

University of California, Berkley.



18 A. Kleefeld and V. Brazauskas

[8] Huber, P. J. (1964) Robust estimation of a location parameter. Annals of Mathematical

Statistics 35, 73–101.
[9] Johnson, N. L., Kotz, S. & Balakrishnan, N. (1994) Continuous Univariate Distribu-

tions (2nd edn), Wiley, New York.
[10] Jones, B. L. & Zitikis, R. (2003), (2004) Empirical estimation of risk measures and related

quantities (with discussion), N. Am. Actuar. J. 7, 8, 44–54, 114–117, 117–118.
[11] Klugman, S. A., Panjer, H. H. & Willmot, G. E. (2008) Loss Models: From Data to

Decisions (3rd edn), Wiley, New York.
[12] Maronna, R. A., Martin, D. R. & Yohai, V. J. (2006) Robust Statistics: Theory and

Methods, Wiley, New York.
[13] McNeil, A. J. & Embrechts, P. (2005) Quantitative Risk Management: Concepts, Tech-

niques, and Tools, Princeton University Press, Princeton.
[14] Necir, A. & Meraghni, D. (2010) Estimating L-functionals for heavy-tailed distributions

and application, J. Probab. Stat. DOI: 10.1155/2010/707146, 34 pages.
[15] Parzen, E. (2004) Quantile probability and statistical data modeling, Statistical Science

19, 652–662.
[16] Serfling, R. J. (1980) Approximation Theorems of Mathematical Statistics, Wiley, New

York.
[17] Shaw, W. T. (2006) Sampling Students T distribution – use of the inverse cumulative

distribution function, J. Comput. Finance 9, 37–73.
[18] Steinbrecher, G. & Shaw, W. T. (2008) Quantile mechanics, European J. Appl. Math.

19, 87–112.
[19] Wolfram, S. (2004) The Mathematica Book, 5th edn. Wolfram Media, Champaign, IL.


