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Abstract

A rich variety of probability distributions has been proposed in the actuarial literature

for fitting of insurance loss data. Examples include: lognormal, log-t, various versions of

Pareto, loglogistic, Weibull, gamma and its variants, and generalized beta of the second

kind distributions, among others. In this paper, we supplement the literature by adding

the log-folded-normal and log-folded-t families. Shapes of the density function and key dis-

tributional properties of the ‘folded’ distributions are presented along with three methods

for the estimation of parameters: method of maximum likelihood, method of moments,

and method of trimmed moments. Further, large- and small-sample properties of these

estimators are studied in detail. Finally, we fit the newly proposed distributions to data

which represent the total damage done by 827 fires in Norway for the year 1988. The fitted

models are then employed in a few quantitative risk management examples, where point

and interval estimates for several value-at-risk measures are calculated.
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1 Introduction

Fitting of loss models is a necessary first step in many insurance applications such as premium cal-

culations, risk evaluations and determination of required reserves. A rich variety of probability dis-

tributions has been proposed in the actuarial literature for fitting of insurance loss data. Examples

include: lognormal, log-t, various versions of Pareto, loglogistic, Weibull, gamma and its variants,

and transformed beta (generalized beta of the second kind, GB2) distributions, among others (see

Klugman et al ., 2004, Appendix A). The GB2 family has four parameters, is extremely flexible and

includes many of the aforementioned distributions as special or limiting cases. It has been used in

non-life insurance (Cummins et al ., 1990) and recently in modeling of longitudinal data involving cop-

ulas (Sun et al ., 2008). While flexibility of a parametric distribution is a desirable feature, it comes at

a price. In particular, multi-parameter distributions can present serious computational challenges for

parameter estimation, model diagnostics, and for further statistical inference which are necessary in

applications. This prompted researchers to pursue simpler distributions for modeling insurance losses

(see, e.g., composite lognormal-Pareto models of Cooray and Ananda, 2005, and Scollnik, 2007).

In this paper, we supplement the literature by adding the log-folded-normal and log-folded-t fami-

lies. The guiding principles for introduction of these new distributions are: mathematical tractability,

diagnostic transparency, and practical applicability. The mathematical tractability of these families

comes from the fact that they are closely related to two well-understood distributions, normal and

t, which in turn implies that they can be transformed into a location-scale family. Model diagnostic

tools, such as quantile-quantile type plots, for location-scale families are transparent and especially

effective. Further, practical applicability of the log-folded-normal and log-folded-t distributions follows

from the observation that virtually all insurance contracts have known lower limit (e.g., deductible

or retention level), and we always have a choice of how to treat it for particular data set. One of

these choices naturally leads to a folded bell-shaped curve, i.e., the log-folded-normal distribution (see

Example 1). Finally, we note that the families we propose are special cases of log-skew-normal and

log-skew-t distributions (when the skew parameter α approaches +∞) which have been successfully

used for modeling income data in economics (see Azzalini et al ., 2002).
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Example 1: For all numerical and graphical illustrations throughout the paper, we use the

Norwegian fire claims data which is taken from Beirlant, Teugels, and Vynckier (1996). The data set

has been studied in the actuarial literature, and it represents the total damage done by n = 827 fires

in Norway for the year 1988, which exceed 500 thousand Norwegian krones. For this data set, the

histogram of the raw observations is not very informative since about 90% of the losses are between

500 and 3,000 and the two largest claims (150,597 and 465,365) are much larger than the others. That

is, one claim visually suppresses 750 claims into about 5% of the scale on a graph. Therefore, we first

take the logarithmic transformation of the data and then make its histogram. Here, however, we have

two possibilities. If we treat the lower limit of 500 as a location parameter and subtract it from all

losses, then the histogram of the transformed data looks approximately bell-shaped (see the left panel

of Figure 1). This implies that the shifted original losses can be assumed as roughly lognormally
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Figure 1: Preliminary diagnostics for the Norwegian fire claims (1988) data.

distributed. Such an approach was taken by Brazauskas (2009) and we will compare his models with

the new ones in our numerical illustrations of Section 4. On the other hand, if we divide all losses by

500, take the logarithmic transformation of them and make a histogram, then we observe a half of

bell-shaped curve (see the right panel of Figure 1). Subsequently, the rescaled original losses can be

assumed as (roughly) log-folded-normally distributed. �
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The rest of the article is organized as follows. In Section 2, we provide key distributional properties

of the ‘folded’ distributions and graphically examine shape changes of their density functions. In the

next section, we study issues related to model-fitting. Specifically, three methods for the estimation of

parameters—method of maximum likelihood, method of moments, and method of trimmed moments—

are presented, and large- and small-sample properties of these estimators are investigated in detail.

In Section 4, we fit the newly proposed distributions to the Norwegian fire claims data. The fitted

models are then employed in a few quantitative risk management examples, where point and interval

estimates for several value-at-risk measures are calculated. Results are summarized and conclusions

are drawn in Section 5.

2 Folded-t and Related Distributions

As it is well-known, the probability density function (pdf) of a scaled t-distribution is given by

fT(ν)(x |σ) =
Γ
(

ν+1
2

)

Γ
(

ν
2

) 1

σ
√

νπ

1
(
1 + 1

ν (x/σ)2
)(ν+1)/2

, −∞ < x < ∞, (2.1)

where σ > 0 is the scale parameter and ν = 1, 2, 3, . . . represents the degrees of freedom. Notice

two special cases: for ν = 1, expression (2.1) reduces to the pdf of Cauchy(0, σ), and for ν → ∞, it

converges to the pdf of normal(0, σ). Moreover, after the transformation Y = |X| one easily obtains

the folded-t distribution with scale parameter σ > 0, degrees of freedom ν = 1, 2, 3, . . ., and the pdf

fFT(ν)(y |σ) =
Γ
(

ν+1
2

)

Γ
(

ν
2

) 2

σ
√

νπ

1
(
1 + 1

ν (y/σ)2
)(ν+1)/2

, y > 0. (2.2)

Similar to the t-distribution case, for ν = 1, expression (2.2) reduces to the pdf of folded-Cauchy,

and for ν → ∞, it converges to the pdf of folded-normal. In Figure 2, we illustrate shape changes of

fFT(ν)(y |σ) for various combinations of σ and ν.

Remark 1: In most statistical problems involving hypothesis testing and estimation, the scale

parameter σ and the degrees of freedom ν are known. In modeling insurance losses this is no longer

the case—both parameters have to be estimated from the data and the degrees of freedom ν do not

have to be an integer. In order to facilitate comparison of the numerical examples of Section 4.2 with

the most relevant existing literature, we will estimate σ and assume that ν is a known integer . A
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similar approach was taken by Brazauskas (2009) for fitting a t8 model to the logarithm of Norwegian

claims, where each claim had been shifted—not rescaled—by the deductible of 500 (see the left panel

of Figure 1). For a general treatment of this problem, i.e., joint estimation of σ and ν, the reader can

be referred to Johnson et al . (1995, Section 28.6). �
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Figure 2: Shapes of the pdf of folded-t distributions for σ = 0.5 (dashed line),

σ = 1.0 (solid line), σ = 2.0 (dash-dotted line) and ν = 1, 5, 15,∞.

Further, due to the close relation between the t-distribution and the folded-t, the following prop-

erties for pdf, cumulative distribution and quantile functions (cdf and qf, respectively) of the two
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distributions can be easily established:

pdf: fFT(ν)(y |σ) = (1/σ) f∗

FT(ν)(y/σ) = (2/σ) f∗

T(ν)(y/σ), y > 0, (2.3)

cdf: FFT(ν)(y |σ) = F ∗

FT(ν)(y/σ) = 2
[
F ∗

T(ν)(y/σ) − 0.5
]
, y > 0, (2.4)

qf: QFT(ν)(u |σ) = σ Q∗

FT(ν)(u) = σ Q∗

T(ν)((u + 1)/2), 0 < u < 1, (2.5)

where f∗, F ∗, and Q∗ denote the standard (i.e., with θ = 0 and/or σ = 1) pdf, cdf, qf, respectively,

of the underlying location-scale family. Also, the mean and variance of the folded-t distribution are

given by

E(Y ) = σ
√

ν/π
Γ
(

ν−1
2

)

Γ
(

ν
2

) =: σ c0, ν = 2, 3, 4, . . . , (2.6)

Var(Y ) = σ2

(
ν

ν − 2
− c2

0

)
, ν = 3, 4, 5, . . . . (2.7)

Now a log-folded-t distribution emerges in a very natural way. That is, we will say a random

variable Z is log-folded-t distributed if log Z follows a folded-t distribution. This implies that, in

conjunction with (2.3)–(2.5), the pdf, cdf and qf of Z satisfy the following relationships:

pdf: fLFT(ν)(z |σ) = (2/σ) z−1 f∗

T(ν)(log(z)/σ), z > 1, (2.8)

cdf: FLFT(ν)(z |σ) = 2
[
F ∗

T(ν)(log(z)/σ) − 0.5
]
, z > 1, (2.9)

qf: QLFT(ν)(u |σ) = exp
{

σ Q∗

T(ν)((u + 1)/2)
}

, 0 < u < 1. (2.10)

As before, it is worth noting two special cases: for ν = 1 and ν → ∞, log-folded-t becomes a log-folded-

Cauchy and log-folded-normal variable, respectively. Also, unlike the ‘folded’ families, the log-folded

distributions possess no moments.

3 Parameter Estimation

In this section, we study issues related to model-fitting. Three methods for estimation of the scale

parameter of a folded-t distribution are provided. Specifically, in subsection 3.1, standard estimators,

based on the maximum likelihood and method-of-moments approaches, are presented and their large-

sample properties are examined. Then, in subsection 3.2, we consider a recently introduced robust
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estimation technique, the method of trimmed moments, and study asymptotic behavior of estimators

based on it. Finally, subsection 3.3 is devoted to small-sample properties of the estimators, which are

investigated using simulations.

Also, throughout this section, we will consider a sample of n independent and identically distributed

random variables, Y1, . . . , Yn, from a folded-t family with its pdf, cdf, and qf given by (2.3)–(2.5), and

denote Y1:n ≤ · · · ≤ Yn:n the order statistics of Y1, . . . , Yn.

3.1 Standard Methods

A method-of-moments estimator for σ is found by matching the population mean, given by (2.6), and

the sample mean Y , and then solving the equation with respect to σ. This leads to

σ̂MM =
√

π/ν
Γ
(

ν
2

)

Γ
(

ν−1
2

) Y = Y /c0.

As follows from, e.g., Serfling (1980, Section 2.2), the estimator σ̂MM is asymptotically normal with

mean σ and variance n−1σ2
(

ν
ν−2 − c2

0

)/
c2
0. To summarize this result, we shall write:

σ̂MM ∼ AN
(

σ,
σ2

n
∆0

)
, (3.1)

where ∆0 =
(

ν
ν−2 − c2

0

)/
c2
0 and AN stands for ‘asymptotically normal’.

The maximum likelihood estimator σ̂MLE is obtained by maximizing the log-likelihood function,

which is equivalent to solving
n∑

i=1

σ2(ν + 1)

Y 2
i + σ2ν

− n = 0

for σ with a root finding algorithm. Using standard asymptotic results for MLEs (see, e.g., Serfling,

1980, Section 4.2), one can show that

σ̂MLE ∼ AN
(

σ,
σ2

n

ν + 3

2ν

)
. (3.2)

In this case, the asymptotic variance of MLE is optimal, i.e., it attains the Cramér-Rao lower

bound. Therefore, since both estimators are consistent and asymptotically normal, we are interested

in comparing their asymptotic variances. In other words, we would like to know how much efficiency

is lost due to using σ̂MM instead of σ̂MLE. Clearly, a more efficient estimator is preferred because that

has a direct impact on the accuracy of pricing and risk measuring models. In practice, however, other
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criteria, such as computational simplicity and estimator’s robustness to model misspecification and/or

data contamination by outliers, have to be considered as well.

As follows from (3.1) and (3.2), the asymptotic relative efficiency (ARE) of the MM estimator with

respect to the MLE, defined as the ratio of their asymptotic variances, is given by

ARE (σ̂MM, σ̂MLE) =
ν + 3

2ν

1

∆0
. (3.3)

In Table 1, we provide numerical illustrations of expression (3.3) for selected values of the degrees of

freedom ν. In view of MM’s minimal sacrifice of efficiency for almost all values of ν (ARE is at least

87% for ν ≥ 4) along with its explicit, computationally simple formula, one can argue that σ̂MM is

indeed a competitive alternative to the MLE. However, note that for ν = 1, 2, the population variance,

given by (2.7), is infinite and hence the ARE is 0.

Table 1: ARE(σ̂MM, σ̂MLE) for selected values of ν.

ν 3 4 5 6 7 8 9 10 15 25 50 100 ∞
ARE .681 .875 .941 .964 .972 .973 .971 .967 .949 .935 .903 .890 .876

3.2 Robust Estimation

As presented by Brazauskas et al . (2009, Section 2.1), the method-of-trimmed-moments (MTM)

procedure is operationally equivalent to the method-of-moments approach. The difference is that for

the MTM we match ‘trimmed’ moments rather than ‘simple’ moments. Thus, in order to obtain an

MTM estimator of σ, we first compute a sample trimmed moment

µ̂ =
1

n − mn − m∗

n

n−m∗

n∑

i=mn+1

Yi:n

where mn and m∗

n are integers 0 ≤ mn < n − m∗

n ≤ n such that mn/n → a and m∗

n/n → b when

n → ∞, where the trimming proportions a and b (0 ≤ a+ b < 1) are chosen by the researcher. Then,

we derive the corresponding population trimmed moment

µ := µ(σ) =
1

1 − a − b

∫ 1−b

a
QFT(ν)(u |σ) du

=
σ

1 − a − b

∫ 1−b

a
Q∗

T(ν)((u + 1)/2) du =: σ c(a, b).
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Equating µ̂ to µ and solving the equation with respect to σ yields the MTM estimator

σ̂MTM = µ̂/c(a, b).

Asymptotic properties of MTM estimators are extensively studied by Brazauskas et al . (2009,

Section 2.2 and Appendix A). Adaptation of their formulas to our case implies that

σ̂MTM ∼ AN
(

σ,
σ2

n
∆(a, b)

)
, (3.4)

where ∆(a, b) = C(a, b)/c2(a, b) with

C(a, b) =
1

(1 − a − b)2

{
a(1 − a)

[
Q∗

T(ν)((a + 1)/2)
]2

+ b(1 − b)
[
Q∗

T(ν)(1 − b/2)
]2

− 2abQ∗

T(ν)((a + 1)/2)Q∗

T(ν)(1 − b/2) − (1 − a − b)2 c2(a, b) + (1 − a − b) d(a, b)

− 2(1 − a − b)
[
aQ∗

T(ν)((a + 1)/2) + bQ∗

T(ν)(1 − b/2)
]
c(a, b)

}
,

where c(a, b) is defined above and d(a, b) = (1 − a − b)−1
∫ 1−b
a

[
Q∗

T(ν)((u + 1)/2)
]2

du.

Remark 2: When mn = m∗

n = 0, then µ̂ = Y and c(0, 0) = c0; consequently, the MTM

estimator σ̂MTM becomes σ̂MM. Also note that since ∆(a, b) → ∆0 when a = b → 0, the MM’s

asymptotic distribution follows from (3.4). Hence, for the folded-t distribution, the MTM can be

viewed as a robustified version of MM. �

Now let us turn to the efficiency investigations. As follows from (3.2) and (3.4), the ARE of an

MTM estimator with respect to the MLE is given by

ARE (σ̂MTM, σ̂MLE) =
ν + 3

2ν

1

∆(a, b)
. (3.5)

In Table 2, we provide numerical illustrations of expression (3.5) for selected values of a and b and for

ν = 1, 5, 15,∞. Several conclusions emerge from the table. First, the MTM procedures with a > 0 and

b > 0 are valid for all values of ν, thus they expand the range of applicability of the MM estimator.

Second, for a fixed ν, there is always at least one MTM estimator which is more efficient than the

MM. Third, for very heavy-tailed folded-t distributions (i.e., when ν is small), it is beneficial to trim

data even when there are no outliers because that improves efficiency and accuracy of estimation.

In summary, while from the computational point of view MTMs are a bit more complex than MMs,
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they are still simpler than the MLE. They also offer various degrees of robustness against outliers. In

real-data examples of Section 4, we will illustrate how to choose the trimming proportions a and b

based on the data at hand.

Table 2: ARE(σ̂MTM, σ̂MLE) for selected a, b, and ν = 1, 5, 15,∞,

with the boxed numbers highlighting the case a = b.

b
ν a 0 0.01 0.03 0.05 0.10 0.15 0.25 0.49 0.70

1 0 0 .202 .391 .519 .730 .858 .974 .843 .512

0.05 0 .202 .390 .518 .729 .857 .974 .847 .522

0.10 0 .201 .389 .515 .725 .854 .972 .855 .542

0.15 0 .199 .386 .511 .720 .847 .967 .863 .566

0.25 0 .195 .376 .497 .699 .825 .947 .874 .613

0.49 0 .175 .330 .432 .602 .709 .824 .821 –
0.70 0 .141 .256 .329 .448 .524 .609 – –

5 0 .941 .985 .979 .961 .900 .834 .703 .423 .220

0.05 .941 .986 .981 .962 .901 .836 .706 .427 .226

0.10 .942 .988 .983 .965 .906 .841 .713 .436 .237

0.15 .942 .990 .986 .969 .912 .848 .721 .448 .251

0.25 .938 .991 .991 .977 .923 .864 .742 .476 .284

0.49 .881 .952 .967 .962 .927 .880 .778 .540 –
0.70 .725 .819 .852 .860 .849 .821 .748 – –

15 0 .949 .926 .885 .848 .765 .693 .566 .326 .167

0.05 .951 .928 .887 .850 .768 .695 .568 .329 .171

0.10 .955 .933 .892 .855 .773 .701 .575 .337 .180

0.15 .962 .939 .899 .862 .781 .709 .584 .347 .191

0.25 .976 .955 .916 .880 .800 .729 .606 .371 .217

0.49 .990 .975 .942 .911 .839 .773 .657 .433 –
0.70 .919 .918 .898 .876 .820 .766 .666 – –

∞ 0 .876 .844 .797 .757 .674 .604 .487 .275 .140

0.05 .878 .846 .799 .760 .676 .606 .489 .278 .143

0.10 .884 .852 .805 .765 .682 .612 .495 .284 .150

0.15 .893 .861 .813 .774 .691 .621 .503 .293 .160

0.25 .914 .881 .834 .794 .711 .641 .525 .315 .182

0.49 .961 .929 .882 .844 .762 .694 .579 .372 –
0.70 .947 .918 .877 .843 .770 .708 .602 – –
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3.3 Simulations

Here we supplement the large-sample results of subsections 3.1 and 3.2 with finite-sample investiga-

tions. The objective is to see how large the sample size n is needed for the MLE and MTM estimators,

including the MM as a special case of MTMs, to achieve (asymptotic) unbiasedness and for their

finite-sample relative efficiency (RE) to reach the corresponding ARE level. The RE of an estimator

is defined as the ratio of its estimated (from simulations) mean-squared error and the asymptotic

variance of the MLE, which is provided by statement (3.2).

From a specified folded-t distribution we generate 10,000 samples of size n using Monte Carlo. For

each sample we estimate the scale parameter σ using MLE and various MTM estimators and then

compute the average mean and RE of those 10,000 estimates. This process is repeated 10 times and

the 10 average means and the 10 REs are again averaged and their standard deviations are reported.

(Such repetitions are useful for assessing standard errors of the estimated means and REs. Hence, our

findings are essentially based on 100,000 samples.) The standardized mean that we report is defined

as the average of 100,000 estimates divided by the true value of the parameter that we are estimating.

The standard error is standardized in a similar fashion. The study was performed for the following

choices of simulation parameters:

• Parameters of folded-t: σ = 5 and ν = 1, 5, 15,∞.

• Sample sizes: n = 50, 100, 250, 500.

• Estimators of σ:

– MLE.

– MM (corresponds to MTM with a = b = 0).

– MTM with: a = b = 0.05; a = b = 0.10; a = b = 0.25; a = b = 0.49;

a = 0.10 and b = 0.70; a = 0.25 and b = 0.

Simulation results are recorded in Tables 3 and 4. Note that the entries of the last columns of

these tables are included as target quantities and follow from the theoretical results of subsections 3.1

and 3.2, not from simulations. First of all, we observe that the most heavy-tailed case (i.e., ν = 1)
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Table 3: Standardized mean of MLE and various MTM estimators for ν = 1, 5, 15,∞.

The entries are mean values (with standard errors in parentheses) based on 100,000 samples.

Trimming Proportions Sample Size (n)
ν Estimator Lower (a) Upper (b) 50 100 250 500 ∞
1 MLE − − 1.02(.001) 1.01(.001) 1.00(.000) 1.00(.000) 1

MTM 0 0 1.12(.074) 1.26(.118) 1.30(.175) 1.21(.037) −
0.05 0.05 1.17(.001) 1.04(.001) 1.03(.000) 1.01(.000) 1
0.10 0.10 1.05(.001) 1.02(.000) 1.01(.000) 1.01(.000) 1
0.25 0.25 1.04(.001) 1.01(.000) 1.01(.000) 1.00(.000) 1
0.49 0.49 1.03(.001) 1.01(.000) 1.01(.001) 1.00(.000) 1
0.10 0.70 1.04(.000) 1.02(.001) 1.01(.000) 1.00(.000) 1
0.25 0 1.41(.249) 1.35(.123) 1.56(.185) 2.12(.620) −

5 MLE − − 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
MTM 0 0 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

0.05 0.05 1.02(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1
0.10 0.10 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.25 0.25 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.49 0.49 1.01(.001) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.10 0.70 1.03(.001) 1.02(.000) 1.01(.000) 1.00(.000) 1
0.25 0 0.99(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

15 MLE − − 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
MTM 0 0 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

0.05 0.05 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.10 0.10 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.25 0.25 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.49 0.49 1.01(.001) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.10 0.70 1.03(.001) 1.02(.000) 1.01(.000) 1.00(.000) 1
0.25 0 0.99(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

∞ MLE − − 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
MTM 0 0 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

0.05 0.05 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.10 0.10 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.25 0.25 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.49 0.49 1.01(.001) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.10 0.70 1.03(.001) 1.02(.000) 1.01(.000) 1.00(.000) 1
0.25 0 0.99(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

differs from the other choices of ν. Specifically, as we have seen in subsection 3.1, the MM estimator

(equivalently, MTM with a = b = 0) for this distribution does not exist; this fact in simulations

manifests itself through uncontrollable bias and RE = 0. Moreover, even for the theoretically well-

behaved estimators such as MLE and MTM with a > 0 and b > 0, it still takes n ≥ 500 to get the bias

within 1% of the target. Likewise, convergence of REs to the corresponding AREs is slow. On the
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other hand, for ν ≥ 5, behavior of all estimators is predictably stable as their bias practically vanishes

for n ≥ 100 and their REs approach large-sample counterparts for n ≥ 50. In summary, except for

very heavy-tailed cases (say, for ν = 1, 2, 3), it is safe to conclude that the asymptotic results of MLE,

MM and MTM estimators are valid for samples of size 100 or larger.

Table 4: Relative efficiencies of MLE and various MTM estimators for ν = 1, 5, 15,∞.

The entries are mean values (with standard errors in parentheses) based on 100,000 samples.

Trimming Proportions Sample Size (n)
ν Estimator Lower (a) Upper (b) 50 100 250 500 ∞
1 MLE − − 0.92(.004) 0.97(.004) 0.99(.005) 1.00(.004) 1

MTM 0 0 0.00(.000) 0.00(.000) 0.00(.000) 0.00(.000) 0
0.05 0.05 0.19(.004) 0.41(.003) 0.44(.003) 0.49(.002) .518
0.10 0.10 0.54(.004) 0.63(.004) 0.69(.003) 0.70(.004) .725
0.25 0.25 0.80(.005) 0.89(.005) 0.92(.004) 0.93(.004) .947
0.49 0.49 0.75(.004) 0.78(.003) 0.80(.003) 0.81(.003) .821
0.10 0.70 0.50(.003) 0.52(.002) 0.54(.003) 0.54(.003) .542
0.25 0 0.00(.000) 0.00(.000) 0.00(.000) 0.00(.000) 0

5 MLE − − 1.00(.006) 1.00(.004) 1.00(.006) 1.00(.004) 1
MTM 0 0 0.94(.006) 0.94(.003) 0.94(.007) 0.94(.004) .941

0.05 0.05 0.90(.003) 0.95(.004) 0.96(.004) 0.96(.003) .962
0.10 0.10 0.90(.003) 0.89(.003) 0.90(.004) 0.90(.006) .906
0.25 0.25 0.74(.004) 0.74(.003) 0.74(.004) 0.74(.003) .742
0.49 0.49 0.54(.003) 0.54(.002) 0.55(.003) 0.54(.003) .540
0.10 0.70 0.23(.001) 0.23(.001) 0.24(.001) 0.24(.001) .237
0.25 0 0.94(.003) 0.94(.004) 0.92(.004) 0.94(.004) .938

15 MLE − − 1.00(.006) 1.01(.004) 0.99(.004) 1.00(.005) 1
MTM 0 0 0.95(.005) 0.94(.003) 0.94(.003) 0.95(.003) .949

0.05 0.05 0.83(.004) 0.85(.004) 0.84(.005) 0.85(.004) .850
0.10 0.10 0.77(.003) 0.77(.004) 0.77(.004) 0.77(.004) .773
0.25 0.25 0.61(.003) 0.61(.002) 0.60(.002) 0.61(.003) .606
0.49 0.49 0.44(.002) 0.44(.002) 0.43(.002) 0.43(.002) .433
0.10 0.70 0.17(.001) 0.18(.001) 0.18(.001) 0.18(.001) .180
0.25 0 0.99(.003) 0.99(.004) 0.97(.003) 0.96(.003) .976

∞ MLE − − 1.00(.004) 1.01(.005) 0.99(.004) 1.00(.004) 1
MTM 0 0 0.88(.005) 0.88(.004) 0.87(.006) 0.87(.003) .876

0.05 0.05 0.76(.004) 0.76(.002) 0.76(.002) 0.76(.003) .760
0.10 0.10 0.69(.004) 0.69(.003) 0.68(.004) 0.68(.003) .682
0.25 0.25 0.53(.003) 0.53(.002) 0.52(.002) 0.53(.002) .525
0.49 0.49 0.38(.001) 0.38(.002) 0.37(.002) 0.37(.002) .372
0.10 0.70 0.15(.001) 0.15(.000) 0.15(.001) 0.15(.001) .150
0.25 0 0.93(.004) 0.92(.005) 0.92(.004) 0.91(.003) .914
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4 Real-Data Illustrations

In this section, we fit the log-folded-normal and log-folded-t distributions to the Norwegian fire claims

data which was described and preliminary analyzed in Example 1. We also investigate the implica-

tions of a model fit on risk evaluations. In particular, we compute point estimates of, and construct

confidence intervals for, a number of value-at-risk measures.

4.1 Fitting Log-Folded Distributions

Suppose the Norwegian fire claims are a realization of n independent and identically distributed

random variables, X1, . . . ,Xn, all defined above the pre-specified deductible x0 = 500. In view of

the preliminary diagnostics of Example 1, it is reasonable to assume that the ratios Zi = Xi/x0,

i = 1, . . . , n, follow a log-folded-t distribution, for which the log-folded-normal is a limiting case. That

is, the pdf, cdf, and qf of Z1, . . . , Zn are given by expressions (2.8), (2.9), and (2.10), respectively.

We fit the log-folded-normal model to the data using the MTM method with a = 0.50, b = 0.10

(MTM1) and the MLE. Using the notation of this section, the estimators of σ are given by

σ̂MLE =

(
1

n

n∑

i=1

log2(Zi)

)1/2

and σ̂MTM = µ̂/c(a, b),

where µ̂ = (n−mn −m∗

n)−1
∑n−m∗

n

i=mn+1 log(Zi:n) and c(a, b) = (1− a− b)−1
∫ 1−b
a Q∗

T(∞)((u + 1)/2) du.

The resulting estimates are σ̂MLE = 1.37 and σ̂MTM1 = 1.24, and the corresponding fits are illustrated

in the QQP-plot of Figure 3 (left panel). The QQP stands for ‘quantile-quantile-percentile’; the plot

is a quantile-quantile plot equipped with an additional vertical axis that shows the percentile levels

of empirical quantiles. As discussed by Brazauskas (2009), such plots, besides revealing empirical

quantile’s relative position within the sample, also provide guidance about the minimal trimming

requirements for the MTMs. Therefore, we choose b = 0.10; the other trimming proportion is chosen

based on the efficiency considerations (ARE of σ̂MTM1 is 0.764). One can clearly see from the plot that

the log-folded-normal model is misspecified, which was done intentionally to demonstrate advantages

of the robust MTM fit over the non-robust MLE fit. Indeed, while the MTM line is in close agreement

with 80%–85% of the data, the MLE line gets attracted by a few largest observations and matches

well only 60%–65% of the data.
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Figure 3: Log-folded-normal (left panel) and log-folded-t7 (right panel) QQP-plots.

The models are fitted using the MLE and MTM methods with a = 0.50, b = 0.10 (MTM1) and

a = 0.30, b = 0.01 (MTM2). Parameter estimates: σ̂MLE = 1.37, σ̂MTM1 = 1.24, σ̂MTM2 = 1.16.

(In both graphs, the right vertical axis represents empirical percentile levels.)

The above analysis suggests that we need to modify our distributional assumption. Since the data

deviate from the linear pattern in the upward direction, we have to replace the underlying normal with

a fairly heavy-tailed t distribution. From the right panel of Figure 3, we see that the data set forms

a nearly perfect straight line. Hence, the log-folded-t7 distribution is appropriate for the Norwegian

fire claims data. We fit the model using the MTM method with a = 0.30, b = 0.01 (MTM2). In this

case, the trimming proportions are selected entirely on the efficiency considerations (ARE of σ̂MTM2 is

0.995). We see that the chosen MTM estimator is as accurate as MLE which was not included because

of its non-explicit formula. The MTM expression is the same as above with c(a, b) computed using

the quantile function Q∗

T(7) instead of Q∗

T(∞). The resulting estimate is σ̂MTM2 = 1.16.

Finally, to make sure that the proposed model provides a better fit to this data set than some

of its closest competitors, we fitted exponential, gamma, generalized Pareto (GPD), and Weibull

distributions to the (log) data. We then performed a χ2 goodness-of-fit test for each distribution. The

test results for two specifications of data-groupings are summarized in Table 5. Note that the GPD

and Weibull models were fitted using the MLE approach which yielded the following estimates of the

parameters: σ̂ = 1.17, γ̂ = 0.12 (GPD) and σ̂ = 1.06, τ̂ = 1.04 (Weibull). The exponential and gamma
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model fits were even worse than those of GPD and Weibull, and thus are not included in the table.

Also, for all distributions, the p-value computations were based on the χ2
m−k−1 statistic, where m is

the number of data groups/classes and k = 2 is the number of estimated parameters. Other choices of

data-grouping consistently led to the same conclusion: the folded-t7 fit should be accepted while the

other fits should be rejected (at all typical significance levels α = 0.01, 0.05, 0.10).

Table 5: Values of the χ2 goodness-of-fit statistic (with p-values in parentheses)

of the folded-t7, GPD, and Weibull models fitted to log(X1/500), . . . , log(Xn/500).

Edges of classes used for data-grouping Model

Folded-t7 GPD Weibull

{0; 0.68; 1.37; 2.05; 2.73; 3.42; 4.10; ∞} 4.767 (0.312) 19.697 (0.001) 26.036 (< 0.001)
{0; 0.34; 0.68; 1.03; 1.37; 1.71; 2.05;

2.39; 2.73; 3.08; 3.42; 3.76; ∞} 8.564 (0.479) 26.985 (0.001) 32.666 (< 0.001)

4.2 Quantitative Risk Management

To see how the quality of the model fit affects insurance risk evaluations, we will construct confidence

intervals for a number of value-at-risk (VaR) measures. Mathematically, this measure is the (1−β)-level

quantile of the distribution function G, that is, VaR(β) = G−1(1 − β). For empirical estimation, we

replace G with the empirical cdf Ĝn; for parametric (MLE) and robust parametric (MTM) estimation,

Ĝ is found by replacing G’s parameters with their respective MLE and MTM estimates. In particular,

as presented by Kaiser and Brazauskas (2006), the empirical point estimator and the 100(1 − α)%

distribution-free confidence interval of VaR(β) = G−1(1 − β) are given by

V̂aREMP(β) = Xn−[nβ]:n and
(
Xk1:n , Xk2:n

)
,

where k1 =
[
n
(
(1 − β) − zα/2

√
β(1 − β)/n

)]
and k2 =

[
n
(
(1 − β) + zα/2

√
β(1 − β)/n

)]
. Here [·]

denotes “greatest integer part” and zα/2 is the (1−α/2)th quantile of the standard normal distribution.

The robust parametric point estimator of VaR(β) is found by transforming σ̂MTM according to (2.10)

and then multiplying the transformation by the deductible x0 = 500; the corresponding 100(1 − α)%

confidence interval is then derived by applying the delta method to (3.4). These two steps lead to:

V̂aRMTM(β) = 500 exp
{

σ̂MTMQ∗

T (ν)(1 − β/2)
}

15



and

V̂aRMTM(β) ×
(
1 ± zα/2

(
σ̂MTM/

√
n
)√

∆(a, b) Q∗

T (ν)(1 − β/2)
)

,

where Q∗

T (ν)(1 − β/2) denotes the (1 − β/2)th quantile of the standard t-distribution with ν degrees

of freedom, and zα/2 is again the (1 − α/2)th quantile of the standard normal distribution. The

MLE point and interval estimators are constructed by following the same two steps. Table 6 presents

empirical, parametric, and robust parametric point estimates and 95% interval estimates of VaR(β)

for several levels of β and various estimation methodologies. For comparison, we also include the

VaR(β) estimates based on the log-t8 model, which are taken from Brazauskas (2009). In that article,

it was found that the log-t8 distribution provides an excellent fit for the upper 90% of the data.

Table 6: Point estimates and 95% confidence intervals of various value-at-risk measures

computed by employing empirical, parametric (MLE), and robust parametric (MTM) methodologies.

Risk Estimation Methodology

Measure Empirical Log-Folded-Normal Log-Folded-t7 Log-t8

VaR(β) MLE MTM1 MTM2 MTM

β = 0.25 2,058 2,417 2,089 2,132 2,112
(1,830; 2,268) (2,234; 2,600) (1,925; 2,254) (1,954; 2,310) (1,867; 2,357)

β = 0.10 4,555 4,759 3,864 4,472 4,512
(3,758; 5,974) (4,243; 5,275) (3,428; 4,299) (3,906; 5,037) (3,821; 5,203)

β = 0.05 7,731 7,298 5,695 7,660 7,850
(6,905; 11,339) (6,355; 8,242) (4,931; 6,460) (6,452; 8,869) (6,410; 9,290)

β = 0.01 26,791 16,774 12,119 27,844 28,788
(20,800; 84,464) (13,924; 19,624) (9,981; 14,258) (21,342; 34,346) (21,360; 36,217)

Several conclusions emerge from the table. First, for risk evaluations based on the log-folded-

normal model, the MTM1 fit is good everywhere except for the upper 15% of the data, which results

in an accurate estimation of the empirical risk of moderate significance (e.g., β = 0.25) but severe

underestimation when β ≤ 0.10. The MLE fit, on the other hand, is mostly poor for the upper 35% of

the data but (accidentally) matches the data well between the 90th and 95th precentiles. That yields

fairly accurate estimates of VaR for β = 0.10, 0.05 and poor ones for β = 0.25, 0.01. Second, the

point estimates of the risk based on the log-folded-t7 and log-t8 models and the empirical approach

are very close for all levels of β because both parametric models are in close agreement with the data

(see Figure 3). Third, the main advantage of robust parametric methodology over the empirical one
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is that it produces substantially shorter confidence intervals, especially for extreme significance levels

(e.g., β ≤ 0.05). Fourth, notice that the intervals based on the log-folded-t7 model are slightly shorter

than those of the log-t8. This fact is primarily due to the parsimony of the former model, i.e., it has

fewer unknown parameters than the log-t8.

5 Conclusions

In this article, we have introduced the log-folded-normal and log-folded-t distributions for modeling

insurance loss data. The close relationship between these families and the normal and t distributions

makes them mathematically tractable and computationally attractive. In insurance context, if one

applies the contract deductible for rescaling (instead of shifting) of losses, then the log-folded families

emerge very naturally. Another positive feature of these probability distributions is their parsimony.

Further, we have presented and developed two standard (MM and MLE) and a class of robust

(MTM) methods for the estimation of the parameters of the log-folded-normal and log-folded-t dis-

tributions. Large- and small-sample properties of such estimators have been thoroughly investigated.

We have concluded that, except for very heavy-tailed cases (e.g., when ν ≤ 3), the asymptotic results

become valid for samples of size 100 or larger.

Finally, as the real-data example has shown, a log-folded distribution can fit insurance loss data

exceptionally well. Subsequently, this translates into correct segmentation and accurate estimation

of the empirical (observed) risk. Also, by employing a parametric model, we typically arrive at less

variable estimates and shorter confidence intervals for the risk. This is one of the two key advantages of

such approach over the empirical methodology; the other one is parametric model’s ability to provide

more reliable inference beyond the range of the observed data.
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