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Abstract

In actuarial practice, regression models serve as a popular statistical tool for analyzing insurance

data and tariff ratemaking. In this paper, we consider classical credibility models that can be

embedded within the framework of mixed linear models. For inference about fixed effects and vari-

ance components, likelihood-based methods such as (restricted) maximum likelihood estimators are

commonly pursued. However, it is well-known that these standard and fully efficient estimators

are extremely sensitive to small deviations from hypothesized normality of random components

as well as to the occurrence of outliers. To obtain better estimators for premium calculation and

prediction of future claims, various robust methods have been successfully adopted to credibility

theory in the actuarial literature. The objective of this work is to develop robust and efficient meth-

ods for credibility when heavy-tailed claims are approximately log-location-scale distributed. To

accomplish that, we first show how to express additive credibility models such as Bühlmann-Straub

and Hachemeister as mixed linear models with symmetric or asymmetric errors. Then, we adjust

adaptively truncated likelihood methods and compute highly robust credibility estimates for the

ordinary but heavy-tailed claims part. Finally, we treat the identified excess claims separately and

find robust-efficient credibility premiums. Practical performance of this approach is examined—via

simulations—under several contaminating scenarios. A widely studied real-data set from workers’

compensation insurance is used to illustrate functional capabilities of the new robust credibility

estimators.
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1 Introduction

Regression credibility models have become one of the most frequently applied premium rating tech-

niques in the North American insurance industry. The first credibility model linked to regression has

been proposed by Hachemeister (1975) who employed it to model U.S. automobile bodily injury claims

classified by state and with different inflation trends. In the following decade, a vast literature on di-

verse (non-)linear regression models that allow the actuary to explain risk characteristics in terms of

covariates emerged (see, e.g., Sundt, 1979, 1980, De Vylder, 1985, Norberg, 1986). Later, the seminal

work of McCullagh and Nelder (1989) on generalized linear models (GLMs) simplified the treatment

of non-normal claim data that naturally arises in insurance, and gave a boost to further actuarial

research (Haberman and Renshaw, 1996, Nelder and Verall, 1997).

To unify important additive credibility ratemaking procedures, Frees (1999) gave a longitudinal

data analysis interpretation of the well-known credibility models of Bühlmann (1967), Bühlmann-

Straub (1970) and Hachemeister (1975). Assuming that there is no time-dependency in the portfolio,

similar interpretations remain valid in the framework of mixed linear models. The flexibility of mixed

linear models for handling simultaneously within-risk variation and heterogeneity among risks make

them a powerful tool for credibility. Further, the popularity of these models in practice lead to

many well-developed estimation procedures for fixed effects and for variance components, which in the

context of credibility theory are known as structural parameters. Furthermore, standard inferential

methods for such models are likelihood-based (e.g., REML) and completely rely on the assumption of

joint normality of random effects and error terms. While such techniques usually yield fully efficient

estimators at the assumed model, extreme sensitivity of likelihood-based inference to violations of dis-

tributional assumptions and data contamination has been known for some time (see, e.g., Rocke, 1983).

Therefore, the classical credibility models are examples of non-robust experience rating procedures.

To limit distorting effects of extremes on credibility weights and the ensuing ratemaking process,

De Vylder (1976) and Gisler (1980) presented semi-linear credibility that applies models of Bühlmann

and Straub (1967, 1970) to trimmed claim data. Further, pioneers that suggested to combine robust

statistics with credibility theory are Kremer (1991) and Künsch (1992). Their main idea toward
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robustification is to bound the influence of atypical observations on the individual claims experience by

applying Huber’s M-estimator (Huber, 1981), and then to use credibility estimators with robust means.

This technique has been further refined by Gisler and Reinhard (1993), Garrido and Pitselis (2000),

and Dornheim and Brazauskas (2007). Also, Pitselis (2008) extended this strategy to Hachemeister’s

regression credibility.

All these approaches are indeed resistant toward outliers. Yet it is generally agreed that M-

estimators do not provide full robustness and high efficiency at the same time. In the present article,

we address this issue and formulate a new robust-efficient methodology for credibility in the mixed

linear model framework when claims are approximately log-location-scale distributed. As is well-

known, actuaries frequently encounter skewed data both in life (Rosenberg et al., 2007, Manning et

al. 2005) and non-life (Klugman et al., 2004) insurance. However, extreme-value statistics and the

modeling of long-tailed distributions in regression analysis has only recently surfaced in the actuarial

literature (Beirlant et al., 2004, Sun et al., 2008). Also, standard inferential methods for mixed linear

models are based on the normality assumption, and they cannot be directly applied for skewed or

heavy-tailed insurance data. To alleviate this problem, we follow the approach of Caroll and Ruppert

(1988) and proceed as follows.

First, we take the logarithmic transformation of the observed claim amounts that follow some hy-

pothesized log-location-scale model. In a second step, the transformed response variables are linked to

explanatory variables where random effects are included in the linear predictor. Then, we generalize

robust-efficient adaptively truncated likelihood (ATL) methods to mixed linear models with symmetric

or asymmetric log-location-scale errors. As a result we obtain corrected adaptively truncated likelihoods

(CATL). The modified three-step procedure inherits the properties of ATL methods, and provides trun-

cated generalized least squares for location and variance components’ estimators with hard-rejection

weights adaptively computed from the long-tailed data (see Dornheim, 2009). More specifically, the

corrected re-weighting mechanism automatically detects and removes outlying events within risks,

then identifies and discards risks that do not fit into the overall portfolio structure, and finally it

employs maximum likelihood procedures on the “clean” insurance data. Therefore, extremes that

have significant distorting effects on the estimation of structural parameters and the computation of

2



credibility weights are completely dispelled from the data. In a fourth step, re-weighted estimates for

location and scale are used to calculate robust credibility premiums for the ordinary but heavy-tailed

claims part of the original data. Lastly, we employ robust regression to price separately excess claims

and to find portfolio-unbiased robust credibility premiums. The new ratemaking procedure is called

corrected adaptively truncated likelihood credibility (CATLC).

The newly designed class of robust credibility regression possesses several desirable features. First,

the presented procedure automatically provides the highest possible degree of robustness while achiev-

ing high efficiency at the assumed long-tailed model when none of the claims are truncated. Second,

this approach enables the actuary to robustify many credibility models that can be expressed as spe-

cial cases of mixed linear models with ordinary claims following some log-location-scale family. Third,

the robust credibility estimator provides protection against outlying risks which usually increase the

between-risk variability. Forth, efficiency and detection of extremes can be controlled by the choice of

the hypothetical model distribution without sacrificing robustness. Fifth, they can be easily embedded

in available software.

The rest of the article is organized as follows. In Section 2, we present the formulation of mixed

linear models and describe how some well-known credibility models can be embedded within this frame-

work. In Section 3, the CATL procedure for fitting of heavy-tailed mixed linear models is designed. We

also give a detailed introduction to defined rejection-rules and the entire detection process. Further,

in Section 4 our robust credibility model is developed. This section includes model description, pre-

sentation of structural estimators, treatment of excess claims and final robust credibility estimators.

Practical performances of our methods is examined via simulations in Section 5. In the subsequent sec-

tion, a real-data example from workers’ compensation insurance is analyzed. Summarizing comments

are provided in Section 7.

2 Preliminaries

In this section, we first present the general mixed linear model and its classical, likelihood-based fitting

methods. Then, in Section 2.2, we briefly describe how some popular (linear) credibility models are

expressed as mixed linear models. The problem of prediction in mixed linear models and its application
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to standard credibility ratemaking are discussed in Section 2.3.

2.1 The Mixed Linear Model

Let Y be an m × 1 vector of total observations. Then, conditional on the random effect vectors

{αi ∈ Rq, i = 1, . . . , I}, the response Y can naturally be grouped and decomposed into a set of

independent τi-dimensional vectors y1, . . . ,yI , such that
∑I

i=1 τi = m. We consider the following

mixed effects model:

yi = Xiβ + Ziαi + εi, i = 1, . . . , I, (2.1)

where the τi× p matrix Xi and τi× q matrix Zi are known designs for the fixed population parameter

β ∈ Rp and the subject-specific random effects αi ∈ Rq, respectively, and εi is a τi-dimensional vector

of within-subject residuals.

Following the classical framework of the model (2.1), we assume that the random effects and error

terms are: (a) both normally distributed, (b) both serially uncorrelated, and (c) independent of each

other. More specifically, for i = 1, . . . , I,

αi ∼ Nq

(
0, D), εi ∼ Nτi

(
0, Ri), and Cov

(
αi, εi

)
= 0,

where D is a q × q positive definite variance-covariance matrix of the form diag(σ2
α1
, . . . , σ2

αq
) and

Ri = σ2
ε Iτi×τi represents the variance-covariance matrix of the residuals. Here Iτi×τi denotes the τi×τi-

dimensional identity matrix. The assumption that random effects and error terms are uncorrelated

is necessary for the proofs of statistical properties of robust-efficient adaptively truncated likelihood

(ATL) methods (see Dornheim, 2009).

Hence, in view of the assumptions (a), (b), (c), we have the so-called hierarchical formulation of

the mixed linear model (2.1), for which

yi |αi ∼ Nτi

(
Xiβ + Ziαi, Ri

)
, i = 1, . . . , I. (2.2)

This formulation implies the marginal model, yi ∼ Nτi

(
Xiβ, Vi(θ)

)
, with the covariance structure

Vi(θ) = ZiDZ′
i +Ri, where θ = (σ2

α1
, . . . , σ2

αq
, σ2

ε) is a vector of variance components implicit in Vi.
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The regression parameter β common to all individuals i is estimated by the generalized least

squares (GLS) estimator

β̂GLS =

(
I∑

i=1

X′
iV

−1
i Xi

)−1 I∑

i=1

X′
iV

−1
i yi. (2.3)

In the case of known variance components θ, this estimator is optimal and coincides with the maximum

likelihood estimator of β. Then, the random effects αi are determined by the best (with respect to

the mean squared error criterion) linear unbiased predictor (BLUP)

α̂BLUP, i(θ) = DZ′
iV

−1
i

(
yi −Xiβ̂GLS(θ)

)
, i = 1, . . . , I. (2.4)

In most practical situations, however, the parameter vector θ is unknown and usually estimated by

(asymptotically) fully efficient methods: maximum likelihood (ML) and restricted maximum likeli-

hood (REML). The latter estimators are found using Henderson’s mixed model equations; for de-

tails, see Searle et al . (1992, pp. 275–286). Once the estimates θ̂ = (σ̂2
α1
, . . . , σ̂2

αq
, σ̂2

ε) are available,

the variance-covariance matrices Vi(θ) are estimated by Vi(θ̂). That is, V̂i = ZiD̂Z′
i + R̂i, where

D̂ = diag(σ̂2
α1
, . . . , σ̂2

αq
) and R̂i = σ̂2

ε Iτi×τi . The resulting estimators of β and αi, defined by (2.3)

and (2.4) with Vi, D, Ri replaced by their corresponding REML estimators, are called empirical GLS

estimator and empirical BLUP, respectively.

2.2 Credibility Theory Models in the Mixed Linear Model Framework

Here we demonstrate that some well-known additive credibility models can be interpreted as mixed

linear models which enjoy many desirable features. For instance, they allow the modeling of claims

across risk classes and time as well as the incorporation of categorical and continuous explanatory

characteristics for prediction of claims. For a comprehensive overview of credibility theory the reader

is referred to Goovaerts et al . (1987, 1990), Dannenburg et al . (1996), and Klugman et al. (2004).

The following descriptions are taken, with some modifications, from Frees et al . (1999, 2004) and

Bühlmann et al . (2005).
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2.2.1 The Basic Credibility Model of Bühlmann

Let us consider a portfolio of different insureds (or risks) i, i = 1, . . . , I. For each risk i we have a

vector of observations yi = (yi1, . . . , yiτi)
′, where yit represents the observed claim amount (or loss

ratio) of risk i at time t, t = 1, . . . , τi. Note that Bühlmann (1967) allows for unequal horizons τi.

Then, when choosing p = q = 1 and Xi = Zi = 1τi , equation (2.1) yields

yi = 1τiβ + 1τiαi + εi,

where β = E(yit) = E(E(yit|αi)) is the overall mean or collective premium charged for the whole

portfolio, αi denotes the unobservable risk parameter characterizing the subject-specific deviation

from the collective premium β, and 1τi represents the τi-variate vector of ones. From the hierarchical

formulation of mixed linear models, given by (2.2), the risk premium µi = E(yit|αi) = β + αi is the

true premium for an insured i if its risk parameter (random effect) αi were known. We also obtain

the variance-covariance matrices Ri = Var(yi|αi) = Var(εi) = σ2
εIτi×τi , and D = Var(αi) = σ2

α. In

credibility theory the parameters β, σ2
α, and σ2

ε are called structural parameters that are generally

unknown and must be estimated from the data.

Remark 1: The Balanced Bühlmann Model

For equal number of observations, i.e., τi ≡ τ, i = 1, . . . , I, the basic credibility model becomes the

Balanced Bühlmann Model. �

2.2.2 The Bühlmann-Straub Model

Let us continue with the same setup as in Section 2.2.1. Then, the previous credibility model can

easily be extended to the heteroscedastic model of Bühlmann-Straub (1970) if we choose the variance-

covariance matrix Ri = Var(yi|αi) = Var(εi) = σ2
ε diag

(
υ−1
i1 , . . . , υ−1

iτi

)
, where υit > 0 are known

volume measures. These weights represent varying exposures toward risk for insured i over the period

τi. Practical examples of exposure weights include number of years at risk in motor insurance, sum

insured in fire insurance, annual turnover in commercial liability insurance, among others (Bühlmann

et al ., 2005).
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2.2.3 The Hachemeister Regression Model

Hachemeister’s simple linear regression model is a generalization of the Bühlmann-Straub Model.

This model includes the time (as linear trend) in the covariates and has originally been developed

by Hachemeister (1975) to investigate bodily injury data. To obtain Hachemeister’s linear trend

model, in (2.1) we choose p = q = 2 and set Xi = (xi1, . . . ,xiτi)
′ and Zi = (zi1, . . . , ziτi)

′, where

xit = zit = (1, t)′. This results in the random coefficients model of the form yi = Xi (β + αi) + εi,

with diagonal matrix Ri as in Section 2.2.2. By assumption (b) in Section 2.1, we consider independent

(unobservable) risk factors that have variance-covariance structure D = diag(σ2
α1
, σ2

α2
).

2.2.4 The Hachemeister Regression Model (Revisited)

Though Hachemeister (1975) developed a very promising regression approach to credibility, he obtained

unsatisfying model fits when applying his linear trend model to bodily injury data. This is due to

underestimation of the credibility regression line. To overcome this drawback, Bühlmann et al . (1997)

suggested to take the intercept of the regression line at the “center of gravity” of the time variable

(instead of the origin of the time axis). Therefore, we choose design matrices Xi = (xi1, . . . ,xiτi)
′ and

Zi = (zi1, . . . , ziτi)
′ with xit = zit = (1, t−Gi•)

′, where Gi• = υ−1
i•

∑τi
t=1 t υit is the center of gravity of

the time range in risk i, and υi• =
∑τi

t=1 υit. From a practical point of view, volumes are often equal

enough across periods for a single risk to be considered constant in time, which yields similar centers

of gravity between risks. Then, it is reasonable to use the center of gravity of the collective, which

is defined by G•• = υ−1
••

∑I
i=1

∑τi
t=1 t υit, where υ•• =

∑I
i=1

∑τi
t=1 υit (see Bühlmann et al ., 2005,

Section 8.3). �

2.3 Prediction and Standard Credibility Ratemaking

In this section, we describe the general linear prediction problem for mixed linear models and its

relationship to credibility ratemaking. It turns out that generalized least squares and best linear

unbiased predictors correspond to the classical pricing formulas of credibility theory.

In the mixed linear model, defined by (2.1), let β̂GLS and θ̂ be the likelihood estimates of the grand

mean β and the variance component vector θ, respectively. Then, Norberg (1980) has shown that the
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minimum mean square error predictor of the random variable Wi = E(yi,τi+1|αi) = xi,τi+1β+zi,τi+1αi

is given by the best linear unbiased predictor

WBLUP,i = xi,τi+1 β̂GLS + zi,τi+1 α̂BLUP,i , i = 1, . . . , I, (2.5)

where x′
i,τi+1 ∈ Rp and z′i,τi+1 ∈ Rq are known covariates of risk i in time period τi+1. In the actuarial

literature, WBLUP,i is called homogeneous estimator of Wi (Dannenburg et al ., 1996) and it is used to

predict the expected claim size µi,τi+1 = E(yiτi+1|αi) of risk i in time τi + 1. This estimator is even

optimal for non-normally distributed claims (Norberg, 1980).

The objective of credibility is to price fairly heterogeneous risks based on the overall portfolio

mean, M , and the risk’s individual experience, m. This relation can be expressed by the general

credibility pricing formula

Pi = ζi m+ (1− ζi) M = M + ζi (m−M), i = 1, . . . , I, (2.6)

where Pi is the credibility premium of risk i, and 0 ≤ ζi ≤ 1 is known as the credibility factor. Note, a

comparison of equation (2.5) with (2.6) implies that xi,τi+1 β̂GLS can be interpreted as estimate of M ,

and zi,τi+1 α̂BLUP, i as predictor of the weighted, risk-specific deviation ζi (m−M). This relationship

will be exemplified for the Bühlmann-Straub Model. Also, we follow Bühlmann et al . (2005, Section

8.4) and present credibility estimators for Hachemeister’s regression model (revisited) where the center

of gravity was included in the design. For more examples (e.g., Hachemeister’s linear trend model or

the basic credibility model of Bühlmann) the reader is referred to Frees (2001 or 2004, Section 4.7).

2.3.1 Example 1: The Bühlmann-Straub Model

In Section 2.2.2, we have seen that the Bühlmann-Straub Model can be formulated as random coeffi-

cients model of the form E(yi|αi) = 1τiβ + 1τiαi. Then, for future expected claims µi = E(yi,τi+1|αi)

of risk i, Frees (1999, 2004) finds the best linear unbiased predictor µ̂i = β̂GLS + α̂BLUP,i with:

β̂GLS = ȳζ and α̂BLUP,i = ζi

(
ȳi − β̂GLS

)
, (2.7)

where ȳζ =
(∑I

i=1 ζi

)−1 ∑I
i=1 ζi ȳi , ȳi = υ−1

i•

∑τi
t=1 υit yit, and ζi = (1 + σ2

ε/(υi•σ
2
α))

−1. To

apply standard credibility formulas, given by (2.7), one needs to estimate the structural parameters
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σ2
α and σ2

ε . The estimators σ̂2
α and σ̂2

ε are obtained from (RE)ML (i.e., as byproduct from Henderson’s

Mixed Model Equations) and coincide, when assuming normality, with the following nonparametric

estimators:

σ̂2
ε =

∑I
i=1

∑τi
t=1 υit(yit − ȳi)

2

∑I
i=1(τi − 1)

and σ̂2
α =

υ••

υ2•• −
∑I

i=1 υ
2
i•

(
I∑

i=1

υi•(ȳi − ȳ)2 − σ̂2
ε(I − 1)

)
,

where ȳ = υ−1
••

∑I
t=1 υi• ȳi . For further discussion, see Klugman, Panjer, and Willmot (2004, Section

16.5) and Goulet (1998).

2.3.2 Example 2: The Hachemeister Regression Model (Revisited)

Here, we provide necessary details for estimators in the revised case of Hachemeister’s regression

model. For risk i one can estimate the expected claim amount µi,τi+1 = E(yi,τi+1|αi) by the credibility

estimator µ̂i,τi+1 = (1, τi + 1) (β̂GLS + α̂BLUP,i) = (1, τi + 1)
(
(I2×2 − ζi) β̂GLS + ζi bi

)
, with:

β̂GLS =

(
I∑

i=1

ζi

)−1 I∑

i=1

ζibi and α̂BLUP,i = ζi

(
bi − β̂GLS

)
,

where

bi = A−1
i

[ ∑τi
t=1 υit yit∑τi
t=1 υit yit (t−Gi•)

]
is the estimated individual claim experience of risk i,

ζi = diag

[ (
1 + σ2

ε / (σ2
α1

ai1)
)−1

(
1 + σ2

ε /
(
σ2
α2

ai2
))−1

]
is the credibility factor for risk i,

and Ai = diag(ai1, ai2) with ai1 = υi•, ai2 = υ̃i• =
∑τi

t=1 υit(t − Gi•)
2, and Gi• = υ−1

i•

∑τi
t=1 t υit is

the center of gravity. We still have to estimate the process variance σ2
ε and variances of hypothetical

means σ2
α1

and σ2
α2
. Following Bühlmann et al . (Section 8.4, 2005), it is reasonable to estimate σ2

ε

by the natural variance estimator σ̂2
ε = I−1

∑I
i=1 σ̂

2
ε,i, where σ̂2

ε,i = (τi − 2)−1
∑τi

t=1 υit(yit − µ̂it)
2 is

a (conditionally) unbiased estimator of the within-risk variance σ2
ε,i, and µ̂it is the fitted value of the

ith regression line in time t. The structural parameters σ2
α1

and σ2
α2

are estimated by

σ̂2
α1

= c1

[
1

I − 1

I∑

i=1

υi•
υ••

(bi,1 − b̄1)
2 − I σ̂2

ε

υ••

]
and σ̂2

α2
= c2

[
1

I − 1

I∑

i=1

υ̃i•
υ̃••

(bi,2 − b̄2)
2 − I σ̂2

ε

υ̃••

]
,

where c1 = I−1
I

{∑I
i=1

υi•
υ••

(
1− υi•

υ••

)}−1
, b̄1 = υ−1

••

∑I
i=1 υi• bi,1, c2 = I−1

I

{∑I
i=1

υ̃i•
υ̃••

(
1− υ̃i•

υ̃••

)}−1
,

and b̄2 = υ̃−1
••

∑I
i=1 υ̃i• bi,2.
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3 Robust Fitting of Heavy-Tailed Mixed Linear Models

In this section, we present our robust approach for fitting of heavy-tailed mixed linear models. First,

we consider heavy-tailed regression models in the framework of mixed linear models. Thereafter,

in Section 3.2 we modify ATL procedures for robust-efficient estimation when residuals are from

symmetric or asymmetric heavy-tailed log-location-scale families.

3.1 Heavy-Tailed Mixed Linear Models

For standard mixed linear models it is assumed that residuals are normally distributed. Here, we

discuss a more general case where residuals are from log-location-scale families. This class of models

is commonly pursued for failure time analysis or modeling of heavy-tailed data.

We are given a random sample (xi1, zi1, yi1, υi1), . . . , (xiτi , ziτi , yiτi , υiτi), where xit and zit are

known p- and q-dimensional row-vectors of explanatory variables and υit > 0 some known volume

measure. Further, the observations yit follow a log-location-scale distribution with cdf of the form:

G(yit) = F0

(
log(yit)− λit

σε υ
−1/2
it

)
, yit > 0, i = 1, . . . , I, t = 1, . . . , τi,

defined for −∞ < λit < ∞, σε > 0, and where F0 is the standard (i.e., λit = 0, σε = 1, υit = 1) cdf of

the underlying location-scale family F (λit, σ
2
ε/υit). Following regression analysis with location-scale

models, we include the covariates xit and zit only through the location parameter λit. Then, the mixed

linear model, given by (2.1), becomes

log(yi) = Xiβ + Ziαi + εi = λi + εi i = 1, . . . , I, (3.1)

where log(yi) = (log(yi1), . . . , log(yiτi))
′ and λi is the τi-dimensional vector of the within-subject

locations λit that consist of the population location β ∈ Rp and the subject-specific location deviation

αi ∈ Rq. While assumptions (b) and (c) in Section 2.1 remain valid for random components, in the

mixed linear model given by (3.1) we replace (a) by assumption (a′), for which

αi ∼ Nq

(
0, D) and εi ∼ Fτi

(
0, Ri), i = 1, . . . , I,

where Fτi

(
0, Ri) is the τi-dimensional multivariate cdf with location-scale distributions F (0, σ2

ε/υit) as

margins, and D = diag(σ2
α1
, . . . , σ2

αq
) and Ri = σ2

ε diag
(
υ−1
i1 , . . . , υ−1

iτi

)
are positive-definite variance-
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covariance matrices. Hence, from (a′), (b), (c), we obtain the hierarchical formulation of the heavy-

tailed mixed linear model that is given by

log(yi) |αi ∼ Fτi

(
Xiβ + Ziαi, Ri

)
, i = 1, . . . , I. (3.2)

Examples of such marginal log-location-scale families F include lognormal, log-logistic, log-t, log-

Cauchy, and Weibull, which after the logarithmic transformation become normal, logistic, Student’s

t, Cauchy, and Gumbel (extreme-value), respectively. Special cases of the τi-dimensional distributions

Fτi

(
λi, Ri) are the well-known elliptical distributions such as multivariate normal (see Section 2.1)

and the heavy-tailed multivariate Student’s t with ν degrees of freedom.

3.2 ATL estimation: Log-location-scale Families

3.2.1 (RE)ML for Asymmetric Errors

The objective of traditional fitting procedures in model (2.1) is first to find the likelihood-based

estimator β̂GLS and the predictors α̂BLUP, i, and then to predict the random variable E(yi|αi) with the

best linear unbiased predictor. In view of the mixed linear model defined by (3.1), residuals that follow

skewed log-location-scale distributions have no longer mean zero. Thus, the expectations E(log(yi))

and E(log(yi)|αi) differ from Xiβ and the location λi, respectively. Therefore, when fitting model

(2.1) with (RE)ML we use shifted linear predictors of location λi:

λ̂i = Xiβ̂GLS + Ziα̂BLUP, i + ÊFτi
(εi), (3.3)

where ÊFτi
(εi) is the expectation vector of the τi-variate cdf Fτi(0, R̂i). As we will see, this correction

requires that the first two moments of the asymmetric log-location-scale error model Fτi exist.

3.2.2 Corrected ATL Procedures for Asymmetric Errors

For robust-efficient fitting of the mixed linear model with normal random components, Dornheim

(2009) developed adaptively truncated likelihood (ATL) methods. We adopt his procedure to more

general log-location-scale error models defined by (3.2). Specifically, the corrected ATL estimators

for location λi and variance components σ2
α1
, . . . , σ2

αq
, σ2

ε can be found by the following three-step
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procedure:

STEP 1: Detection of Within-Risk Outliers

Consider the random sample (xi1, zi1, log(yi1), υi1), . . . , (xiτi , ziτi , log(yiτi), υiτi). From (3.2) we con-

tinue with the linear relationship

log(yit) = (xit, zit)(β
′,α′

i)
′ + εit, t = 1, . . . , τi, (3.4)

where (xit, zit)
′ ∈ Rp+q is the stacked predictor and (β′,α′

i)
′ is the corresponding (p+ q)-dimensional

regression parameter vector. For risk-specific location (β′,α′
i)
′ and scale σεi we compute pairs of initial

highly robust estimators (Tτi , Sτi). If Sτi > 0, we evaluate the standardized residuals

rit =
[
log(yit)− (xit, zit)Tτi

]
υ
1/2
it /Sτi , t = 1, . . . , τi, (3.5)

where υit > 0 is the known exposure of risk i in period t. We find the pooled order statistics r(j) of

rit, where i = 1, . . . , I; t = 1, . . . , τi, and j = 1, . . . ,m =
∑I

i=1 τi. Then, the portion of gross-errors in

the data can be measured by

dg = max
j>jg0

[
F0(r(j))−

(j − 1)

m

]+
, and

dl = max
j<jl0

[
(j − 1)

m
− F0(r(j))

]+
,

where the notation [·]+ is the positive part, jg0 = max{j : r(j) < ηg}, jl0 = min{j : r(j) > ηl},

F̂r(u) = m−1
∑m

j=1 1

{
rj ≤ u

}
is the empirical distribution function of standardized residuals, and

ηg = F−1
0 (0.975) and ηl = F−1

0 (0.025). The adaptive cutoff values are given by

cg = min
{
u : F̂r(u) ≥ 1− dg

}
= r(jg), with jg = m− bmdgc, jg > jg0 , cg > ηg, and

cl = max
{
u : F̂r(u) ≤ dl

}
= r(jl), with jl = bmdlc, jl < jl0, cl < ηl.

Finally, we define the hard-rejection weights wit = 1, for cl < rit < cg, and = 0, for rit ≤ cl or

rit ≥ cg. We detect those bmdgc and bmdlc observations as outlying that have largest and smallest

residuals, respectively. Let jm = m − bmdgc − bmdlc. Then, the “pre-cleaned” random sample is of

the form S∗ = {(X∗
i ,Z

∗
i , log(y

∗
i ),υ

∗
i ),X

∗
i ∈ Rtτi×p, Z∗

i ∈ Rtτi×q, log(y∗
i ) ∈ Rtτi ,υ∗

i ∈ Rtτi , i = 1, . . . , I}.
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It is obtained from the original sample S = {(Xi,Zi, log(yi),υi),Xi ∈ Rt×p, Zi ∈ Rt×q, log(yi) ∈

Rt,υi ∈ Rt, i = 1, . . . , I} by truncation (deletion) of those rows t for which wit = 0.

STEP 2: Detection of Between-Risk Outliers

We are given the pre-cleaned random sample S∗ and suppose β̂0 and α̂i are initial high breakdown

estimates of (β′,α′
i)
′. For estimates {(α̂1j , . . . , α̂Ij), j = 1, . . . , q} of the independent and identically

distributed random effects αi ∼ Nq(0,D), we determine highly robust multivariate S-estimates of

scale σ̂0αj
. Then, it is natural to put D̂0 = diag(σ̂2

0α1
, . . . , σ̂2

0αq
) and R̂0i = σ̂2

0ε diag(υ−1
i1 , . . . , υ−1

itτi
)fcm

such that V̂0i(θ̂0) = Z∗
i D̂0Z

∗
i
′ + R̂0i ∈ Rtτi×tτi , where θ̂0 = (σ̂2

0α1
, . . . , σ̂2

0αq
, σ̂2

0ε) and fcm is a Fisher

consistency correction factor as defined in (3.6). Once we have found robustified Mahalanobis distances

d̂i :=

{(
log(y∗

i )−X∗
i β̂0

)′ [
V̂0i(θ̂0)

]−1 (
log(y∗

i )−X∗
i β̂0

)}1/2

,

where d̂2i is approximately χ2
tτi
-distributed with (possibly) unequal degrees of freedom tτi , i = 1, . . . , I,

we apply an accurate normal approximation for the cumulative distribution function of the chi-square

distribution, and establish standardized robust Mahalanobis distances through the transformation

d̂∗i =





(
d̂2i
tτi

)1/6

− 1

2

(
d̂2i
tτi

)1/3

+
1

3

(
d̂2i
tτi

)1/2

−
(
5

6
− 1

9(tτi)
− 7

648(tτi)
2
+

25

2187(tτi)
3

)


×
{

1

18(tτi)
+

1

162(tτi)
2
− 37

11664(tτi)
3

}−1/2

,

such that approximately d̂∗i ∼ N(0, 1). Since d̂∗i is strictly increasing in d̂2i , outlying individuals i

that have typically large d̂2i will inherit a large positive d̂∗i . Let F̂d̂∗i
(u) = I−1

∑I
i=1 1

{
d̂∗i ≤ u

}
be the

empirical distribution of standardized robust Mahalanobis distances. Then, the portion of outliers in

the data can be measured by

γI = max
i>i0

[
Φ
(
d̂∗(i)

)
− i− 1

I

]+
,

where i0 = max
{
i : d̂∗(i) < ξ

}
, d̂∗(i) is the i-th order statistic of d̂∗i , and ξ denotes a large upper

quantile of the standard normal distribution, e.g. ξ = Φ−1(0.975). The adaptive cutoff value is

found by cI = F̂−1

d̂∗i
(1 − γI) = d̂∗(iI), with iI = I − bγIIc, iI > i0, and cI > ξ. We introduce

the hard-rejection weight function ωi

(
d̂∗i ; cI

)
= 1

{
d̂∗i /cI < 1

}
and propose to eliminate those sub-

jects i for which ωi

(
d̂∗i ; cI

)
= 0. Removal of bγIIc subjects from the pre-cleaned sample S∗ =
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{(X∗
1,Z

∗
1, log(y

∗
1),υ

∗
1), . . . ,(X

∗
I ,Z

∗
I , log(y

∗
I),υ

∗
I)}, results in Sc

iI
=
{
(Xc

1,Z
c
1, log(y

c
1),υ

c
1), . . . , (X

c
iI
,Zc

iI
,

log(yc
iI
),υc

iI
)
}
, a “cleaned” random sample of length iI .

STEP 3: Corrected Adaptively Truncated Likelihood Estimators

Based on the adaptively truncated random sample Sc
iI
, we apply fully efficient likelihood methods

such as (restricted) maximum likelihood, and compute re-weighted parameter estimates β̂ATL and

θ̂ATL = (σ̂2
α1
, . . . , σ̂2

αq
, σ̂2

ε). Then, the maximum likelihood estimator τ̂ATL = (β̂
′

ATL, θ̂
′

ATL)
′ is defined by

the non-linear constrained minimization problem

τ̂ATL = arg min
τ∈Ω

L(τ ),

where

L(τ ) =
I∑

i=1

1

2
ωi

(
d̂∗i ; cI

){
(log(y∗

i )−X∗
iβ)

′V∗
i
−1(log(y∗

i )−X∗
iβ) +

κ

2
log|V∗

i |
}
, τ = (β′,θ′)′ ∈ Ω,

is the negative adaptively corrected log-likelihood and κ =
∫ cI
−cI

u2dΦ(u)
/
[2(Φ(cI)−Φ(0))]2 is the em-

pirical (data-dependent) Fisher consistency correction factor. Suppose the parameter τ is identifiable

and τ̂ATL ∈ Ω = Ωβ × Ωθ, where Ωβ = {βk, k = 1, . . . , p} and Ωθ = {θl > 0, l = 1, . . . , q + 1}. Then,

τ̂ATL is a solution of the unbiased estimating equations ∂L(τ )/∂τ = 0. We define the robust-efficient

generalized least squares estimator by

β̂rGLS(θ̂ATL) =

(
iI∑

i=1

Xc′

i [V̂
c
i ]
−1Xc

i

)−1 iI∑

i=1

Xc′

i [V̂
c
i ]
−1yc

i ,

where V̂c
i (θ̂ATL) = Zc

iD̂Zc′
i + R̂i, with D̂ = diag(σ̂2

α1
, . . . , σ̂2

αq
) and R̂i = σ̂2

εdiag(υ
−1
i1 , . . . , υ−1

itτi
). The

robust best linear unbiased predictor is calculated from

α̂rBLUP,i(θ̂ATL) = D̂Zc′

i [V̂
c
i ]
−1(yc

i −Xc
i β̂rGLS(θ̂ATL)), i = 1, . . . , I.

Following comments in the previous section, from (3.3) we obtain the robust best linear unbiased

predictor for location by

λ̂i = Xc
i β̂rGLS + Zc

i α̂rBLUP, i + ÊF0
(εi), i = 1, . . . , I,
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where ÊF0
(εi) is the expectation vector of the tτi-variate cdf Ftτi

(0, R̂i). This completes our three-step

corrected adaptively truncated likelihood (CATL) procedure.

Remark 2: Initial High-Breakdown Estimators for Asymmetric Errors

For the fixed effects model yi = Xiβ + ε̃ we assume that approximately ε̃ ∼ Nτi(0, Vi(θ)), and

compute multivariate S-estimates β̂0. Then, for each risk we fit multiple regression models of the

form log(yi) − Xiβ̂0 = Ziαi + εi, i = 1, . . . , I, where the noise term εi follows some (asymmetric)

long-tailed distribution Fτi as described in Section 3.1. We employ highly robust but corrected S-

estimators and find estimates α̂i for location αi. This class of estimators has been used by Marazzi et

al. (2004) and inherits robustness and efficiency properties from usual S-estimators while producing

Fisher-consistent estimates of (αi, σεi) when the standard location-scale model is F0. Note that, when

the distribution of the error term εi belongs to a class of exponential families including the log–gamma

distribution, one might also consider initial high–breakdown estimators as proposed by Bianco et al .

(2005). Lastly, we obtain the initial robust estimators Tτi = (β̂
′

0, α̂
′
i)
′ and Sτi = σ̂0ε. More details

about initial robust estimation in the mixed linear model and theoretical and computational aspects

of ATL estimators are available in Dornheim (2009). �

Remark 3: Important Special Cases

We calibrate corrected S-estimators for maximum asymptotic breakdown point and consistency for

normal, Cauchy, Student’s t-, Gumbel and logistic distribution. Results of calibration constants l0 for

location, s0 for scale, and k0 for full robustness using Tukey’s smooth biweight function (Marazzi et

al., 2004) are summarized in Table 1. �

Table 1. The consistency factors l0, s0 and k0 of corrected S-estimators

for selected location-scale families.

Standard Location-Scale Family

Factor Cauchy t3 t8 t20 Normal Gumbel Logistic

l0 0.000 0.000 0.000 0.000 0.000 -0.135 0.755

s0 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k0 2.436 1.791 1.633 1.581 1.548 1.718 1.745
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Remark 4: Fisher Consistency Factor

We assume that the hypothesized error model F0 has finite second moments (cg and cl may be un-

bounded when no outliers are present). Then, for the hard-rejection rule we obtain Fisher-correction

factors fcm that are given by

fcm =

∫ cg

cl

u2dF0(u)−
[ ∫ cg

cl

udF0(u)
]2
. (3.6)

�

Remark 5: Types of Outliers: What can be Detected?

The designed procedure provides protection at the observational level and at the risk level. The

unusual claims that might be removed can be large, small, or medium (so-called leverage points).

Their magnitude, however, is not the reason why they might be treated as outliers. It is our choice of

the model assumptions that makes them look as “misfits”. To make these ideas more transparent, let

us consider a simple example. Suppose a set of claims, with a significant proportion of large claims, was

actually generated by t5 (Student’s t with 5 degrees of freedom) but we assumed that the underlying

model is t10, a thinner-tailed distribution. Then, our procedure would recognize that the given data

set and the assumed model are not in tune, would identify and remove outliers, and apply a MLE-type

method on the clean data. After that, when we turn to pricing, the identified outliers would be recycled

with their “excesses” being redistributed across all risk premiums (see Section 4.1). On the other hand,

if we assumed a thicker-tailed distribution (e.g., t2), the procedure would react the same way, except

that now those outlier-excesses might be negative. Finally, if made the right distributional assumption,

i.e., t5, then the proposed procedure would treat such observations as representative claims and no

removals would occur. (That is where the full-efficiency property becomes so crucial.) In the latter

case, the pricing formula in Section 4 would have no “extra premium”, i.e., µextra
t = 0.

It should also be noted that by pre-cleaning the data from observational outliers first, we make

risks in some sense homogeneous (up to unknown risk characteristics), and that allows us to identify

risk-outliers in Step 2. In theory, it is even possible to remove all risks because of within-risk outliers,

when in fact they are quite “usual” if properly compared with their own risk characteristics. In order

to avoid excessive truncation at the risk level, we follow the ideas of Huggins and Staudte (1994) and

Welsh and Richardson (1997). �
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4 Robust Credibility Model

In this section we develop our robust-efficient regression credibility model. First, we present description

of the model. Then, in Section 4.2 we introduce a class of robust-efficient adaptively truncated

credibility estimators for risk premiums that cover the majority of claims. Thereafter, we discuss the

treatment of truncated large claims and present the final robust credibility pricing formula in Section

4.3.

4.1 Model Description

Let us continue with the setup of Section 2.3. Following Gisler and Reinhard (1993) we divide the true

risk premium µit into two parts —a risk premium for the ordinary claims, µordinary

it , and a risk premium

for the extraordinary claims, µextra

it — and estimate each component separately. The extraordinary

premium represents the expected claims load generated mainly by extraordinary events (e.g., big fires

or hurricanes), whose occurrence is rare but usually leads to outlier observations of the affected loss

ratios. Thus, it is reasonable to assume that

µextra

it = µextra

t , for i = 1, . . . , I; t = 1, . . . , τi.

In this setting the ordinary premium µordinary

it is estimated using the robust CATL procedure, which

automatically identifies ordinary claims. Then, the robust credibility estimator is given by

µ̂it = µ̂ordinary

it + µextra

it ,

such that µt = E(yit) = E(E(yit|αi)) = E(µ̂it). Specific estimators are presented in subsequent

sections.

4.2 Estimation of Structural Parameters

We are given claim data of the form (Xi,Zi,yi,υi), i = 1, . . . , I, where υi = (υi1, . . . , υiτi) are known

volume measures of the observed claim vector yi. Then, we set forth with the following distributional

assumptions:

The log-transformed observation vectors log(yi) are distributed according to some multivariate
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location-scale model Fτi(λi,Ri), defined by (3.1), where Ri = σ2
εi diag(υ−1

i1 , . . . , υ−1
iτi

). The

known designs Xi ∈ Rp×τi and Zi ∈ Rq×τi of explanatory variables are linked to the subject

-specific location vector λi by the linear relationship λi = Xiβ + Ziαi.

This statement which assumes that all (logarithmic transformed) claims are ordinary, is necessary for

the choice of the right hypothetical model distribution F0 and, hence, for defined rejection rules in

STEP 1 of the CATL procedure.

Note that the choice of the designs Xi and Zi already determines the standard credibility model

pursued by the actuary. This has been illustrated in Section 2.2. The objective of CATL procedures

is first to clean the given sample (Xi,Zi, log(yi),υi), i = 1, . . . , I, then to estimate robustly the

structural parameters β and θ = (σ2
α1
, . . . , σ2

αq
, σ2

ε), and, finally, to predict the risk-specific location

vectors λi. The corresponding CATL-estimators β̂rGLS and θ̂, and robust credibility predictors λ̂i are

presented in Section 3.2. The chosen credibility model specifies entirely all covariates. Therefore,

there is no need to take into consideration the occurrence of outliers in the designs Xi and Zi. Hence,

we find robust ordinary net premiums µ̂ordinary

it = µ̂ordinary

it (α̂rBLUP,i), i = 1, . . . , I, t = 1, . . . , τi + 1, by

computation of the empirical limited expected value (LEV) that is given by

µ̂ordinary

it = L̂EVF0

[
log(Yit); ql(pl), qg(pg), λ̂it, σ̂

2
εi/υit

]
(4.1)

=

∫ qg

ql

(yit − ql) dF0

(
log(yit); λ̂it, σ̂

2
εi/υit

)
+ (qg − ql) (1− pg), yit > 0,

where λ̂it = xitβ̂rGLS+zitα̂rBLUP,i+ÊF0
(εit), and ql = exp

{
F−1
0

(
pl; λ̂it, σ̂

2
εi/υit

)}
and qg = exp

{
F−1
0

(
pg;

λ̂it, σ̂
2
εi/υit

)}
are some lower and upper quantiles, respectively, given the limiting probabilities 0 ≤

pl < pg ≤ 1. It is common to choose pl ≤ 0.001 and pg ≥ 0.999. In insurance, for the loss Yit the

quantiles ql and qg can be interpreted as deductible and upper limit, respectively (Klugman et al.,

2004).

Remark 6: Important Special Cases

a. The net premium principle defined by (4.1) can always be evaluated regardless of the existence of

the expectation of the underlying heavy-tailed model distribution. Well-known examples where

no moments exist are log-Student’s t-distributions with ν ≥ 1 degrees of freedom.
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b. If the first moment exists, from (4.1) we obtain the usual net premium

µ̂ordinary

it = ÊF0

[
log(Yit); λ̂it, σ̂

2
εi/υit

]
= L̂EVF0

[
log(Yit); ql(pl) = 0, qg(pg) → ∞, λ̂it, σ̂

2
εi/υit

]

=

∫ ∞

0
yit dF0

(
log(yit); λ̂it, σ̂

2
εi/υit

)
, yit > 0,

with ql(pl) = 0 as pl → 0 and qg(pg) → ∞ as pg → 1. �

4.3 Robust Credibility Ratemaking

4.3.1 Treatment of Excess Claims

Let us define extraordinary premiums for identified excess claims. From Section 4.2, we are given

the ordinary premiums µ̂ordinary

it and claims yit. The risk-specific excess claim amount of insured i at

time t is defined by Ôit = (yit − ql) − µ̂ordinary

it , for yit > ql, = (qg − ql) − µ̂ordinary

it , for yit > qg, and

= −µ̂ordinary

it , for yit < ql. Further, let It denote the number of insureds in the portfolio at the time of

t and τ∗i = max
1≤i≤I

τi, the maximum horizon among all risks. For each period t = 1, . . . , τ∗i , we find the

mean cross-sectional overshot of excess claims Ô•t = I−1
t

∑It
i=1 Ôit, and fit robustly the random effects

model

Ô•t = otξ + ε∗t , t = 1, . . . , τ∗i ,

where ot is the n-dimensional row-vector of covariates for the hypothetical mean of overshots ξ ∈ Rn.

Let ξ̂ be the robust estimate of ξ. Common robust estimators pursued are LMS or S-estimators that

are tuned for normality. Then, the extraordinary premium common to all risks i is given by

µextra

it = otξ̂.

In practice, the data collected does not provide much information about the distribution of outliers.

Hence, we recommend to select the intercept model or the linear trend model with covariates ot = 1

and ot = (1, t), respectively. Latter allows to model possible time-dependency for occurrence of excess

claims. We do not assume any time-dependency of excess claims and, therefore, choose ot = 1.
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4.3.2 Robust Credibility Estimator

Given the credibility estimates of expected ordinary premiums, µ̂ordinary

i,τi+1 (α̂rBLUP,i), and excess claims,

µextra

i,τi+1, we find the portfolio-unbiased and robust regression credibility estimator defined by

µ̂CATLC

i,τi+1 (α̂rBLUP,i) = µ̂ordinary

i,τi+1 (α̂rBLUP,i) + µextra

i,τi+1, i = 1, . . . , I,

where CATLC denotes the robust-efficient corrected adaptively truncated likelihood credibility estima-

tor. From the actuarial point of view, premiums assigned to the insured have to be positive. Therefore,

we suggest to determine pure premiums by max
{
0, µ̂CATLC

i,τi+1 (α̂rBLUP,i)
}
.

5 Simulations and Practical Issues

In this section, we illustrate—via simulations—how the proposed new robust credibility estimators

work in practice and how they compare with classical ratemaking procedures in credibility. We in-

troduce a contaminating model that allows us to explore short- and long-run performances of our

methods under several data generating scenarios. The two types of contamination we consider are:

• contamination of error distribution (ε-distribution),

• contamination of random effects (α-distribution).

The study we perform aims to illustrate two things. First, in the short-run case (where we simulate a

single portfolio as actuaries and statisticians would face in practice), the reader can see how similar are

the classical and robust estimates of credibility premiums, credibility weights, structural parameters

and overall portfolio premium when there is no data contamination. On the other hand, when contam-

ination is present, large disparities occur between the corresponding classical and robust estimates.

Second, to establish a pattern and to “prove” that this was not an accidental success story of the

robust procedure, we repeat the comparison many times (R = 1000) and monitor which methodology

performs better. Below are the specific settings of the study.
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5.1 Study Design

5.1.1 The Central Models

In the framework of credibility, we fit mixed linear models, defined by (3.1), with intercept, normal

random effects and error terms that follow some heavy-tailed log-location-scale model F . We continue

with the following two artificial examples.

Example 1: Bühlmann-Straub with Weibull-distributed Claims

From results in Sections 2.2.2 and 3.1, for the Bühlmann-Straub model we are given the regression

equation log(yit) = β+αi+ εit with risk-specific location λit = λi = β+αi, i = 1, . . . , I; t = 1, . . . , τi.

The structural parameters of the hypothesized central model are β = 0, σ2
α = 1.0 and

(W1) σεi = 1.0 and (W2) σεi ∼ U(0.5, 1.5),

where U(u1, u2) denotes the uniform distribution on the interval (u1, u2). This allows us to model risks

that are from the same log-location-scale family but have different behavior in their tails. In view of

the hierarchical formulation (3.2), the logarithmic claims log(yit) are supposed to be log-Weibull (i.e.,

Gumbel) distributed. That is, we assume the marginal log-location-scale error model with asymmetric

density function

f0(r;λit, σ
2
εi/υit) = σ−1

εi υ
1/2
it exp

[(
r − λit

σεiυ
−1/2
it

)
− exp

(
r − λit

σεiυ
−1/2
it

)]
, −∞ < r < ∞.

Example 2: Hachemeister (revisited) with Log-t-distributed Claims

As a second example, we choose the revised Hachemeister regression model where log-claims follow

Student’s t-distribution with (known) ν ≥ 3 degrees of freedom. Then from Sections 2.3.2 and 3.1, we

obtain the regression model log(yit) = (1, t−Gi•)(β +αi) + εit, where λit = (1, t−Gi•)(β +αi), i =

1, . . . , I; t = 1, . . . , τi, and Gi• = υ−1
i•

∑τi
t=1 t υit is the center of gravity. We assume that the grand

location λ increases by 5% per period and risk-specific locations λi deviate on average by
√
0.001 or

∼ 3.16%. Thus, we set the true fixed effect β = (0, 0.05)′ and the variance components σ2
α1

= 1.0 and

σ2
α2

= 0.001. Similar to previous example we model

(L1) σεi = 1.0 and (L2) σεi ∼ U(0.5, 1.5).
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Then, the log-location-scale t-model is given by the symmetric density function

f0(r; ν, λit, σ
2
εi/υit) =

Γ
(
ν+1
2

)

Γ
(
ν
2

) 1√
νπ

[
1 +

(
[(r − λit)/(σεiυ

−1/2
it )]2

ν

)]−(ν+1)/2

, −∞ < r < ∞,

This model includes the special case where claims are lognormal as ν → ∞.

5.1.2 The Portfolio Structure

We generate an unbalanced portfolio of I = 45 risks. It contains 15 risks with the observation period

τ1 = · · · = τ15 = 8 years of experience, 15 risks with τ16 = · · · = τ30 = 10 years of experience, and 15

risks with τ31 = · · · = τ45 = 12 years of experience. For simplicity we assume that given a risk i, the

volume measures stay constant over the horizon τi + 1; that is, υit ≡ υi, for 1 ≤ t ≤ τi + 1. Then, in

each group of 15 risks, there are five risks with volumes υi1 = · · · = υi5 = 1 (small volumes), five risks

with volumes υi6 = · · · = υi10 = 2 (medium volume), and five risks with volumes υi11 = · · · = υi15 = 3

(large volumes), where 1 ≤ i1 < i2 < · · · < i15 ≤ 45.

5.1.3 The Contaminating Model

Let δ denote the proportion of outliers occurring in random components. Then, to study the per-

formance of our methods via simulations, we need a model that would allow us to generate random

effects from approximate normal distribution, and error terms from approximate (log-)Weibull and

(log)-t-distribution, respectively. This can be accomplished by employing subsequent contaminating

models.

(C0) Normal random effects and Weibull/Student’s t-distributed errors (central model with δ = 0).

(C1) Weibull/Student’s t-distributed errors but first component αi1 (intercept) of random effects

vector αi is generated from N(3, 1/9) with probability δ.

(C2) Normal random effects with vertical outliers, where errors with probability δ are generated from

the uniform distribution on the interval (ait, bit), denoted by U(ait, bit), with the probability

density function given by fU (r) = 1/(bit−ait), for ait < r < bit, and = 0, elsewhere. Parameters
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ait and bit are selected as follows:

ait = 7 LEVF0

[
log(yit); ql(pl), qu(pu), λit, σ

2
εi/υit

]
and

bit = 13 LEVF0

[
log(yit); ql(pl), qu(pu), λit, σ

2
εi/υit

]
.

The lower parameter ait represents a threshold that can be exceeded by the assumed model with

probability F−1
0

(
log(LEVF0

[log(yit); ql, qu, λit, σ
2
εi/υit])

)
. For instance, 0.0009 (for λit = 0 and σεi =

υit = 1), or 0.0237 (for λit = 0, σεi = 2, and υit = 1), or 0.0309 (for λit = 0, σεi = 3, and υit = 1)

when log-Weibull is the central model. The upper parameter bit ensures that the expected value of

extraordinary claims is 10 times the ordinary premium µit = LEVF0

[
log(yit); ql, qu, λit, σ

2
εi/υit

]
, which

is reasonable. Note, for log-t claims in Example 2 we choose pl = 0.001 and pu = 0.999 whereas the

expected value is used for log-Weibull distributed claims in Example 1.

Each risk is generated according to a δ-contamination model of type (C1). However, at the same

time we allow for contamination of type (C2) with probability δ. The proportions of contamination

are: δ = 0.0 (Scenario 1 ), δ = 0.01 (Scenario 2 ), δ = 0.05 (Scenario 3 ), and δ = 0.10 (Scenario 4 ).

The choice of U(ait, bit) is simple and reflects what one would encounter in practice. Insurance

portfolios typically generate claims, most of which are relatively small and few are very large. Hence,

the chosen uniform distribution ensures that a small fraction of atypical claims consistently appear in

data sets of our study. But these data points are not necessarily always the largest and blend in with

the heavy-tailed F0-distributed observations. This setup allows that within-risk observations produced

by the central model can exceed those by the contaminating distribution. This means U(ait, bit) data

are likely to stem from the hypothesized model F0 which makes it impossible to arrive at conclusions

about the specific contaminating model. Similar arguments justify the usage of the normal model

N(3, 1/9) as contaminating distribution for producing outlying risks in the portfolio.

5.2 Simulation Results: Credibility Premium Calculation

In this section we present results of the Monte-Carlo study that has been conducted to investigate finite-

sample properties of newly introduced robust credibility estimators. Here, we test short- and long-run

performances of new truncation methods for credibility with classical pricing models of Bühlmann-
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Straub (1970) and Hachemeister in the revised case (see Bühlmann et al., 1997).

The primary interest of this study is on the properties such as unbiasedness (as measure of ro-

bustness) and relative efficiency (RE). The latter quantitative tool is commonly defined by E(µ) =

∑R
k=1

(
||µ̂std

k − µ||2
/
||µ̂CATLC

k − µ||2
)
, where || · || is the L2-norm, and µ̂std

k and µ̂CATLC

k denote the k-th

credibility estimates of the true ordinary premium vector µ = (µ1,τ1+1, . . . , µI,τI+1) when employing

standard and CATL credibility estimators, respectively. The number of portfolios we simulate is de-

noted by R. In our study we choose R = 1 (short-run) and R = 1, 000 (long-run) replications. We also

report mean squared errors defined by MSE(µ̂;µ) = R−1
∑R

k=1 I
−1||µ̂k − µ||2.

To gain some insight about robustness of competing strategies for estimation of true premiums we

quantify the standardized bias of the credibility estimators by bias∗(µ̂) = R−1
∑R

k=1 bias
∗(µ̂k), where

bias∗(µ̂k) = I−1
∑I

i=1(µ̂i,τi+1,k − µi,τi+1,k)
/∑I

i=1 µi,τi+1,k. Further, since portfolio-unbiasedness is

an indispensable property for the insurer we also focus on the coverage of future claims, Yi,τi+1,k,

that are predicted by credibility estimators, µ̂i,τi+1,k. Hence, it is natural to consider the criterion

C(Y; µ̂) = R−1
∑R

k=1

[∑I
i=1 µ̂i,τi+1,k

/∑I
i=1 Yi,τi+1,k

]
, where C(Y; µ̂) ≥ 1 indicates sufficient funding

for future reported claims in the portfolio.

5.2.1 Short-run Performance

To get a first impression about the performance of newly introduced CATLC estimators, we gener-

ate one portfolio of 45 risks under Scenario 1 and 3 each. In Tables 2 and 3 we provide estimates

of structural parameters, credibility premiums, credibility weights, and performance measures when

Bühlmann-Straub was applied to Weibull-distributed claims (Example 1) and Hachemeister (revisited)

to lognormal-distributed claims (Example 2). Let us start with Example 1.

Discussion of Table 2: In the clean Scenario 1, the classical Bühlmann-Straub model (BS)

outperforms the robust CATL procedure. The MSE of CATLC is 64% larger than that of BS which was

expected. The total estimated premiums P̂ are similar, although BS (P̂ = 41.95) yields a somewhat

more accurate estimate of the true portfolio premium (P = 44.89) than CATLC (P̂ = 38.31). Further,

notice that the ordinary premium P̂ordinary obtained from CATLC (41.95) coincides with the total

Bühlmann-Straub premium. As anticipated, the extraordinary premium µ̂extra charged per risk is
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Table 2. Selected quantities of interest in the estimation process, based on the Bühlmann

-Straub (BS) and CATLC approaches for (approximately) Weibull-distributed claims (W2),

under Scenario 1 and 3.

Model Scenario 1

BS Credibility Premiums (true ordinary) Credibility Weights

µ̂1 = 1.28 (0.68) µ̂6 = 3.66 (4.29) µ̂11 = 1.24 (1.72) ζ̂1 = 0.61 ζ̂6 = 0.76 ζ̂11 = 0.83

µ̂16 = 1.16 (2.23) µ̂21 = 0.79 (0.83) µ̂26 = 1.91 (1.61) ζ̂16 = 0.66 ζ̂21 = 0.80 ζ̂26 = 0.85

µ̂31 = 0.77 (0.39) µ̂36 = 1.11 (1.12) µ̂41 = 0.94 (0.89) ζ̂31 = 0.70 ζ̂36 = 0.83 ζ̂41 = 0.88

Structural Parameters

µ̂ = 0.99, σ̂2

ε
= 2.63, σ̂2

α
= 0.77, P̂ = 41.95 (P = 44.89)

Performance Measures

MSE(µ̂) = 0.11, bias∗(µ̂) = 0.00, C(Y; µ̂) = 1.15

CATLC Credibility Premiums (ordinary estimated) Credibility Weights

µ̂1 = 0.15 (0.23) µ̂6 = 4.01 (4.09) µ̂11 = 1.19 (1.27) ζ̂1 = 0.68 ζ̂6 = 0.87 ζ̂11 = 0.91

µ̂16 = 0.76 (0.83) µ̂21 = 0.61 (0.69) µ̂26 = 2.04 (2.12) ζ̂16 = 0.79 ζ̂21 = 0.88 ζ̂26 = 0.93

µ̂31 = 0.84 (0.92) µ̂36 = 1.33 (1.41) µ̂41 = 0.63 (0.71) ζ̂31 = 0.83 ζ̂36 = 0.91 ζ̂41 = 0.94

Structural Parameters

µ̂extra = −0.08, λ̂ = −0.80, σ̂2

ε
= 0.94, σ̂2

α
= 1.00, P̂ = 38.31 (P̂ordinary = 41.95)

Performance Measures

MSE(µ̂) = 0.18, bias∗(µ̂) = 0.00, C(Y; µ̂) = 0.99

Model Scenario 3

BS Credibility Premiums (true ordinary) Credibility Weights

µ̂1 = 2.46 (0.93) µ̂6 = 2.00 (0.88) µ̂11 = 1.79 (0.99) ζ̂1 = 0.38 ζ̂6 = 0.55 ζ̂11 = 0.65

µ̂16 = 7.24 (1.52) µ̂21 = 1.71 (1.02) µ̂26 = 1.70 (1.26) ζ̂16 = 0.43 ζ̂21 = 0.60 ζ̂26 = 0.69

µ̂31 = 2.33 (1.42) µ̂36 = 1.75 (1.12) µ̂41 = 3.14 (1.99) ζ̂31 = 0.48 ζ̂36 = 0.65 ζ̂41 = 0.73

Structural Parameters

µ̂ = 3.09, σ̂2

ε
= 522.43, σ̂2

α
= 42.94, P̂ = 139.08 (P = 65.70 + 32.85 = 98.55)

Performance Measures

MSE(µ̂) = 12.58, bias∗(µ̂) = 0.02, C(Y; µ̂) = 1.35

CATLC Credibility Premiums (estimated ordinary) Credibility Weights

µ̂1 = 1.41 (0.37) µ̂6 = 1.81 (0.78) µ̂11 = 2.22 (1.18) ζ̂1 = 0.70 ζ̂6 = 0.82 ζ̂11 = 0.89

µ̂16 = 1.95 (0.92) µ̂21 = 2.00 (0.97) µ̂26 = 2.28 (1.25) ζ̂16 = 0.70 ζ̂21 = 0.87 ζ̂26 = 0.91

µ̂31 = 2.23 (1.19) µ̂36 = 2.25 (1.21) µ̂41 = 3.99 (2.96) ζ̂31 = 0.80 ζ̂36 = 0.89 ζ̂41 = 0.92

Structural Parameters

µ̂extra = 1.03, λ̂ = −0.35, σ̂2

ε
= 0.95, σ̂2

α
= 0.97, P̂ = 105.88 (P̂ordinary = 59.53)

Performance Measures

MSE(µ̂) = 2.08, bias∗(µ̂) = 0.01, C(Y; µ̂) = 1.03
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small (-0.08). Scenario 3 represents a 5% contamination of the portfolio, therefore it is not surprising

that the robust regression credibility estimators perform significantly better than non-robust BS. For

instance, the MSE of BS is now 6 times greater than that of CATLC. Also, observe that the total

premium gained from CATLC (P̂ = 105.88) is much closer to the theoretical P = 98.55 than the one

obtained from BS (P̂ = 139.08). While both approaches are portfolio-unbiased, now the standard

model of BS provides clearly higher coverage of future claims than needed. The main reason for the

difference in the accuracy of estimation lies in the estimation procedure of structural parameters σ2
ε

and σ2
α. While the robust estimators of the variance components remain stable in the presence of

outliers, the non-robust estimator of the process variance σ2
ε and between risk variability σ2

α get highly

inflated (i.e., σ2
ε increases from 2.63 to 522.43 and σ2

α from 0.77 to 42.94 using BS), distorts estimates

of credibility weights, and consequently the whole procedure performs poorly (i.e., has high MSE and

coverages). In sum, the BS model gives less credibility to individual experience, thus risk premiums

are too much pulled toward the overall mean which has been attracted and distorted by few outlying

observations. �

Discussion of Table 3: For the Hachemeister’s revisited (HR) model, we unexpectedly find

that the CATLC yields optimal estimation results under both —clean and contaminated— scenarios.

Indeed, under Scenario 1 the MSE of HR is 46% larger than that of CATLC. This better performance

of CATLC is also accompanied by a more accurate estimate of the total premium P̂ = 121.49 (true

portfolio premium P = 132.44) compared to P̂ = 111.41 for the HR. When there is a 5% contamination

in the data, the superiority of CATLC becomes even more evident. Now, the MSE of HR is about

469% larger than that of CATLC due to distorted estimates of structural parameters. The total

premium collected by HR is 57%, and the coverage of future claims is 83% higher than the required

one. Notice again that CATLC’s total premiums (P̂ = 399.69 = 334.19 + 45 × 1.46) are close to the

true premium (P = 427.31) while still providing sufficient funds for future losses. �
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Table 3. Selected quantities of interest in the estimation process, based on the Hachemeister

revisited (HR) and CATLC approaches for (approximately) Lognormal-distributed Claims (L2),

under Scenario 1 and 3.

Model Scenario 1

HR Credibility Premiums (true ordinary) Credibility Weights

µ̂1 = 2.07 (4.30) µ̂6 = 0.68 (0.32) µ̂11 = 0.90 (0.61) ζ̂1 = (0.65, 0.03) ζ̂6 = (0.79, 0.03) ζ̂11 = (0.85, 0.03)

µ̂16 = 0.84 (1.70) µ̂21 = 2.10 (2.90) µ̂26 = 1.92 (1.82) ζ̂16 = (0.70, 0.02) ζ̂21 = (0.82, 0.03) ζ̂26 = (0.87, 0.04)

µ̂31 = 1.86 (5.70) µ̂36 = 3.21 (5.75) µ̂41 = 1.36 (1.00) ζ̂31 = (0.73, 0.01) ζ̂36 = (0.85, 0.02) ζ̂41 = (0.89, 0.05)

Structural Parameters

µ̂ = (2.13, 0.06), σ̂2
ε = 12.60, σ̂2

α = (8.63, 0.01), P̂ = 111.41 (P = 132.44)

Performance Measures

MSE(µ̂) = 2.12, bias∗(µ̂) = 0.00, C(Y; µ̂) = 0.98

CATLC Credibility Premiums (ordinary estimated) Credibility Weights

µ̂1 = 2.73 (2.50) µ̂6 = 0.64 (0.40) µ̂11 = 1.06 (0.82) ζ̂1 = (0.89, 0.14) ζ̂6 = (0.94, 0.25) ζ̂11 = (0.96, 0.33)

µ̂16 = 0.84 (0.61) µ̂21 = 1.99 (1.75) µ̂26 = 2.01 (1.77) ζ̂16 = (0.91, 0.25) ζ̂21 = (0.96, 0.40) ζ̂26 = (0.97, 0.49)

µ̂31 = 2.76 (2.52) µ̂36 = 6.23 (5.99) µ̂41 = 1.78 (1.54) ζ̂31 = (0.93, 0.36) ζ̂36 = (0.96, 0.53) ζ̂41 = (0.97, 0.63)

Structural Parameters

µ̂extra = 0.24, λ̂ = (−0.18, 0.04), σ̂2
ε = 0.83, σ̂2

α = (1.38, 0.005), P̂ = 121.49 (P̂ordinary = 110.70)

Performance Measures

MSE(µ̂) = 1.45, bias∗(µ̂) = 0.00, C(Y; µ̂) = 1.06

Model Scenario 3

HR Credibility Premiums (true ordinary) Credibility Weights

µ̂1 = 6.25 (1.81) µ̂6 = 3.43 (1.29) µ̂11 = 2.06 (0.58) ζ̂1 = (0.39, 0.36) ζ̂6 = (0.57, 0.53) ζ̂11 = (0.67, 0.63)

µ̂16 = 56.21 (50.45) µ̂21 = 5.12 (1.79) µ̂26 = 8.30 (2.80) ζ̂16 = (0.45, 0.52) ζ̂21 = (0.62, 0.69) ζ̂26 = (0.71, 0.77)

µ̂31 = 5.31 (0.66) µ̂36 = 2.51 (1.31) µ̂41 = 13.10 (3.77) ζ̂31 = (0.50, 0.66) ζ̂36 = (0.67, 0.79) ζ̂41 = (0.75, 0.85)

Structural Parameters

µ̂ = (7.82, 1.45), σ̂2
ε = 1, 060.30, σ̂2

α = (288.05, 46.34), P̂ = 673.61 (P = 284.87 + 142.43 = 427.31)

Performance Measures

MSE(µ̂) = 1, 219.35, bias∗(µ̂) = 0.03, C(Y; µ̂) = 1.83

CATLC Credibility Premiums (estimated ordinary) Credibility Weights

µ̂1 = 2.08 (0.63) µ̂6 = 2.86 (1.40) µ̂11 = 2.16 (0.71) ζ̂1 = (0.85, 0.16) ζ̂6 = (0.93, 0.31) ζ̂11 = (0.95, 0.37)

µ̂16 = 6.26 (4.81) µ̂21 = 2.49 (1.04) µ̂26 = 4.22 (2.76) ζ̂16 = (0.86, 0.19) ζ̂21 = (0.93, 0.41) ζ̂26 = (0.95, 0.57)

µ̂31 = 3.47 (2.02) µ̂36 = 3.13 (1.68) µ̂41 = 5.06 (3.61) ζ̂31 = (0.90, 0.43) ζ̂36 = (0.95, 0.59) ζ̂41 = (0.96, 0.67)

Structural Parameters

µ̂extra = 1.46, λ̂ = (0.29, 0.04), σ̂2
ε = 1.03, σ̂2

α = (1.45, 0.01), P̂ = 399.69 (P̂ordinary = 334.19)

Performance Measures

MSE(µ̂) = 214.39, bias∗(µ̂) = 0.01, C(Y; µ̂) = 1.09
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5.2.2 Long-run Performance

To establish a pattern showing that new credibility methods perform better than classical in the long-

run, we generate 1,000 portfolios according to the above described specifications. Let us start with

Example 1.

Table 4. Example 1: Performance of CATLC versus Bühlmann-Straub (BS) for (approximately)

Weibull-distributed claims (W1) and (W2), under Scenario 1, 2, 3 and 4.

Measure

MSE (µ̂) E(µ̂) winning ratio bias∗(µ̂) C(Y; µ̂) failed

Model Scenario BS CATLC BS : CATLC BS CATLC BS CATLC BS

Weibull (W1) 1 0.40 0.66 0.64 916 : 84 0.00 0.00 1.04 1.06 0

2 1.02 1.16 1.15 357 : 643 0.00 0.00 1.07 1.11 0

3 10.5 5.86 2.63 385 : 615 0.01 0.01 1.16 1.21 0

4 41.45 29.85 3.51 356 : 644 0.02 0.02 1.24 1.32 0

Weibull (W2) 1 0.51 1.04 0.57 920 : 80 0.00 0.00 1.04 1.05 0

2 1.45 1.88 1.11 634 : 366 0.00 0.00 1.07 1.05 0

3 11.80 7.78 3.44 409 : 591 0.01 0.01 1.17 1.19 0

4 66.50 31.70 4.17 372 : 628 0.02 0.02 1.28 1.37 0

Discussion of Table 4: As expected, under Scenario 1 and (W1) where σ2
ε = 1, standard credibility

estimators are optimal most of the time (not necessarily always). In detail, BS outperforms CATL

procedures 91.6% of the time with E(µ̂) = 0.64. Both methods are portfolio-unbiased and ensure

coverage of future claims. Under contamination, however, robust procedures take advantage. For

example, in Scenario 4 CATLC “beats” BS 64.4% of the time with E(µ̂) increasing to 3.51. For (W2)

these findings are just reinforced. In the last column, we report the number of failed simulations when

performing the classical approach. The robust approach never failed. �

Next, for the other example, where Hachemeister’s revisited model is fitted to log-t-distributed

claims, the simulation study is summarized in a similar fashion. The summary is presented in Tables

5 and 6.

Discussion of Table 5: Across all scenarios the CATL procedure produces best results and

never fails. Even in the clean scenario, Hachemeister (HR) is not a top performer anymore, yielding

the leader’s position to the robust CATLC. Indeed, in Scenario 1 we observe the following scores
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of “winning ratios” between HR and CATLC: 500 : 500 (lognormal), 89 : 911 (log-t5), and 12 : 988

(log-t3). Under contamination these ratios remain stable or even change slightly in favor of HR for

the following reason. When claims are log-t distributed, then log-transformed claims are t-distributed,

hence, symmetric. Thus, robustified REML methods that are tuned for symmetric t-distribution gain

efficiency. And, for high levels of contamination by large outliers, the resulting approximate log-t-

distribution becomes almost symmetric, which in turn favors standard regression credibility methods

that are based on classical REML. Still, robust regression credibility estimators are more efficient and

produce on average better predictors for future claims while keeping portfolio-unbiasedness. Findings

for subject-specific process variances σ2
εi (L2) are presented in Table 6. �

Table 5. Example 2: Performance of CATLC versus Hachemeister revisited (HR) for

(approximately) Log-t-distributed Claims with selected degrees of freedom,

under (L1) and Scenario 1, 2, 3 and 4.

Measure

MSE (µ̂) E(µ̂) winning ratio bias∗(µ̂) C(Y; µ̂) failed

Model Scenario HR CATLC HR : CATLC HR CATLC HR CATLC HR

Lognormal 1 5.07 4.31 1.24 500 : 500 0.00 0.00 1.01 1.01 19

2 12.08 9.53 2.04 389 : 611 0.00 0.00 1.04 0.99 38

3 79.08 51.88 3.69 309 : 691 0.01 0.01 1.14 0.99 114

4 267.69 281.98. 3.53 366 : 634 0.02 0.01 1.19 1.05 115

Log-t5 1 38.95 12.05 3.83 89 : 911 0.00 0.00 1.14 0.96 113

2 130.34 21.14 5.36 91 : 909 0.00 0.00 1.15 0.97 126

3 679.43 85.46 12.99 190 : 810 0.01 0.00 1.23 0.96 147

Log-t3 1 162.81 50.09 4.34 12 : 988 0.00 -0.01 1.31 0.99 268

2 475.30 92.21 7.17 32 : 968 0.00 -0.01 1.32 0.96 264

3 1,897.32 224.17 9.91 109 : 891 0.00 -0.02 1.35 0.94 290
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Table 6. Example 2: Performance of CATLC versus Hachemeister revisited (HR) for

(approximately) Log-t-distributed Claims with selected degrees of freedom,

under (L2) and Scenario 1, 2, 3 and 4.

Measure

MSE (µ̂) E(µ̂) winning ratio bias∗(µ̂) C(Y; µ̂) failed

Model Scenario HR CATLC HR : CATLC HR CATLC HR CATLC HR

Lognormal 1 6.24 7.59 1.16 625 : 375 0.00 0.00 1.01 1.02 69

2 19.57 22.63 1.52 484 : 516 0.00 0.00 1.07 1.01 77

3 104.46 92.85 2.66 421 : 579 0.01 0.01 1.13 1.02 86

4 270.59 380.56 2.34 472 : 528 0.01 0.01 1.16 1.01 118

Log-t5 1 407.56 184.23 3.56 202 : 798 0.00 0.01 1.26 0.95 249

2 4,894.27 330.34 5.72 200 : 800 0.00 0.01 1.67 0.96 312

3 4,963.46 655.61 7.34 331 : 669 0.01 0.01 1.56 0.99 331

Log-t3 1 6,872.34 1,781.65 4.76 81 : 919 0.01 -0.02 2.43 0.97 411

2 1.64× 104 3,091.37 4.92 132 : 868 0.00 -0.01 2.31 0.91 431

3 5.82× 104 6,299.45 5.85 300 : 700 0.00 -0.01 1.99 0.90 427

6 Real-Data Example: Workers’ Compensation Data

In this section, we analyze a standard example from workers’ compensation insurance. This data set

contains losses due to permanent partial disability and has already been studied by Klugman (1992),

Frees et al. (2001) and Antonio et al. (2007).

6.1 Data Characteristics

As is common in non-life insurance, Frees et al. (2001) consider standard mixed linear models, where

the response is the logarithmic transformation of the pure premium PP, defined as the Loss per Payroll.

This transformation helps to remove the right-skewness in the original claim data (see Antonio et al.,

2007) and makes standard statistical software, which is developed to handle normally distributed

residuals, easily applicable to long-tailed insurance data. Unfortunately, premiums obtained from this

approach are difficult to interpret and do not yield credibility premiums for the individual risk classes.

Thus, we present final credibility premiums for the original loss data.

The workers’ compensation insurance data set comprises I = 100 occupation (risk) classes that

have positive (non-zero) loss ratios over τ = 7 years (Frees et al. 1999, 2001). The variable Loss is
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the amount paid (on a yearly basis) and Payroll is a time-dependent exposure (volume) measure. The

latter explanatory variable has a major impact on the within risk variability and is used as weights to

account for heteroscedasticity. Note that the multiple time series plots of the response PP and LnPP,

respectively, do not indicate any time-dependency (see Figure 1).

Figure 1. On the left, pure premiums (PP) plotted over τ = 7 years. The line segments connect

occupation classes. On the right, logarithmic pure premiums (LnPP) over τ = 7 years.
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6.2 Model Fitting and Outlier Detection

Among the models with PP as dependent variable, Frees et al. (2007) found that the simple linear

mixed model given by

PPit = β + αi + εit(Payrollit)
1/2, i = 1, . . . , I, t = 1, . . . , τ,

produces best fits. It shall be emphasized that this model, for which the weight Payroll captures

heteroscedasticity among occupation classes, is the classical credibility model proposed by Bühlmann

and Straub (1970). The structural parameters are obtained from REML with the error terms assumed

to be serially uncorrelated, that is, Rit = σ2
ε/Payrollit. For the corrected adaptively truncated likelihood

credibility (CATLC) model, we fit the log-linear model

log(PPit) = β + αi + εit(Payrollit)
1/2, i = 1, . . . , I, t = 1, . . . , τ, (6.1)

with location λit = β + αi and normally distributed residuals εit(Payrollit)
1/2 ∼ N(0, σ2

ε).
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Figure 2. Logarithmic pure premiums (PP) plotted over τ = 7 years based on the cleaned data set.

The line segments connect occupation classes τ = 7 years.
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When the standard credibility model of Bühlmann-Straub (1970) is fitted with the REML proce-

dure, the estimated portfolio mean is β̂GLS = 0.016. The robust CATL procedure detects 51 within-risk

outliers while 94 out of 100 occupation classes are treated as ordinary. Fitting model (6.1), we find

that the robust grand location β̂rGLS = −4.261 is slightly higher than the non-robust fit of −4.46 in

Frees et al . (2001). This is mainly due to the removal of risks that report comparatively low claim

sizes to the insurer over the entire observation period. What is important to understand here is that

small claims may threaten, in the long run, the solvency of the insurance company. Indeed, if there is

too many (or too few) of them, that can distort the estimation of variance components which in turn

may yield too low total classical credibility premiums collected from the insured. And this threatens

the solvency of the insurer in the long run. Further, assuming that the expected within-risk variability

is Rτi+1 ≈ I−1
∑I

i=1

∑τi
t=1 τ

−1
i

(
σ̂2
ε/Payrollit

)
= 0.1906, for each risk, we obtain the total ordinary

credibility premium of 1.862 and the total extraordinary premium of −0.110. Hence, the resulting

robust portfolio premium collected from all insureds is 1.752, whereas the corresponding standard

credibility premium obtained from the Bühlmann-Straub model is 1.609. We notice that the aver-
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age total portfolio premium is 1.848. This indicates that CATLC produces more accurate and less

portfolio-biased credibility premiums which is of main interest to the insurer.

7 Summary

In this article, we have proposed a three-step procedure for robust-efficient fitting of regression cred-

ibility models when claims are heavy-tailed log-location-scale distributed. The designed procedure,

which we call corrected adaptively truncated likelihood credibility (CATLC), provides high robustness

against outliers occurring both within and between risks. Through adaptive detection rules, excess

claims are automatically identified and rejected. Then, classical but corrected likelihood methods are

employed on cleaned insurance data to find ordinary credibility premiums. Estimation techniques

from robust regression are used to price excess claims and, finally, to calculate robust and portfolio-

unbiased credibility premiums. Practical performance of the newly designed class of robust regression

credibility has been investigated under several simulated scenarios and in a real-data example from

workers’ compensation insurance. We have also performed additional case studies using CATLC for

pricing of risks in insurance and finance and arrived at similar conclusions. These studies will be

presented in a parallel paper.

In summary, the CATLC procedure:

• automatically finds the most robust and efficient estimator available and requires no expert

judgment for the choice of truncation points;

• provides accurate estimates of true premiums while ensuring portfolio unbiasedness;

• provides protection toward outliers that influence the within and/or the between risk variability,

which in turn have distorting effects on credibility weights;

• provides credibility premiums for reported claims data which are easy to interpret;

• can be applied to any credibility model that can be expressed as mixed linear model where

log-transformed claims are location-scale distributed.
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A natural continuation in this line of research would be to develop CATLC procedures for cred-

ibility models with serially correlated error terms and various dependency structures between risks.

We did not pursue such generalizations here because of the mathematical/technical challenges they

present. For non-robust estimation in these more general models, however, some interesting proposals

are already available in the actuarial literature (see Cossette and Luong, 2003, and Pitselis, 2004a,b).
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