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Abstract

We consider robust and efficient fitting of claim severity models whose parameters are

estimated using the method of trimmed moments, which was recently introduced by

Brazauskas, Jones, and Zitikis (2009). In this article, we take the ‘next’ step by going

beyond the theory and simulations, and address some important issues that arise in prac-

tical application of the method. Specifically, we introduce two graphical diagnostic tools

that can be used to choose the trimming proportions, and hence help one to decide on

the appropriate trade-off between robustness and efficiency. What is equally important,

such tools are useful in model selection, for assessing the overall goodness of model fit,

and for identification of outliers. Some insights about the choice between a ‘good’ fit and

an ‘even better’ fit and its impact on risk evaluations are provided. Data analysis and

illustrations are performed using real data which represents the total damage done by 827

fires in Norway for the year 1988.
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1 Introduction

Fitting of loss models is a necessary first step in many insurance applications such as premium cal-

culations, risk evaluations and determination of required reserves. A variety of methodologies is used

for model-fitting and include empirical nonparametric, parametric, robust parametric, and other tech-

niques. Each approach has its own advantages and disadvantages. Empirical methods, for example,

are relatively simple and are based on very weak assumptions, but, by using such methods, one cannot

make reliable inference beyond the range of the observed data. Parametric techniques, on the other

hand, allow one to extrapolate beyond the range of the actual data, yield more efficient estimators but

all of it comes at the expense of strong assumptions which can be of questionable validity in practice.

The robust parametric methodology maintains all the advantages of the parametric approach but, at

the same time, alleviates its main weakness (i.e., strong assumptions) by fitting models via methods

that are relatively insensitive to the underlying assumptions. The latter approach seems indeed as a

sensible compromise between the other two, and thus it is no surprise that robust models have seen a

fair share of success in various fields of application. For a sample of recent examples, see: Dell’Aquila

and Embrechts (2006) and Dupuis and Victoria-Feser (2006), for extreme-value applications; Cowell

and Victoria-Feser (2006, 2007), for modeling of income inequality in economics; Marceau and Rioux

(2001), for risk theory applications.

For a statistical procedure to be successful and widely accepted in practice, it should (i) be trans-

parent with its actions on the data, (ii) have analytically tractable properties, small-sample or asymp-

totic, and (iii) be computationally straightforward. These three conditions are ambitious, yet not

unreasonable, and they present a big challenge for any statistical procedure. This is also the case for

robust procedures. An attempt to resolve the aforementioned issues was made by Brazauskas, Jones,

and Zitikis (2009) who introduced a general method, called the method of trimmed moments (MTM),

for robust fitting of distributions. This method essentially works like the standard method-of-moments

and thus is easy-to-understand and is fairly simple analytically and computationally; however, it has

its ‘gray zones’ too. More specifically, typical robust methods maintain their resistance against outliers

and other non-representative data by trading off some efficiency at the assumed model. Such trade-offs
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are controlled through the so-called tuning constants. The MTM procedures are no exception, they

also have such built-in constants which are called trimming proportions. Thus, in this setting, a new

question arises: How to choose tuning constants (trimming proportions) for a robust procedure? Usu-

ally the answer is given along these lines: “It depends on how much efficiency one is willing to sacrifice

at the assumed model.” While such answer is perhaps sufficient for further theoretical investigations,

in most practical situations it is not entirely satisfactory as more clarity is desirable.

In search of better solutions for the problem just described, the importance of well-designed graphi-

cal tools can hardly be overstated. This certainly is not a new idea. Various diagrams and data displays

have always existed in one form or another in science and engineering. But with the appearance of

Tukey’s pioneering book “Exploratory Data Analysis” (Tukey, 1977), graphics became far more con-

crete and effective. Also, advances in computing power over the last 30 years have changed how we

carry out visualization. Finally, there are scores of books, some of them quite good, written on graph-

ics. Cleveland (1993), for example, is an excellent read on data visualization, its underlying principles

and relationships to classical statistical methods.

The power of graphical displays seems to stem primarily from the human eye’s ability to notice

patterns; for example, to detect deviations from linearity. Keeping this in mind, in this article we

introduce two graphical diagnostic tools: a quantile-quantile-percentile plot and a percentile-residual

plot. As will be demonstrated later, such plots can be used to choose the trimming proportions of an

MTM estimator, and hence help one to decide on the appropriate trade-off between robustness and

efficiency. What is equally important, they also are useful in model selection, for assessing the overall

goodness of model fit, and for identification of outliers.

The rest of the article is organized as follows. Section 2 presents the definition of and some key facts

about the MTM estimators. It also contains specialized results for the MTM estimators of lognormal

and log-t distribution parameters; these two families will be used to fit the Norwegian fire claims

data. In Section 3, the new diagnostic tools are introduced and employed for fitting and analyzing

the Norwegian fire claims data (for the year 1988). Section 4 provides some insights about robust

and efficient fitting, the choice between a ‘good’ fit and an ‘even better’ fit and its impact on risk

evaluations. A summarizing discussion is presented in Section 5.
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2 MTM Estimation

Consider a sample of n independent and identically distributed random variables, X1, . . . ,Xn, whose

distribution function F depends on k unknown parameters, θ1, . . . , θk; the number k is fixed. Let us

denote X1:n ≤ · · · ≤ Xn:n the order statistics of X1, . . . ,Xn. The MTM estimators of θ1, . . . , θk are

found by the following three step procedure:

1. Compute k sample trimmed moments

µ̂j =
1

n − mn − m∗

n

n−m∗

n∑

i=mn+1

hj(Xi:n), j = 1, . . . , k, (2.1)

where hj is a real-valued specially chosen function, and mn and m∗

n are integers such that

0 ≤ mn < n−m∗

n ≤ n and mn/n → a, m∗

n/n → b as n → ∞, where the proportions a and b are

chosen by the researcher.

2. Derive the corresponding population trimmed moments

µj := µj(θ1, . . . , θk) =
1

1 − a − b

∫ 1−b

a
hj(F

−1(u)) du, j = 1, . . . , k, (2.2)

where F−1 denotes the quantile function of F . Note that when a = b = 0, then µj = E[hj(X)].

3. Match the population and sample trimmed moments and solve the following system of equations

with respect to θ1, . . . , θk: 



µ1(θ1, . . . , θk) = µ̂1,
...

µk(θ1, . . . , θk) = µ̂k.

(2.3)

The above obtained solutions, which we denote by

θ̂1 = g1(µ̂1, . . . , µ̂k), . . . . . . , θ̂k = gk(µ̂1, . . . , µ̂k),

are, by definition, the MTM estimators of the parameters θ1, . . . , θk. Note that the functions gj are

such that gj(µ1, . . . , µk) = θj .

Next, the vector of MTM estimators (θ̂1, . . . , θ̂k) is asymptotically normal with the mean vector

(θ1, . . . , θk) and the covariance matrix n−1
DΣD

′, where D = [dij ]
k
i,j=1 is the Jacobian of the trans-

formations g1, . . . , gk evaluated at the vector (µ1, . . . , µk), that is, dij = ∂gi/∂µ̂j |(µ1,...,µk). Also, the
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matrix Σ :=
[
σij

]k
i,j=1

whose entries are

σij =
1

(1 − a − b)(1 − a − b)

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
dhj

(
F−1(v)

)
dhi

(
F−1(u)

)
, (2.4)

represents the asymptotic covariance matrix of the sample trimmed moments (2.1). Adopting the

notation introduced by Serfling (1980), this result can be neatly summarized as follows:

(
θ̂1, . . . , θ̂k

)
is AN

(
(θ1, . . . , θk), n−1

DΣD
′
)
, (2.5)

where AN stands for ‘asymptotically normal’.

Remark 1: The procedure (2.1)–(2.3) is presented for general k and in theory it should always

work. In practice, however, it can happen that the system of equations (2.3) does not have a solution

(e.g., when k is large). The good news for actuaries is that majority of loss models fall within the

k ≤ 3 case (see Klugman et al ., 2004, Appendix A). Moreover, not infrequently the claim severity

distributions belong to a general class of location-scale families or their variants, which implies that

k ≤ 2. In the latter instances, the procedure is indeed straightforward. �

In view of Remark 1, we will first fit the lognormal distribution to the Norwegian fire claims data

and later a log-t distribution with known degrees of freedom. Since both of these distributions are

log-location-scale families, their cdfs have the following form:

F (x) = F0

(
log(x) − θ

σ

)
, x > 0,

defined for −∞ < θ < ∞ and σ > 0, and where F0 is the standard (i.e., with θ = 0 and σ = 1)

cdf of the underlying location-scale family. (In all our examples, F0 will denote either the standard

normal or standard t, with 8 degrees of freedom, cdf.) The corresponding quantile function satisfies

the following relationship:

log
[
F−1(t)

]
= θ + σF−1

0 (t), 0 < t < 1. (2.6)

A straightforward application of the procedure (2.1)–(2.3), with h1(t) = log t and h2(t) = (log t)2,

yields that the MTM estimators of θ and σ are:




θ̂MTM = µ̂1 − c1 σ̂MTM,

σ̂MTM =
√

(µ̂2 − µ̂2
1)
/
(c2 − c2

1),
(2.7)
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where µ̂j = (n − mn − m∗

n)−1
∑n−m∗

n

i=mn+1

[
log Xi:n

]j
are computed from the sample, and constants

cj ≡ cj(F0, a, b) := 1
1−a−b

∫ 1−b
a

[
F−1

0 (u)
]j

du can be evaluated using, for example, the Trapezoidal

Rule. That is,
∫ 1−b
a

[
F−1

0 (u)
]j

du ≈ h
[
0.5
[
F−1

0 (a)
]j

+
∑m−1

k=1

[
F−1

0 (a + kh)
]j

+ 0.5
[
F−1

0 (a + mh)
]j]

,

where h = ((1 − b) − a)/m and m ≥ 1000.

Further, the estimators given by (2.7) are asymptotically normal, namely,

(
θ̂MTM, σ̂MTM

)
is AN

((
θ, σ

)
,

σ2

n
S

)
(2.8)

with the parameter-free matrix

S =
1

(c2 − c2
1)

2

[
c∗1c

2
2 − 2c1c2c

∗

2 + c2
1c

∗

3 −c∗1c1c2 + c2c
∗

2 + c2
1c

∗

2 − c1c
∗

3

−c∗1c1c2 + c2c
∗

2 + c2
1c

∗

2 − c1c
∗

3 c∗1c
2
1 − 2c1c

∗

2 + c∗3

]
=:

[
s11 s12

s21 s22

]
,

where constants c∗j ≡ c∗j (F0, a, b) are parameter-free components of (2.4) and are given by

c∗1 =
1

(1 − a − b)2

{
a(1 − a)

[
F−1

0 (a)
]2

+ b(1 − b)
[
F−1

0 (1 − b)
]2 − 2abF−1

0 (a)F−1
0 (1 − b)

− 2(1 − a − b)
[
aF−1

0 (a) + bF−1
0 (1 − b)

]
c1 − (1 − a − b)2 c2

1 + (1 − a − b) c2

}
,

c∗2 =
1

2(1 − a − b)2

{
a(1 − a)

[
F−1

0 (a)
]3

+ b(1 − b)
[
F−1

0 (1 − b)
]3

− abF−1
0 (a)F−1

0 (1 − b)
[
F−1

0 (a) + F−1
0 (1 − b)

]
− (1 − a − b)

[
a
[
F−1

0 (a)
]2

+ b
[
F−1

0 (1 − b)
]2]

c1

− (1 − a − b)
[
aF−1

0 (a) + bF−1
0 (1 − b)

]
c2 − (1 − a − b)2 c1 c2 + (1 − a − b) c3

}
,

c∗3 =
1

4(1 − a − b)2

{
a(1 − a)

[
F−1

0 (a)
]4

+ b(1 − b)
[
F−1

0 (1 − b)
]4 − 2ab

[
F−1

0 (a)
]2[

F−1
0 (1 − b)

]2

− 2(1 − a − b)
[
a
[
F−1

0 (a)
]2

+ b
[
F−1

0 (1 − b)
]2]

c2 − (1 − a − b)2 c2
2 + (1 − a − b) c4

}
.

For derivations and numerical illustrations, see Brazauskas, Jones, and Zitikis (2009).

Remark 2: As is well-known (cf., e.g., Serfling, 2002), the MLE of lognormal (θ, σ) is given by




θ̂MLE = n−1
∑n

i=1 log Xi,

σ̂MLE =

√
n−1

∑n
i=1

(
log Xi − θ̂MLE

)2
,

and

(
θ̂MLE, σ̂MLE

)
is AN

(
(θ, σ),

σ2

n
S0

)
with S0 =

[
1 0

0 1/2

]
.
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When F0 is the standard normal cdf, the MTM estimators (2.7) become (θ̂MLE, σ̂MLE) for mn = m∗

n = 0;

also, since S → S0 when a = b → 0, the MLE’s asymptotic distribution follows from statement (2.8).

Further, the MLE of log-t (θ, σ), with a known degrees of freedom ν, has no closed-form solution

and is found by numerically maximizing the log-likelihood. Its asymptotic distribution, however, is

straightforward to establish. In particular,

(
θ̂MLE, σ̂MLE

)
is AN

(
(θ, σ),

σ2

n
S∗

)
with S∗ =

[
ν+3
ν+1 0

0 ν+3
2ν

]
.

�

3 Diagnostics and Model Fitting

In this section, we introduce two graphical diagnostic tools: a quantile-quantile plot supplemented with

a vertical axis that represents empirical percentile levels, which we call a quantile-quantile-percentile

(QQP) plot, and a plot of empirical percentile levels versus standardized residuals, which we call a

percentile-residual (PR) plot. These tools should be employed in the model fitting/parameter cali-

bration process after preliminary diagnostics (e.g., histogram and QQ-plot) has been completed and

necessary distributional assumptions have been made. For all numerical and graphical illustrations,

we use the Norwegian fire claims data which is taken from Beirlant, Teugels, and Vynckier (1996).

The data set has been studied in the actuarial literature, and it represents the total damage done by

n = 827 fires in Norway for the year 1988, which exceed 500 thousand Norwegian krones.

For this data set, the histogram of the raw observations is not very informative since about 90% of

the losses are between 500 and 3,000 and the two largest claims (150,597 and 465,365) are much larger

than the others. That is, one claim visually suppresses 750 claims into about 5% of the scale on a graph.

Therefore, we first take the logarithmic transformation of the data and then perform preliminary

diagnostics. As one can see from the left panel of Figure 1, the histogram of the transformed data

looks approximately bell-shaped, which implies that the original, i.e., not transformed, losses can

be assumed as (roughly) lognormally distributed. The lognormal QQ-plot in Figure 1 (right panel)

supports our initial conclusion and exposes ‘bad’ segments of the lognormal distribution—significant

part of the lower tail and several upper tail claims—where this model will not fit the data well.
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Figure 1: Preliminary diagnostics for the Norwegian fire claims (1988) data.

3.1 Quantile-Quantile-Percentile Plot

The data set we analyze here is fairly large (more than 800 observations) and because of that individual

data points in the ‘middle’ of the QQ-plot cannot be seen. It is hence difficult to judge what fraction of

the data follows the linear pattern. As a consequence, we propose to equip the QQ-plot with one more

vertical axis that would show the percentile levels of empirical quantiles. Besides revealing empirical

quantile’s relative position within the sample, such plots will provide guidance about the minimal

trimming requirements for MTM estimators. Notice also that the percentile levels are key inputs for

some important risk measures (e.g., value-at-risk and conditional tail expectation).

Next, we fit the lognormal model using the MTM approach and several pairs of trimming propor-

tions. For comparison, we also fit the model using the MLE approach which, as mentioned in Remark

2, corresponds to the MTM approach with no trimming. The resulting fits are illustrated in Figure 2,

where the fitted models are labeled T1, T2, T3 and MLE. The goodness of model fit is measured by

a trimmed mean absolute deviation between the fitted lognormal quantiles and the logarithm of the

observed data (measured in thousands):

∆δ =
1

n − [nδ]

n−[nδ]∑

j=1

∣∣ log(F̂−1(j/n)) − log(Xj:n − 500)
∣∣,

where log(F̂−1(t)) is computed using equation (2.6) with F−1
0 denoting the quantile function of the
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standard normal distribution. We use the following values of δ: 0, 0.05, 0.10, 0.25, 0.50. The choice

δ = 0.25, for example, indicates how close, on the average, are the 75% closest observations to a fitted

line. Our empirical investigations suggest that the use of several goodness-of-fit measures provides a

more objective picture about the model fit than an approach based on a single global criterion. The

resulting parameter estimates and goodness-of-fit measurements appear in Table 1.

Table 1: Parameter estimates and goodness-of-fit measurements of the lognormal model.

Fitting Procedure Parameter Estimates Model Fit (∆δ)
θ σ δ = 0.50 δ = 0.25 δ = 0.10 δ = 0.05 δ = 0

MLE 6.341 1.851 0.19 0.26 0.29 0.31 0.37
T1 (a = 0.45, b = 0.45) 6.452 8.334 2.29 3.60 4.55 4.91 5.38
T2 (a = 0.10, b = 0.10) 6.454 1.370 0.03 0.04 0.07 0.10 0.22
T3 (a = 0.10, b = 0.01) 6.461 1.449 0.04 0.06 0.07 0.09 0.21

The left panel of Figure 2 shows two lognormal fits: T1 and MLE. It is known (cf., Brazauskas,

Jones, and Zitikis, 2009) that the T1 estimator is highly robust, i.e., it has high trimming proportions

(see Table 1), but also very inefficient, its efficiency (relative to MLE) is only 18%. This translates

into completely meaningless fit. The MLE procedure being most efficient, its efficiency is 100%, but

non-robust yields a fair overall fit, especially when compared to that of T1. However, a carefull

examination of the QQP-plot also reveals that data moves away from the linear pattern around the

10th and 99th percentile levels. Therefore, we can expect that trimming approximately 10% of lower

observations and 1% of upper observations should improve the fit of MTM procedures. Indeed, as one

can see from the right panel of Figure 2, the T2 and T3 fits are: reasonable overall, very accurate in

the ‘middle’, and virtually identical. Moreover, it seems that the values of the trimming proportions

do not have to be highly precise, as is demonstrated by the two procedures. For T2, we symmetrically

trimmed 10% of lower and upper observations, and, for T3, a = 0.10 and b = 0.01 were chosen. We

finally note that these two MTM procedures are quite efficient with the efficiencies of 77% (for T2)

and 87% (for T3).
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Figure 2: Lognormal QQP-plots and lognormal models fitted by MLE and three MTM methods

with a = b = 0.45 (T1), a = b = 0.10 (T2; dashed line), a = 0.10, b = 0.01 (T3; solid line).

(The right vertical axis represents empirical percentile levels.)

Although visual assessment may suggest that T2 and T3 fits yield minor improvements over the

MLE fit, numerical evaluations of the fits reveal substantial differences (see Table 1). Indeed, for the

overall fit (δ = 0), MLE’s mean absolute deviation is 68%–76% worse than that of T2, T3. And for the

restricted ranges, the differences are even more dramatic: 210%–244% (δ = 0.05), 314% (δ = 0.10),

333%–550% (δ = 0.25), 375%–533% (δ = 0.50). Notice also that neither the numerical nor visual

comparisons of the T2 and T3 fits allow to identify a clear winner between the two procedures. Thus,

a ‘practical’ solution in this case would be to choose the method with better efficiency, i.e., T3.

3.2 Percentile-Residual Plot

The QQP-plot that we presented in the previous section works well for location-scale families or their

variants, e.g., log-location-scale families. However, one has to be very careful when using such plots

for other distributions, for which equation (2.6) does not hold, because they can be misleading. For

instance, in order to assess the quality of a gamma distribution fit, the unknown shape parameter

needs to be estimated first and then plugged in the formula of gamma quantiles. Subsequently, these

quantile estimates are used to define the numerical scale on the horizontal axis of the QQP-plot, which

means that the scale of the axis will crucially depend on the method of estimation (of parameters and

quantiles). To see why that is dangerous, let us revisit the models of Figure 2, where we know which
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fits are good and which are bad. The left panel of Figure 3, shows the lognormal QQP-plot where the
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Figure 3: Lognormal QQP-plots with the model quantiles estimated by T1 and T3 methods.

(The right vertical axis represents empirical percentile levels.)

lognormal quantiles on the horizontal axis are computed using the estimates from the T1 fit, the bad

fit. The right panel represents the same plot based on the T3 fit, the good fit. Looking at the plots,

the first impression we get is that both fits are of similar quality. Only after noticing significantly

different scales on the horizontal axis do we realize that the fits are rather dissimilar. In conclusion,

this example demonstrates that visualization tools should be carefully constructed, and plots based

on the variables that are free of unknown parameters should be preferred.

In addition to the QQP-plot’s ineffectiveness beyond the location-scale situations, there is another

aspect of such plots (and of graphical diagnostics in general) that we have not addressed yet: the

variability of the fitted line. Let us revisit Figure 2. There, one would like to know whether the

central quantiles of the MLE line are significantly far away from the corresponding sample quantiles;

they appear fairly close on the graph. Also, since the T1 method is very inefficient, its variance is

much larger than that of MLE and thus confidence intervals (for fixed quantiles) constructed using

this method will be much wider. Thus, the question of interest is whether those deviations of the

estimated quantiles are still within the T1’s confidence bounds.

10



To resolve the issues discussed above, we first need to find the asymptotic distribution of the point

estimator of the quantile log F−1(t), 0 < t < 1. According to (2.6), the point estimator is given by

̂log F−1(t) = θ̂ + σ̂F−1
0 (t), (3.1)

where θ̂ and σ̂ denote either MLE or MTM estimators of θ and σ, respectively. As follows from (2.8)

and Remark 2, both types of estimators—MLE and MTM—of θ and σ are asymptotically normal.

Hence, direct application of the delta method (cf., e.g., Serfling, 1980, Section 3.3) to function (3.1)

yields that the estimator ̂log F−1(t) is also asymptotically normal; specifically,

̂log F−1(t) is AN
(

log F−1(t),
σ2

n

[
s11 + 2F−1

0 (t)s12 +
[
F−1

0 (t)
]2

s22

])
, (3.2)

where s11, s12 and s22 are computed as in (2.8) and Remark 2.

Next, we define the standardized residual as

Rj,n =
log(Xj:n − 500) − ̂log F−1(j/n)

(
σ̂/

√
n
)√

s11 + 2F−1
0 (j/n)s12 +

[
F−1

0 (j/n)
]2

s22

(3.3)

Due to the asymptotic normality result (3.2), at each fixed point j/n, 1 < j < n, the standardized

residual Rj,n approximately behaves like the standard normal random variable. (Strictly speaking,

the quality of this approximation depends on how extreme the ratio j/n is. For the cases where j/n is

near 0 or 1, convergence rates to the standard normal random variable are slower than those for j/n

around 1/2. In this paper, however, such technical distinctions do not concern us.) Plotting of the

empirical percentile levels, (j/n)100%, versus Rj,n will yield a PR-plot. To decide on which residuals

are statistically large and which are not, we will follow Hubert, Rousseeuw, and Van Aelst (2004) and

use the cut-off points of ±2.5. (The standard normal variable exceeds 2.5 with probability 0.0062.)

These authors used similar standardized residuals plots to identify outliers in regression models.

In Figure 4, we present PR-plots for the lognormal model fitted by MLE and T1, T2, T3 methods.

In each plot, the horizontal line at 0 corresponds to the respective fitted line in Figure 2, and the ±2.5

lines are the tolerance limits. A good fit would be the one for which the majority of points (ideally, all

points) are scattered between the tolerance limits. The conclusions that emerge from these PR-plots

are consistent with what we have observed in the QQP-plots of Figure 2.
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Figure 4: PR-plots for the lognormal model fitted by MLE and three MTM methods

with a = b = 0.45 (T1), a = b = 0.10 (T2), a = 0.10, b = 0.01 (T3).

First of all, there are a few spots—around 5th and 99th percentiles, and between 50th and 65th

percentiles—where the fit between the MLE-calibrated lognormal model and the data set is good.

But overall MLE does not fit the main body of data well because it attempts to fit all data points.

Secondly, as expected, the T1-based model is inappropriate for the data at hand but it provides an

acceptable fit for the ‘center’, i.e., between approximately 45th and 55th percentiles. Thirdly, the

T2- and T3-calibrated models accomodate about 80% (between 10th and 90th percentiles) and 90%

(between 7th and 97th percentiles) of the data, respectively.
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4 Insights

We start this section by summarizing our observations about the model-fitting exercise of Section 3,

and by elaborating on few noteworthy features of robust and efficient fitting. Then, we identify an

even better fitting model to this data and discuss whether that is worthwhile pursuing. After that,

we investigate the implications of a model fit on risk evaluations.

4.1 Diagnostics and Robust-Efficient Fitting

As was seen in Section 3, the QQP-plot and PR-plot enable us to visually assess the disparity between

the observed data and the fitted model. Moreover, for location-scale families, the QQP-plot can be

used to diagnose whether an assumed distribution is acceptable for the data at hand without even

fitting it. For non-location-scale distributions, this is not the case as the model has to be fitted first

and then the PR-plot diagnostics employed. Let us discuss in more detail some observations about

the plots and robust-efficient fitting.

First of all, it seems that well-designed graphical devices carry more information, thus lead to

better informed decisions, than regular goodness-of-fit testing. To see this, let us use two popular

normality tests—Lilliefors’ and Jarque-Bera—and test whether the transformed Norwegian fire claims

data, log(X1 −500), . . . , log(X827 −500), is normally distributed. (Lilliefors’ test is based on the usual

one-sample Kolmogorov-Smirnov statistic but does not require that the null distribution be completely

specified. The Jarque-Bera test is also suitable for situations where a fully-specified null distribution is

not known. It is specifically designed for alternatives in the Pearson family of distributions. Both tests

use relevant sample moments, i.e., method-of-moments (MM) estimators, to estimate the unknown

normal distribution moments.) The tests strongly reject the normality assumption with both p-values

being less than 0.001. The test statistic values are: 0.0962, for Lilliefors’, and 1136.9, for Jarque-Bera.

What we learn from these calculations is that, although the decision about the quality of MM fit is

easy to make, we have no idea what caused it. Does it imply that the distributional assumption was

completely inappropriate? Was it wrong to choose MM as a fitting method? Well, answers to these

questions are not provided by the tests. On the other hand, the QQP-plot suggests that about 90%

out of n = 827 data points are in tune with the normality assumption. Hence, the only thing one needs
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is an estimation method that yields a close fit for those 90% of losses, declaring the rest as outliers.

The ability of these plots to expose outliers is another useful feature which can be utilized as a

guide (but not a clear-cut answer) on minimum trimming requirements. What is important here,

this guidance must always be supplemented with the knowledge of robustness-efficiency trade-offs

the chosen MTM procedure can offer. Why? Let us review Figure 2 one more time. The QQP-plots

indicate that trimming less than 10% of lower observations and less than 1% of upper observations may

affect/rotate the line. This is exactly what happens to the MLE line, which is the most efficient but

non-robust method. At the other extreme, severe over-trimming (method T1) may rotate the line even

more. The latter fact suggests that highly trimmed but inefficient estimators may capture spurious

patterns in the sample, and thus should be used with caution. Note also that usually more trimming

implies less efficiency but there are exceptions to this rule (e.g., Weibull and Gumbell distributions).

Finally, it is quite clear by now that the choice of trimming proportions should be prescribed by

the data; in other words, it should be adaptive. However, although it is reasonable to expect that the

underlying probability distribution for the insurance loss will not change under similar circumstances,

its realization (e.g., next year’s sample) will. And the fraction of outliers in future samples is likely

to be different (hopefully, not too much) from that in the current one. Therefore, a prudent actuary

should always trim a bit more than the data indicates. Such an approach is safety oriented, and safety

comes at a price. Fortunately, the price is not steep. For instance, for the Norwegian data, it seems

that we could trim only 7% of lower observations and 1% of upper observations, thus accomodating

even more data with the lognormal model. (Data accomodation, not removal, is the main objective

of model-fitting!) However, the end result is pretty much the same: QQP- and PR-plots are visually

indistinguishable from those of T3, and the efficiency of the new method is 90%; it is 87% for T3.

4.2 ‘Good’ Fit versus ‘Even Better’ Fit

As we have seen so far, the lognormal model fitted by the T3 method seems to be optimal and not

much else can be squeezed out of the lognormal assumption. But can we do better by changing the

distributional assumption? Is it worthwhile to search for anything better? The answer to the first

question is easy: yes, we can. In particular, notice that several upper claims are above the T3 line,
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which means that the observed (log) claims have heavier upper tail than that of the standard normal.

Since the histogram of the transformed data is roughly bell-shaped (see Figure 1), we should explore
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Figure 5: QQP- and PR-plots for the log-t8 model fitted by MLE and the MTM method

with a = 0.10, b = 0.01 (T4). Goodness-of-fit measurements ∆δ (δ = 0, 0.05, 0.10, 0.25, 0.50):

0.18, 0.10, 0.09, 0.07, 0.05 (MLE) and 0.16, 0.06, 0.05, 0.04, 0.03 (T4). Parameter estimates:

(θ̂MLE, σ̂MLE) = (6.457, 1.422) and (θ̂MTM, σ̂MTM) = (6.452, 1.320).

the t distribution alternative. Following similar steps as in Section 3, we find that the log-t8 distribution

fitted using the MTM approach, with a = 0.10, b = 0.01, yields an even better fit and accomodates

about 93% of the data. For comparison, we also include the MLE fit which is better than in the
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lognormal case, yet it is still uniformly improved by the MTM fit. See Figure 5, for QQP- and

PR-plots of this model, and for the goodness-of-fit measurements ∆δ.

To answer the second question, we have to ask ourselves what the fitted model is going to be

used for. For example, if we are interested in pricing of the top 10% of risks, then the log-t8 fit is

excellent. Or, if the middle 50% of the loss distribution is of interest, then both models—robustly fitted

lognormal and log-t8—are sufficiently good. But if the riskiness of the 10% lowest claims needs to be

evaluated, then none of the considered models is adequate. In most insurance applications, however,

small claims, those that have high probability but relatively low economic impact, are not a primary

concern. Usually, a good fit in the upper tail, i.e., for the low-probability-but-high-consequence events,

is needed. Thus, it seems safe to say that the log-t8 model would be appropriate for most applications

based on the Norwegian fire claims data.

4.3 Quantitative Risk Management

To see how the quality of the model fit affects insurance risk evaluations, we will construct confidence

intervals for several value-at-risk (VaR) measures. Mathematically, this measure is the (1 − β)-level

quantile of the distribution function F , that is, VaR(β) = F−1(1 − β). For empirical estimation, we

replace F with the empirical cdf F̂n. For parametric (MLE) and robust parametric (MTM) estimation,

F̂ is found by replacing F ’s parameters with their respective MLE and MTM estimates. In particular,

as presented by Kaiser and Brazauskas (2006), the empirical point estimator and the 100(1 − α)%

distribution-free confidence interval of VaR(β) = F−1(1 − β) are given by

V̂aREMP(β) = Xn:n−[nβ] and
(
Xn:k1

, Xn:k2

)
,

where k1 =
[
n
(
(1 − β) − zα/2

√
β(1 − β)/n

)]
and k2 =

[
n
(
(1 − β) + zα/2

√
β(1 − β)/n

)]
. Here [·]

denotes “greatest integer part” and zα/2 is the (1−α/2)th quantile of the standard normal distribution.

Formulas for the robust point estimators of VaR(β) can be found by applying the exponential

transformation to (3.1). The corresponding 100(1 − α)% confidence intervals are then derived by

applying the delta method to (3.2). These two steps lead to:

V̂aRMTM(β) = 500 + exp
{

θ̂MTM + σ̂MTMF−1
0 (1 − β)

}
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and

V̂aRMTM(β) ×
(

1 ± zα/2

(
σ̂MTM/

√
n
)√

s11 + 2F−1
0 (1 − β)s12 +

[
F−1

0 (1 − β)
]2

s22

)
,

where F0 denotes either the standard normal or standard t8 cdf, and zα/2 is again the (1 − α/2)th

quantile of the standard normal distribution. The MLE point and interval estimators are constructed

by following similar steps which lead to:

V̂aRMLE(β) = 500 + exp
{

θ̂MLE + σ̂MLEF−1
0 (1 − β)

}

and

V̂aRMLE(β) ×
(

1 ± zα/2

(
σ̂MLE/

√
n
)√ν + 3

ν + 1
+

ν + 3

2ν

[
F−1

0 (1 − β)
]2
)

,

where F0 denotes either the standard normal or standard t8 cdf. The respective values for the degrees

of freedom ν are: ν → ∞ and ν = 8. Table 2 presents empirical, parametric, and robust parametric

point estimates and 95% interval estimates of VaR(β) for several levels of β.

Table 2: Point estimates and 95% confidence intervals of various value-at-risk measures

computed by employing empirical, parametric (MLE), and robust parametric (T3,T4) methodologies.

Risk Estimation Methodology

Measure Empirical Lognormal Log-t8

VaR(β) MLE T3 MLE T4

β = 0.25 2,058 2,480 2,203 2,242 2,112
(1,830; 2,268) (2,133; 2,827) (1,960; 2,446) (1,970; 2,514) (1,867; 2,357)

β = 0.10 4,555 6,595 4,607 5,155 4,512
(3,758; 5,974) (5,472; 7,719) (3,973; 5,242) (4,355; 5,955) (3,821; 5,203)

β = 0.05 7,731 12,372 7,422 9,437 7,850
(6,905; 11,339) (9,979; 14,764) (6,244; 8,601) (7,703; 11,171) (6,410; 9,290)

β = 0.01 26,791 41,753 18,856 38,693 28,788
(20,800; 84,464) (31,646; 51,860) (15,025; 22,686) (28,829; 48,558) (21,360; 36,217)

A number of conclusions emerge from the table. First, for risk evaluations of moderate significance

levels (β = 0.25, 0.10), where both parametric models are in close agreement with the data, there is

essentially no difference between the empirical and robust parametric methodologies as all the point

and interval estimates are similar. Second, for more extreme significance levels (β = 0.05, 0.01), the

lognormal model does not fit the data well, which translates into its underestimation of the empirical
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risk. Third, the robust point estimates of the risk based on the log-t8 model and the empirical approach

are very close for all levels of β because the MTM fit of the log-t8 distribution is excellent (see Figure

5). Fourth, the MLE fits are mediocre for both models and therefore its risk evaluations are off the

empirical target. Fifth, aside from the robust parametric model’s stretchability beyond the range of

the observed data, the main advantage of such methodology over the empirical one is that it produces

substantially shorter confidence intervals.

Remark 3: As is clear from the results of Table 2 and from the accompanying discussion,

one should always search for a model that fits the data at hand well, and then apply it for further

actuarial modeling. If in particular situation one cannot identify a ‘good’ model for the data, but

there is enough data, the tail-risk measures should be computed using the empirical approach and

wider confidence intervals would have to be tolerated. If there is no good model nor sufficient amount

of data, then extreme-value theory should be consulted. In the latter case, however, robust fitting

procedures supplemented with graphical diagnostics would also be useful. �

5 Conclusions

In this article, we have introduced two graphical tools, QQP-plot and PR-plot, and have shown that

they can be useful for choosing the trimming proportions of an MTM estimator, for assessing the

overall goodness of model fit, for model selection, and for identification of outliers. Incorporation

of such tools into the robust-efficient model-fitting process (of the Norwegian fire claims data) have

yielded several conclusions/insights: (i) robustness and efficiency must be considered simultaneously,

for robust but inefficient procedures may capture spurious patterns in the sample, (ii) while parsimony

is always relevant, it is worthwhile to pursue reasonably complex models that can accomodate more

data; to paraphrase Einstein, a model should be as simple as possible but not simpler, (iii) thinking

outside-the-model is also important; that is, knowledge about further modeling objectives and practical

usage of the model helps and should play a role in the fitting procedure.

Further, we have demonstrated that the quality of the model fit is very important for actuarial

modeling. Moreover, graphical tools can be used to project the fitted model effects on subsequent

analysis. For example, without performing actual calculations, we can get a hint from the QQP- and
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PR-plots on how the model will act on a risk measure. Specifically, if, for some segment of the risk,

the fitted model under- or over-estimates corresponding empirical quantiles, then the risk evaluations

for that segment will be below or above the observed (empirical) risk. The choice of risk measure in

this case is not essential but the choice of its estimation method is.

Finally, the plots we have presented here are exclusively designed for the MTM estimators, though

similar graphs can be constructed using other robust estimators (e.g., M -estimators) as well. One

would need to figure out a one-to-one relationship between the empirical percentile levels and tuning

constants of the estimator, and then modify the plots accordingly. However, no matter what statistical

tools we select, one thing is certain, namely, a carefully constructed plot can enrich any model-fitting

procedure. In summary, while statistical inference (e.g., parameter estimation and hypothesis testing)

alone is designed to extract and reduce information from the sample, the inference supplemented with

visualization can summarize and retain it.
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