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Quantile estimation
and the statistical relative efficiency curve

Summary - In this article, we introduce a new practical tool—relative efficiency curve
(REC)—for comparison of two competing statistical procedures. While in other
scientific areas the term of REC has been around for some time, in statistics it seems to
be new. In estimation, the curve is constructed by employing asymptotic properties of
quantile estimators. Suppose two consistent and asymptotically normal estimators of
a fixed quantile of the underlying distribution are available. Plotting of the ratio of their
variances versus quantiles at various probability levels yields an REC. Such a curve
provides information about the accuracy of one estimator relative to another when
both are designed to estimate the same (fixed but arbitrary) quantile of the distribution.
Thus, depending on the objective of application, the REC can help one choose between
parametric, robust parametric, empirical nonparametric or other method of estimation
for the measure of interest. Further, other possibilities for defining (statistical) RECs
are also discussed, and illustrative examples for (equivalent) Pareto and exponential,
and lognormal and normal distributions are provided. Specifically, graphs of RECs
of maximum likelihood, method of trimmed moments, and empirical nonparametric
estimators of distribution quantiles are presented.

Key Words - Parametric distributions; Quantiles; Relative efficiency; Robust estima-
tion.

1. Introduction

In many statistical estimation problems, “good” estimators are both con-
sistent and asymptotically normal. If for particular problem there are two (or
more) such estimators, then we are interested in determining which one is better
(or best among all). Let us first focus on situations involving estimation of a
single parameter θ . Suppose that two consistent and asymptotically normal es-
timators of the parameter θ , say θ̂1 and θ̂2, are available and let their respective
asymptotic variances be denoted σ 2

1 (θ)/n and σ 2
2 (θ)/n, where n represents the

sample size; n is large. If comparison of estimator performances is based upon
the variance criterion, then the ratio σ 2

1 (θ)/σ 2
2 (θ) is used to identify which

Received January 2009 and revised September 2009.



290 VYTARAS BRAZAUSKAS

estimator is better and it is called the asymptotic relative efficiency (ARE) of
estimator θ̂2 relative to estimator θ̂1. In simulations, where sample sizes are
small or moderate and bias has to be accounted for, the variance is replaced
with the mean-square error; also ARE becomes simply RE. Interpretations of
such measures are usually given in terms of the ratio of sample sizes needed for
the two estimators to perform equivalently with respect to the adopted criterion
(see Serfling, 1980, Section 1.15.4).

Extensions of ARE to the multi-parameter case also exist. Consider esti-
mation of a k-dimensional parameter θ = (θ1, . . . , θk) by θ̂(i) = (θ̂

(i)
1 , . . . , θ̂

(i)
k ),

where θ̂(i) is asymptotically k-variate normal with mean θ and (nonsingular)
covariance matrix n−1�

(i)
θ , for i = 1, 2. A general form of comparison of the

two estimators θ̂(1) and θ̂(2) is based on the condition

�
(2)
θ − �

(1)
θ nonnegative definite. (1.1)

Condition (1.1) is quite natural since it requires the asymptotic distribution of
θ̂(1) to possess a concentration ellipsoid contained entirely within that of the
asymptotic distribution of θ̂(2). For computational purposes, however, one uses
a less general but numerically convenient measure based on the concentration
ellipsoid volumes

∣∣�(1)
θ

∣∣ and
∣∣�(2)

θ

∣∣:
ARE

(
θ̂

(2), θ̂
(1)
)

=
(∣∣�(1)

θ

∣∣/∣∣�(2)
θ

∣∣)k
, (1.2)

where
∣∣ · ∣∣ denotes the determinant of matrix. For further discussion on asymp-

totic efficiency and optimality in estimation, see, e.g., Lehmann et al. (1998,
Chapter 6) and Serfling (1980, Section 4.1).

Note that (1.2) is a scalar measure which, for example, for location-scale
families yields a number (i.e., it is parameter-free). In addition, this measure
includes, and thus naturally generalizes, the univariate ARE, and is quite an
effective method for comparison and ranking of estimators. In applications,
however, a fitted distribution is not the ultimate goal, rather one is interested
in certain aspects/segments of the underlying distribution. For instance: in
actuarial science (or, more broadly, in quantitative risk management), various
upper-tail risk measures, such as conditional tail expectation or value-at-risk, are
used to measure the riskiness of portfolio; in economics, the Lorenz curve is a
standard tool for measuring income inequality in a population of people; and,
in engineering, estimation of survival probabilities is essential for assessing
the reliability of engineering systems. Clearly, while the upper tail is the
main focus of the first and third area of application, dispersion of the entire
population is central to the economics example. Thus, in view of this discussion,
it certainly is desirable to have an efficiency measure that not only allows
for comparison of estimators/procedures but also supplies the researcher with
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information about the estimator’s relative performance across all segments of
the underlying distribution.

Furthermore, there exist practical situations for which methodological op-
tions are limited. For example, one cannot make reliable inference beyond the
observed data using the empirical approach. In other cases, however, there is
always the question of what type of methodology (e.g., parametric, robust para-
metric, empirical nonparametric or other) is most appropriate for the problem at
hand. This issue is usually “solved” by choosing the method that the researcher
prefers. For example, in Jones and Zitikis (2003), the empirical nonparametric
approach was introduced for estimation of, and testing based on, actuarial risk
measures; and, Cowell and Victoria-Feser (2006) promote robust parametric
methodology for measuring income inequality. In the actuarial literature, there
were attempts to address this problem through simulations (see Brazauskas and
Kaiser, 2004, and Kaiser and Brazauskas, 2006) but a quicker and more rigor-
ous approach is desirable. Also notice that such questions cannot be answered
by employing a measure such as (1.2) because of its purely parametric nature.

To address the issues raised above, in this article we introduce a new prac-
tical tool—relative efficiency curve (REC)—for comparison of two competing
statistical procedures. Mathematical treatment of efficiency as a function (curve)
is certainly not new and fundamental results can be found in the classic text of
Shorack and Wellner (1986). Development of practical tools based on the exist-
ing theory, however, has not been addressed in the statistical literature. Note that
the term of REC does appear in the educational measurement literature (Lord,
1974), in physics (Hayashi et al., 2000), and in other scientific areas as well.
Note also that while the motivation for introduction of the statistical and other
RECs is similar—we want to compare tests/estimators/procedures/methods—
each field relies on its own interpretation of efficiency and employs different
theoretical tools to construct RECs.

In statistical estimation, the curve is constructed by using asymptotic prop-
erties of quantile estimators. Suppose two consistent and asymptotically normal
estimators of a fixed quantile of the underlying distribution are available. Plot-
ting the ratio of their variances versus quantiles at various probability levels
yields an REC. Such a curve provides information about the accuracy of one
estimator relative to another when both are designed to estimate the same (fixed
but arbitrary) quantile of the distribution. Thus, depending on the objective of
application, the REC can help one choose between parametric, robust paramet-
ric, empirical nonparametric or other method of estimation for the measure of
interest. Finally, since testing problems can usually be recast in the context of
estimation (and vice versa), the REC can also be applied to hypotheses testing
problems.

The rest of the article is organized as follows. In Section 2, necessary
asymptotic distributions are specified and the efficiency formulas used in con-



292 VYTARAS BRAZAUSKAS

struction of RECs are derived. The subsequent section provides two illustrative
examples for (equivalent) Pareto and exponential, and lognormal and normal
distributions. Specifically, RECs of maximum likelihood, method of trimmed
moments, and empirical nonparametric estimators of quantiles of these distri-
butions are plotted. Some final remarks are presented in Section 4.

2. Relative efficiency curves

Consider a sample of n independent and identically distributed (i.i.d.) con-
tinuous random variables, X1, . . . , Xn , whose distribution (cdf), density (pdf),
and quantile (qf) functions we denote by F , f , and Q, respectively. Assume
that the cdf, pdf, and qf are given in a parametric form, and suppose that they
are indexed by a k-dimensional parameter θ = (θ1, . . . , θk). Let us denote
X1:n ≤ · · · ≤ Xn:n the order statistics of X1, . . . , Xn .

For a fixed probability level p, 0 < p < 1, consider empirical nonparamet-
ric and parametric estimators of the population quantile Q(p). As is well-known
(see, e.g., Shorack and Wellner, 1986, Section 18.1), the empirical estimator
Q̂EMP(p) = X�np�:n , where �·� denotes “greatest integer part”, is asymptotically
normal (AN ) with mean Q(p) and variance p(1 − p)/[n f 2(Q(p))]. In short,

Q̂EMP(p) is AN
(

Q(p), n−1 p(1 − p)

f 2(Q(p))

)
. (2.1)

For the parametric approach, suppose that a k-dimensional parameter θ is es-
timated by θ̂, where θ̂ is asymptotically k-variate normal with mean θ and
covariance matrix n−1�θ. That is,

θ̂ is AN
(
θ, n−1

�θ

)
.

Suppose Q(p) is a sufficiently smooth function of θ, denoted gp(θ). Then, an
application of the delta method (cf., e.g., Serfling, 1980, Section 3.3) implies
that the parametric estimator Q̂PAR(p) = gp(θ̂) is asymptotically normal with
mean Q(p) and variance n−1dp�θd′

p, that is,

Q̂AR(p) is AN
(

Q(p), n−1dp�θd′
p

)
, (2.2)

where the vector dp is (∂gp/∂θ̂1, . . . , ∂gp/∂θ̂k) evaluated at θ = (θ1, . . . , θk).
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Now a definition of the asymptotic relative efficiency, ARE of Q̂EMP(p)

relative to Q̂PAR(p), naturally emerges from the conditions (2.1) and (2.2)—we
take the ratio of the asymptotic variances:

AREp : = ARE
(

Q̂EMP(p), Q̂PAR(p)
)

= f 2(Q(p))

p(1 − p)
dp�θd′

p for 0 < p < 1.
(2.3)

If one is interested in comparison of two parametric estimators, Q̂(1)
PAR(p) and

Q̂(2)
PAR(p), then

AREp := ARE
(

Q̂(2)
PAR(p), Q̂(1)

PAR(p)
)

= dp�
(1)
θ d′

p

dp�
(2)
θ d′

p

for 0 < p < 1. (2.4)

Plotting the points (p, AREp), where AREp is defined by (2.3) or (2.4), yields
corresponding RECs.

Note 2.1 We shall emphasize here that RECs given by (2.3) and (2.4) should
not be interpreted as continuous curves, rather they provide visualization for
finite number of points. However, since in practice data are measured and
observed discretely, the current version of REC suffice. Notice also that for
the continuous treatment, different mathematical tools would have to be em-
ployed. In particular, asymptotic theory of empirical quantile processes should
be consulted (see Shorack and Wellner, 1986, Chapter 18).

Note 2.2 Similar efficiency measures, and hence curves, can be constructed using
other multiparameter “suppression” methods. For example, cdf or pdf based
point estimators can be used instead of the qf estimators. Indeed, for the cdf
approach, asymptotic normality results for the empirical estimator F̂EMP(x) =
n−1∑n

j=1 1
{

X j ≤ x
}

and a parametric estimator F̂PAR(x) are available, and thus
a simple repetition of the above steps leads to

AREx := ARE
(

F̂EMP(x), F̂PAR(x)
)

= bx�θb′
x

F(x)(1 − F(x))
forx ∈ X , (2.5)

where X = {x | − ∞ < x < ∞, 0 < F(x) < 1}, the vector bx is (∂hx/∂θ̂1, . . . ,

= ∂hx/∂θ̂k) evaluated at θ = (θ1, . . . , θk), and hx(θ) := F(x). Which mea-
sure, (2.3) or (2.5), is “better”? This, of course, depends on the definition
of “better”. We find it easier to work with AREp, given by (2.3), because it
is defined on a finite interval, i.e., (0, 1), and can be interpreted in terms of
probabilities or percentiles. Also, the pdf approach in this context seems to be
even less appealing since empirical estimation of pdf (at a fixed point) is not
as straightforward as that of cdf or qf.
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3. Illustrative examples

In this section, we provide examples of RECs for two pairs of equivalent
distributions: Pareto and exponential, and lognormal and normal. (The distribu-
tions are equivalent in the following sense: after the logarithmic transformation,
Pareto and lognormal become shifted-exponential (with known location), and
normal, respectively.) In each example, we choose the corresponding maximum
likelihood estimator (MLE) as the benchmark parametric estimator. Then, us-
ing formulas (2.3) and (2.4), we evaluate respective AREp’s for the empirical
estimator (EMP) and for various method of trimmed moments (MTM) esti-
mators. (The MTM estimators were introduced by Brazauskas et al. (2009);
derivations of the asymptotic properties of these estimators and small-sample
investigations can also be found in the same paper.) For all distributions, ten
MTM estimators were chosen with the following trimming proportions (a, b):

Estimator MTM-1 MTM-2 MTM-3 MTM-4 MTM-5
(a, b) (.05, .05) (.10, .10) (.15, .15) (.25, .25) (.49, .49)

Estimator MTM-6 MTM-7 MTM-8 MTM-9 MTM-10
(a, b) (.00, .10) (.00, .30) (.05, .00) (.25, .00) (.50, .00)

3.1. Pareto and Exponential Models

Let X1, . . . , Xn be i.i.d. random variables, each with the same Pareto
distribution

Pareto(x0, α) : F(x) = 1 −
(

x

x0

)−α

, x > x0 (3.1)

where α > 0 is an unknown parameter, and x0 > 0 is assumed to be known.
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The qf and pdf are: Q(p) = x0(1 − p)−1/α and f (x) = (α/x0)(x/x0)
−α−1,

respectively. As is well-known (see, e.g., Arnold, 1983), the maximum likeli-
hood estimator of α is given by α̂MLE = [n−1∑n

i=1 log(Xi/x0)
]−1, and

α̂MLE is AN
(

α,
α2

n

)
. (3.2)

The MTM estimator of α is given by α̂MTM = c(a, b)
[
(n−mn −m∗

n)
−1∑n−m∗

n
i=mn+1

log(Xi :n/x0)
]−1

, where c(a, b) = −(1−a−b)−1
∫ 1−b

a log(1−u) du with mn/n →
a and m∗

n/n → b, and

α̂MTM is AN
(

α,
α2

n
C

)
with C =

∫ 1−b
a

∫ 1−b
a

min{u,v}−uv

(1−u)(1−v)
dv du(∫ 1−b

a log(1 − u) du
)2 . (3.3)

Notice that when mn = m∗
n = 0, then α̂MTM → α̂MLE because c(a, b) → 1

as a = b → 0; also, since C → 1 as a = b → 0, the MLE’s asymptotic
distribution (3.2) follows from (3.3).

Now we have everything that is needed for computation of (2.3) and (2.4).
That is: for the MLE, dp�θd′

p = (x0/α)2(1 − p)−2/α log2(1 − p); for the EMP
estimator, f 2(Q(p)) = (α/x0)

2(1 − p)2+(2/α); and, for the MTM estimator,
dp�θd′

p = C(x0/α)2(1 − p)−2/α log2(1 − p). These imply that:

AREp (emp, mle) = 1 − p

p
log2(1− p) and AREp (mtm, mle) = C−1. (3.4)

Note 3.1 As was mentioned above, the Pareto(x0, α) is equivalent—through the
logarithmic transformation of the variable—to a shifted-exponential variable.
That is, if X is Pareto(x0, α) with the cdf defined by equation (3.1), then
Z = log X is a shifted-exponential variable with the cdf FZ (z) = 1− e−(z−z0)/θ ,
z > z0, where z0 = log x0 and θ = α−1. The corresponding qf and pdf are:
Q Z (p) = z0 − θ log(1 − p) and fZ (z) = (1/θ)e−(z−z0)/θ , respectively. Then, we
have that θ̂MLE = n−1∑n

i=1(Zi − z0) is AN
(
θ, θ2/n

)
and θ̂MTM = c(a, b)(n −

mn − m∗
n)

−1∑n−m∗
n

i=mn+1(Zi :n − z0) is AN
(
θ, Cθ2/n

)
with the same constants as

above. And while intermediate results for the exponential distribution differ
from those for the Pareto model, the relative efficiency formulas are identical
to those in (3.4). Hence, RECs for these two models are the same.
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Figure 1. RECs of MLE, MTM, and empirical estimators of Pareto and exponential quantiles. Left panel:
symmetrically trimmed MTMs. Right panel: asymmetrically trimmed MTMs.

In Figure 1, RECs of MLE, MTM and EMP estimators of Pareto and exponen-
tial quantiles are plotted. The plots summarize and confirm some well-known
facts. First, estimation of lower/upper tail quantiles with EMP estimator is
inefficient (due to a scarcity of sample data in the tails). Second, approxi-
mately 80th empirical percentile contains most information about its theoretical
counterpart. The latter fact has been reported and rediscovered by multiple
authors (see discussion by Arnold, 1983, Section 5.2.8) who considered quan-
tile and/or order statistics estimation for Pareto and exponential models. For
example, one of the earliest references on the topic (Sarhan et al., 1963) re-
ports the optimal level of a single quantile of 0.7968. Later, for the problem
of Pareto tail estimation, Koutrouvelis (1981) derived optimal quantile estima-
tors based on k (k ≥ 2) quantiles. Predictably, as k grows larger, most of
those quantiles cluster around the 80% level. For instance: for k = 3, they
are 0.53, 0.83, 0.97; and, for k = 5, they are 0.39, 0.67, 0.84, 0.94, 0.99.
This suggests that most information about Pareto α (or, equivalently, Exponen-
tial θ ) is contained in the upper tail of the distribution. One can also arrive
at similar conclusions by studying various trimming schemes of the MTM
estimator. Indeed, larger proportions of trimming in symmetrically trimmed
MTMs lead to a gradual and unavoidable decline of efficiency. That is, for
a = b = 0.05, 0.10, 0.15, 0.25, 0.49, the respective AREp’s are: 92%, 85%,
79%, 68%, 48%. Among these, the first four estimators are uniformly more
efficient than their empirical counterparts. But the most extreme trimming case
of a = b = 0.49 (i.e., it essentially represents a median-based estimator) is
not as competitive, being only about half of the time more efficient than the
empirical approach. On the other hand, asymmetric trimming may yield 100%
efficient estimators (e.g., MTM-8 with a = 0.05, b = 0.00, and MTM-9 with
a = 0.25, b = 0.00). Even more dramatically, the MTM-10 estimator, with
a = 0.50, b = 0.00, uses only half of the actual data and still maintains 96%
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efficiency. However, if we trim upper part of the sample, the corresponding
estimator efficiencies drop significantly: MTM-6 with a = 0.00, b = 0.10, has
AREp = 85%; MTM-7 with a = 0.00, b = 0.30, has AREp = 61%.

3.2. Lognormal and Normal Models

Let X1, . . . , Xn be i.i.d. random variables, each with the same lognormal
distribution

LN(µ, σ ) : F(x) = �

(
log(x) − µ

σ

)
, x > 0, (3.5)

where −∞ < µ < ∞ and σ > 0 are unknown parameters, and � is the
standard normal cdf. The qf and pdf are: Q(p) = eµ+σ�−1(p) and f (x) =
(σ x)−1φ((log(x) − µ)/σ), where �−1 and φ are the standard normal qf and
pdf, respectively.

Let us start with the maximum likelihood estimation of µ and σ . It is
known (see, e.g., Serfling, 2002) that µ̂MLE = n−1∑n

i=1 log(Xi) and σ̂MLE =√
n−1

∑n
i=1

(
log(Xi) − µ̂MLE

)2, and that

(
µ̂MLE, σ̂MLE

)
is AN

(
(µ, σ ),

σ 2

n
S0

)
with S0 =

[ 1 0
0 1/2

]
. (3.6)

The MTM estimators of µ and σ are given by µ̂MTM = t̂1 − c1 and σ̂MTM =√
(t̂2 − t̂2

1 )/(c2 − c2
1) where, for k = 1, 2, the constant ck = (1 − a − b)−1

∫ 1−b
a[

�−1(u)
]k du and the trimmed sample moment t̂k = (n − mn − m∗

n)
−1∑n−m∗

n
i=mn+1[

log(Xi :n)
]k with mn/n → a and m∗

n/n → b. Further,

(
µ̂MTM, σ̂MTM

)
is AN

(
(µ, σ ),

σ 2

n
S

)
with S =

[ s11 s12

s12 s22

]
, (3.7)

where the parameter-free entries si j are as follows: s11 = (c∗
11c2

2 − 2c1c2c∗
12 +

c2
1c∗

22)/(c2 − c2
1)

2, s12 = (−c∗
11c1c2 + c2c∗

12 + c2
1c∗

12 − c1c∗
22)/(c2 − c2

1)
2, and s22 =

(c∗
11c2

1 − 2c1c∗
12 + c∗

22)/(c2 − c2
1)

2. Here the constants c1 and c2 are defined as
above and c∗

i j = (1−a−b)−2
∫ 1−b

a

∫ 1−b
a

(
min{u, v}−uv

)[
�−1(u)

]i−1[
�−1(v)

] j−1

d�−1(v) d�−1(u), for i, j = 1, 2.
Now we have everything that is needed for computation of (2.3) and (2.4).

That is: for the MLE, dp�θd′
p = σ 2

[
1+0.5(�−1(p))2

]
; for the EMP estimator,
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f 2(Q(p)) = σ−2φ2(�−1(p)) and, for the MTM estimator, dp�θd′
p = σ 2

[
s11 +

2s12�
−1(p) + s22(�

−1(p))2
]
. These imply that:

AREp (emp, mle) = 1 + 0.5(�−1(p))2

p(1 − p)
φ2(�−1(p)),

AREp (mtm, mle) = 1 + 0.5(�−1(p))2

s11 + 2s12�−1(p) + s22(�−1(p))2
.

(3.8)

Note 3.2 As was mentioned above, the LN(µ, σ ) is equivalent—through the
logarithmic transformation of the variable—to a normal variable. That is, if X
is LN(µ, σ ) with the cdf defined by equation (3.5), then Z = log X is a normal
variable with the cdf FZ (z) = �((z−µ)/σ), −∞ < z < ∞. The corresponding
qf and pdf are: Q Z (p) = µ + σ�−1(p) and fZ (z) = σ−1φ((z − µ)/σ),
respectively. The formulas of MLE and MTM estimators of µ and σ do not
change (except that log Xi ’s are now replaced with Zi ’s) and their asymptotic
distributions agree with (3.6) and (3.7), respectively. Similar to the first example
(see Section 3.1), intermediate results for the normal distribution differ from
those for the lognormal but the relative efficiency formulas are identical to
those in (3.8). Hence, RECs for these two models are the same.

In Figure 2, RECs of MLE, MTM and EMP estimators of lognormal and
normal quantiles are plotted. The plots reveal several interesting facts. First of
all, estimation of lower/upper tail quantiles with EMP estimator is inefficient.
Secondly, as expected, the empirical REC is symmetric. Thirdly, a somewhat
surprising finding is that approximately 20th and 80th percentiles—not the
median—can be estimated most efficiently via the empirical estimator, with
ARE0.20 = ARE0.80 = 66% and ARE0.50 = 64%. (Of course, the difference
is not substantial.) Further, unlike in the Pareto and exponential examples,
AREp of the MTM estimator is not constant, and thus RECs of MTMs are now
indeed curves. For symmetrically trimmed MTMs, the corresponding RECs are
symmetric and, when compared to the empirical REC, are: uniformly above it
(MTM-1, -2, -3), uniformly below it (MTM-5), and crossing it at several points
(MTM-4). The inefficiency of the MTM-5 estimator can be attributed to the
fact that, in general, median-based estimators have poor efficiency properties for
estimating the scale parameter which is needed for the estimation of quantiles.
While among asymmetrically trimmed MTMs there are only two estimators
(MTM-6, -8) that are uniformly more efficient than EMP, every asymmetric
MTM also has a percentile region of excellent performance (i.e., AREp ≥ 95%).
For example: MTM-6 at 0.08 ≤ p ≤ 0.54, MTM-7 at 0.14 ≤ p ≤ 0.34, MTM-8
at 0.32 ≤ p ≤ 0.98, MTM-9 at 0.62 ≤ p ≤ 0.86, MTM-10 at 0.76 ≤ p ≤ 0.86.
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Figure 2. RECs of MLE, MTM, and empirical estimators of lognormal and normal quantiles. Left panel:
symmetrically trimmed MTMs. Right panel: asymmetrically trimmed MTMs.

4. Final remarks

In this paper, we have introduced a practical tool for comparison of two
competing statistical procedures, which we call the relative efficiency curve, or
REC for short. Such a curve is motivated by situations (applications) where
the researcher is interested in certain aspects of the underlying distribution and
has several methodological options at his/her disposal. Our illustrations have
been focused on parametric, robust parametric, and empirical nonparametric
approaches for quantile estimation, though similar curves can be constructed
using other (e.g., semiparametric) techniques as well.

Further, for regular parametric families, MLE is the most efficient method
of estimation and thus we used it as a benchmark procedure for construction of
RECs. In such setting, the REC of the empirical approach can be interpreted
as a parametric signature of empirical quantiles. Then, such signatures can be
employed, for example, for choosing trimming proportions of robust estimators
or for selection of most informative probability levels for quantile-based estima-
tors. Furthermore, the approach might also be useful for comparing inefficient
but perhaps more flexible and/or easily computable estimators. This is espe-
cially true for nonregular parametric families, for which either MLE properties
are difficult to establish or it simply does not exist (e.g., for the generalized
Pareto distribution with the tail parameter γ > 1). In these cases, however,
there is no obvious benchmark estimator and thus RECs will not be capped
at 100%.
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In summary, no matter what statistical methodology is used or what bench-
mark estimator is chosen, RECs are fairly easy to construct and can form a
better picture about the model-fitting process. If properly interpreted, they not
only help us to know what happens with various model-fitting procedures but
also provide an insight of why it happens.
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