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Ričardas Zitikis3

University of Western Ontario

Abstract. Many quantities arising in non-life insurance depend on claim severity distribu-

tions, which are usually modeled assuming a parametric form. Obtaining good estimates

of the quantities, therefore, reduces to having good estimates of the model parameters.

However, the notion of ‘good estimate’ depends on the problem at hand. For example,

the maximum likelihood estimators (MLE) are efficient, but they generally lack robust-

ness. Since outliers are common in insurance loss data, it is therefore important to have

a method that allows one to balance between efficiency and robustness. Guided by this

philosophy, in the present paper we suggest a general estimation method that we call the

method of trimmed moments (MTM). This method is appropriate for various model-fitting

situations including those for which a close fit in one or both tails of the distribution is

not required. The MTM estimators can achieve various degrees of robustness, and they

also allow the decision maker to easily see the actions of the estimators on the data, which

makes them particularly appealing. We illustrate these features with detailed theoretical

analyses and simulation studies of the MTM estimators in the case of location-scale fami-

lies and several loss distributions such as lognormal and Pareto. As a further illustration,

we analyze a real data set concerning hurricane damages in the United States from 1925

to 1995.
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1 Introduction

Loss severity distributions are required for a variety of premium and reserve calculations in non-life

insurance. Both non-parametric and parametric estimators can be used in the calculations. While non-

parametric estimators are convenient in many circumstances, parametric models are often preferred

for a number of reasons:

• They yield smooth estimates of distribution function values. This is important because lack of

smoothness can lead to undesirable progressions of premium rates for different deductible values

or to anomalous orderings of premiums by rating category.

• Parametric models allow us to extrapolate probabilities to ranges of values that are beyond

the actual data. While we always have to be cautious when extrapolating, the procedure may

nevertheless be required by a quantity to be estimated as in the case of the premium for a high

deductible excess of loss policy.

• By imposing a specific parametric form involving a small number of parameters, the parameters

can be estimated more efficiently. Of course, a bias is introduced when the assumed form is not

correct, but the ‘risk’ might be offset by other considerations.

• There may be specific aspects of the form, or structure, of the distribution that are either

desirable or believed to exist, such as a mode at 0. Parametric models allow us to impose such

structures even when they are not apparent in the data.

• Parametric models often have fairly simple forms that make them appealing and easy to use. For

details on parametric loss models as well as for methods of classifying and creating distributions,

we refer to Kleiber and Kotz (2003), Klugman et al. (2004), and references therein. For example,

nested families are particularly useful for model selection. Scale families are generally used for

modeling insurance loss amounts since, for example, inflation or changes in currency can be

easily handled by changing the scale parameter.

Many methods exist for estimating the parameters. The most popular among them is arguably the

maximum likelihood method in view of its desirable asymptotic properties, invariance under parameter
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transformations, etc. However, the MLE’s are not robust and the influence of outliers on them can

be substantial. It should be noted in this regard that outliers do occur frequently in the context

of insurance losses, and the circumstances surrounding a particular loss might be quite unusual and

atypical if compared to other losses in a portfolio (e.g., think about a loss that receives extensive

media attention). Furthermore, an insurer may wish to use the loss data from one insurance portfolio

to analyze another one for which few or no observations exist. In this case the uncertainty about the

similarity of the two portfolios may lead the insurer to prefer a method that reduces the influence of

outlying observations.

Practically, most of the methods available in the literature on robust estimation can be viewed

as special cases of some general classes such as M -, L-, or R-statistics (see, e.g., Serfling, 1980,

Chapters 7–9), and the class of M -statistics among them is arguably the most popular one, which is

mostly due to a close relationship between the objective function of the M -statistic and its influence

function. Recent examples of successful implementation of robust procedures include extreme-value

applications in finance and economics (see, e.g., Dupuis and Victoria-Feser, 2006, Cowell and Victoria-

Feser, 2006, 2007), geopedology (Vandewalle et al ., 2007), robust fitting of non-standard regression

models (Marazzi and Yohai, 2004, 2006), a general minimum-distance modeling approach by Scott

(2001). While all these methods are intuitively appealing to experts and deliver what they are designed

for, their popularity among practitioners have been limited due to reasons such as computational

complexity and lack of transparency.

To resolve a number of issues noted above, in the current paper we introduce and develop a gen-

eral method for estimating the parameters of claim severity distributions, which we call the method

of trimmed moments (MTM). The method utilizes the underlying principle of the classical method

of moments. Namely, in order to estimate k unknown parameters, we equate k population trimmed

moments with the corresponding k sample trimmed moments and then we solve the resulting system

of k equations with respect to the unknown parameters. In practice, the MTM estimation is appro-

priate for various model-fitting situations including those where a close fit in one or both tails of the

distribution is not required. The herein proposed MTM has several desirable features:

• Trimmed moments always exist irrespectively of the underlying distribution. Consequently, the
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MTM estimators exist whenever a system of equations (analogous to that of the classical method

of moments) has a solution, which can easily be checked using available software.

• The MTM estimators can achieve various degrees of robustness, which can easily be specified by

the user by appropriately setting trimming proportions (to be explained later in this paper).

• The MTM is transparent in the sense that its actions on the data are relatively easy to understand

and the asymptotic properties of the MTM estimators are readily available.

The rest of the paper is organized as follows. The MTM idea is rigorously presented in Section

2, where we also derive asymptotic properties of the MTM estimators. MTM estimators for several

common claim severity distributions are developed in Section 3. In Section 4 we extend the MTM

idea by developing a combined MTM, which we call CMTM for short. In Section 5 we investigate

small-sample properties of the MTM estimators in a simulation study. Practical performance of the

MTM estimators is illustrated on real data in Section 6. We conclude the paper with a brief summary

of main findings in Section 7.

2 Method of trimmed moments

In this section we describe the method of trimmed moments, derive asymptotic properties of the ob-

tained estimators, and conclude with a discussion on how to choose estimating functions and trimming

proportions.

2.1 Definition

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) random variables, and let F denote

the cumulative distribution function (cdf) of each Xj . Assume that the cdf F is given in a parametric

form, and let k ≥ 1 be the (fixed) number of unknown parameters, which we denote by θ1, . . . , θk.

Denote the order statistics of X1, . . . ,Xn by X1:n ≤ · · · ≤ Xn:n . The MTM estimators of θ1, . . . , θk

are derived in three steps:

• Compute the sample trimmed moments

µ̂j =
1

n − mn(j) − m∗

n(j)

n−m∗

n(j)∑

i=mn(j)+1

hj(Xi:n), 1 ≤ j ≤ k, (2.1)
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where hj are specially chosen functions (to be discussed below) and mn(j) and m∗

n(j) are integers

0 ≤ mn(j) < n − m∗

n(j) ≤ n such that mn(j)/n → aj and m∗

n(j)/n → bj when n → ∞, where

the ‘proportions’ aj and bj are chosen by the researcher (to be discussed below).

• Derive the corresponding population trimmed moments

µj := µj(θ1, . . . , θk) =
1

1 − aj − bj

∫ 1−bj

aj

hj(F
−1(u)) du, 1 ≤ j ≤ k, (2.2)

where F−1(u) = inf{x : F (x) ≥ u} is the quantile function. (Note that when aj = bj = 0, then

µj = E[hj(X)].)

• Match the population and sample trimmed moments and solve the system of equations






µ1(θ1, . . . , θk) = µ̂1
...

µk(θ1, . . . , θk) = µ̂k

(2.3)

with respect to θ1, . . . , θk. The solutions, which we denote by θ̂j = gj(µ̂1, . . . , µ̂k), 1 ≤ j ≤ k,

are, by definition, the MTM estimators of θ1, . . . , θk. Note that the functions gj are such that

gj(µ1, . . . , µk) = θj.

Note 2.1 Equations (2.3) can also be written as µj(θ1, . . . , θk) − µ̂j = 0, j = 1, . . . , k, and thus the

MTM estimator (θ̂1, . . . , θ̂k) can be viewed as an M -estimator. �

Note 2.2 It is possible that equations (2.3) do not have a solution, or that they are difficult to solve

even numerically when k is large due to stability problems. To alleviate the problem, the functions

hj have to be chosen thoughtfully. On the other hand, most claim severity distributions have a small

number k of parameters, frequently not exceeding three (see Klugman et al ., 2004, Appendix A), and

thus solving equations (2.3) does not usually present computational challenges. �

2.2 Asymptotic properties

The sample trimmed moments in equation (2.1) can be viewed as special cases of trimmed L-statistics,

whose joint asymptotic normality is analyzed in detail by Brazauskas, Jones and Zitikis (2007). It

follows from the latter work that the k-variate vector (
√

n (µ̂1 − µ1), . . . ,
√

n (µ̂k − µk)) converges in
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distribution to the k-variate normal random vector with the mean 0 = (0, . . . , 0) and the covariance-

variance matrix Σ :=
[
σ2

ij

]k

i,j=1
with the entries

σ2
ij =

1

(1 − ai − bi)(1 − aj − bj)

∫ 1−bi

ai

∫ 1−bj

aj

(
min{u, v} − uv

)
dhj

(
F−1(v)

)
dhi

(
F−1(u)

)
. (2.4)

Following Serfling (1980, p. 20), this asymptotic normality statement can be written concisely as

(µ̂1, . . . , µ̂k) ∼ AN
(
(µ1, . . . , µk), n−1 Σ

)
. (2.5)

Using statement (2.5), we can derive the asymptotic distribution of the MTM estimators. Indeed,

the delta method (see, e.g., Serfling, 1980, Section 3.3) implies that the MTM estimator (θ̂1, . . . , θ̂k)

is asymptotically normal with the mean (θ1, . . . , θk) and the covariance-variance matrix n−1 DΣD′,

where D = [dij ]
k
i,j=1 is the Jacobian of the transformations g1, . . . , gk evaluated at (µ1, . . . , µk), that

is, dij = ∂gi/∂µ̂j

∣∣
(µ1,...,µk)

. In summary, we have that

(
θ̂1, . . . , θ̂k

)
∼ AN

(
(θ1, . . . , θk), n−1 DΣD′

)
. (2.6)

Statement (2.6) can be used for testing hypotheses, constructing confidence intervals or sets. It can

be incorporated into further (parametric) actuarial modeling, including estimating risk measures,

calculating credibility premiums, pricing reinsurance contracts, analyzing solvency. In contrast, us-

ing specialized derivations of robust estimators, some of the aforementioned applications have been

studied by Brazauskas and Serfling (2000a, 2003), Kaiser and Brazauskas (2006), and Dornheim and

Brazauskas (2007).

2.3 Choosing hj, aj, and bj

To start with, note that the choices hj(t) = tj, j = 1, . . . , k, lead to matching the ‘genuine’ sample and

population trimmed moments, thus justifying the name of ‘method of trimmed moments’. Functions

hj of this type work well for the location-scale families where we choose h1(t) = t and h2(t) = t2.

These choices yield the following explicit expressions






θ̂MTM = µ̂1 − c1 σ̂MTM,

σ̂MTM =
√

(µ̂2 − µ̂2
1)

/
(c2 − c2

1)
(2.7)
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of the MTM estimators of θ (location) and σ (scale), where µ̂j = (n−mn(j)−m∗

n(j))−1
∑n−m∗

n(j)
i=mn(j)+1 Xj

i:n

and cj ≡ cj(F0, aj , bj) := (1 − aj − bj)
−1

∫ 1−bj

aj

[
F−1

0 (u)
]j

du, where F−1
0 is the standard (i.e., with

θ = 0 and σ = 1) quantile function of the underlying location-scale family. The constants cj can be

evaluated using, for example, the so-called trapezoidal rule. We refer to subsection 3.1 below for a

complete derivation of estimators (2.7) and numerical evaluations of robustness-efficiency tradeoffs.

In the case of claim severity distributions, which are typically asymmetric and have non-zero

densities only on the positive half-line, other choices of hj may be more appropriate. For example,

upon first observing that the logarithmic transformation converts a number of loss models into a

location-scale family, we arrive at the choices h1(t) = log t and h2(t) = (log t)2. In this case, the

only change needed in formulas (2.7) is the computation of empirical trimmed moments, which are

now given by µ̂j = (n − mn(j) − m∗

n(j))−1
∑n−m∗

n(j)
i=mn(j)+1

[
log Xi:n

]j
. The constants c1 and c2 remain

unchanged. Examples of log-location-scale distributions include lognormal, log-t, log-logistic, and

Weibull. Indeed, after the logarithmic transformation, these distributions become normal, Student’s t,

logistic, and Gumbel (extreme-value), respectively. Furthermore, using h(t) = log t is also appropriate

for the single-parameter Pareto distribution because the log-Pareto distribution is shifted-exponential

with a known location.

Of course, not all distributions can be transformed into a location-scale family and thus other

ideas have to be explored. For example, in the case of the gamma distribution, we can use the same

functions h1(t) = t and h2(t) = t but different trimming proportions (a1, b1) and (a2, b2). This gives

a closed form expression for the MTM estimator of the scale parameter β but the shape parameter α

requires solving the nonlinear equation

c1(α) µ̂2 − c2(α) µ̂1 = 0, (2.8)

where µ̂j = (n − mn(j) − m∗

n(j))−1
∑n−m∗

n(j)
i=mn(j)+1 Xi:n and cj(α) = (1 − aj − bj)

−1
∫ 1−bj

aj
F−1

α (u) du

with F−1
α (u) denoting the quantile function of the gamma distribution with β = 1. A solution of

(2.8), which we denote by α̂MTM, is then used to estimate the parameter β, giving the estimator

β̂MTM = µ̂1/c1(α̂MTM). The same idea can also be employed for other claim severity distributions

with nonlinear (in terms of parameters) representations of their quantile functions. Such distributions
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include log-gamma, two-parameter Pareto, and generalized Pareto. In general, if hj is a power function,

derivations of (2.2) and (2.3) are more straightforward when the exponent is as small as possible. The

choices hj(t) = tj and aj = bj = 0 for all j = 1, . . . , k lead of course to the classical method of

moments.

As to choosing the trimming proportions aj and bj, there is no rigorous answer to this problem as

it depends on how much robustness we need. Typically in such situations, we make a choice based on

how much efficiency we are willing to sacrifice. Choosing proportions also requires some experience

and intuition. The following general points provide useful hints:

• Robustness of the entire estimation procedure is determined by the least trimmed moments.

That is, the MTM estimators remain resistant against the proportion a∗ = min{a1, . . . , ak} of

lowest observations and against the proportion b∗ = min{b1, . . . , bk} of highest observations.

• For location-scale families and their variants such as log-location-scale families, the quantile-

quantile (QQ-) plot may serve as an excellent guide when choosing aj and bj (see Section 6 for

an illustration). The QQ-plot would not, however, be appropriate for other distributions.

• The trimming proportions can also be chosen based on the ‘outside of the model’ knowledge. For

example, the actuary may employ the (re)insurance contract’s specifications. For an illustration,

see Section 6.

Hence, in view of the above, we see that the MTM is fairly flexible and allows us to work with

various combinations of hj, aj , and bj , depending on the problem at hand. Throughout the rest of the

paper we shall analyze a number of specific distributions using the MTM and in this way gain further

intuition on how to construct and analyze MTM estimators.

3 Examples: three parametric models

In this section, we analyze three examples: the first one concerns the general (i.e., not necessarily

symmetric) location-scale family, and the other two examples focus on the Pareto and lognormal

distributions. Specifically, in the three examples we show how to find MTM estimators and derive the

entries of the asymptotic covariance-variance matrix. For the Pareto and lognormal distributions, we
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also evaluate the asymptotic relative efficiency (ARE)

ARE(MTM, MLE) =
asymptotic variance of MLE

asymptotic variance of an MTM estimator

of the MTM estimators with respect to the maximum likelihood estimator (MLE). In the multivariate

case, the ARE is defined by replacing the two variances by the corresponding generalized variances,

which are the determinants of the asymptotic covariance-variance matrices of vector-estimators, and

then raise the ratio to the power 1/k. For details on these issues, we refer, for example, to Serfling

(1980, Section 4.1).

3.1 Location-scale families

Let X1, . . . ,Xn be i.i.d. random variables, each with the same distribution

Location-scale: F (x) = F0

(
x − θ

σ

)
, −∞ < x < ∞, (3.1)

where −∞ < θ < ∞ and σ > 0 are unknown parameters, and F0 is the standard (i.e., with θ = 0 and

σ = 1) parameter-free version of F . The corresponding quantile function is F−1(t) = θ + σF−1
0 (t).

Since the cdf F has two unknown parameters, we employ two trimmed moments. There is no restriction

on the real values of θ and we so choose h1(t) = t, but to ensure that the estimator of σ > 0 is positive,

we choose h2(t) = t2. Following the procedure of Section 2, we have

µ̂1 =
1

n − mn(1) − m∗

n(1)

n−m∗

n(1)∑

i=mn(1)+1

Xi:n,

µ̂2 =
1

n − mn(2) − m∗

n(2)

n−m∗

n(2)∑

i=mn(2)+1

X2
i:n

with mn(1)/n = mn(2)/n → a and m∗

n(1)/n = m∗

n(2)/n → b.

Note 3.1 We can of course consider more general trimming such as mn(1) 6= mn(2) and/or m∗

n(1) 6=

m∗

n(2). Recall, however, that robustness of the entire procedure is determined by the least trimmed

moments. Thus, for example, choosing mn(2) > mn(1) and m∗

n(2) > m∗

n(1) yields MTM estimators

with the breakdown points (i.e., degrees of resistance to outliers) of mn(1)/n and m∗

n(1)/n, respectively,

but with usually smaller efficiency than in the cases mn(1)/n = mn(2)/n and m∗

n(1)/n = m∗

n(2)/n. �
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As our next step in deriving MTM estimators, we calculate the population trimmed moments using

equation (2.2) and obtain

µ1 := µ1(θ, σ) =
1

1 − a − b

∫ 1−b

a
F−1(u) du = θ + σ c1,

µ2 := µ2(θ, σ) =
1

1 − a − b

∫ 1−b

a

[
F−1(u)

]2
du = θ2 + 2θσ c1 + σ2 c2,

where

ck ≡ ck(F0, a, b) :=
1

1 − a − b

∫ 1−b

a

[
F−1

0 (u)
]k

du.

Equating µ̂1 to µ1 and µ̂2 to µ2, and then solving the resulting system of equations with respect to θ

and σ, we obtain the MTM estimators






θ̂MTM = µ̂1 − c1 σ̂MTM =: g1(µ̂1, µ̂2)

σ̂MTM =
√

(µ̂2 − µ̂2
1)

/
(c2 − c2

1) =: g2(µ̂1, µ̂2).
(3.2)

The entries of the covariance-variance matrix Σ calculated using equation (2.4) are

σ2
11 =

σ2

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
dF−1

0 (v) dF−1
0 (u)

= σ2 c∗1,

σ2
12 =

2θσ2

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
dF−1

0 (v) dF−1
0 (u)

+
2σ3

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
F−1

0 (u) dF−1
0 (v) dF−1

0 (u)

= 2θσ2 c∗1 + 2σ3 c∗2,

σ2
22 =

4θ2σ2

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
dF−1

0 (v) dF−1
0 (u)

+
8θσ3

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
F−1

0 (u) dF−1
0 (v) dF−1

0 (u)

+
4σ4

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
F−1

0 (u)F−1
0 (v) dF−1

0 (v) dF−1
0 (u)

= 4θ2σ2 c∗1 + 8θσ3 c∗2 + 4σ4 c∗3

with the obvious notation for c∗k ≡ c∗k(F0, a, b), which can be written in terms of the earlier introduced

constants ck (see Appendix A for details). The entries of the matrix D are found by differentiating
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the functions gi (see equations (3.2)):

d11 =
∂g1

∂µ̂1

∣∣∣∣∣
(µ1,µ2)

= 1 − c1
∂g2

∂µ̂1

∣∣∣∣∣
(µ1,µ2)

=
c1θ + c2σ

σ(c2 − c2
1)

,

d12 =
∂g1

∂µ̂2

∣∣∣∣∣
(µ1,µ2)

= −c1
∂g2

∂µ̂1

∣∣∣∣∣
(µ1,µ2)

=
−0.5c1

σ(c2 − c2
1)

,

d21 =
∂g2

∂µ̂1

∣∣∣∣∣
(µ1,µ2)

=
−µ̂1√

(µ̂2 − µ̂2
1)

/
(c2 − c2

1)

∣∣∣∣∣
(µ1,µ2)

=
−θ − c1σ

σ(c2 − c2
1)

,

d22 =
∂g2

∂µ̂2

∣∣∣∣∣
(µ1,µ2)

=
0.5√

(µ̂2 − µ̂2
1)

/
(c2 − c2

1)

∣∣∣∣∣
(µ1,µ2)

=
0.5

σ(c2 − c2
1)

.

Consequently,

DΣD′ =

[
d11 d12

d21 d22

][
σ2 c∗1 2θσ2 c∗1 + 2σ3 c∗2

2θσ2 c∗1 + 2σ3 c∗2 4θ2σ2 c∗1 + 8θσ3 c∗2 + 4σ4 c∗3

] [
d11 d21

d12 d22

]

=
σ2

(c2 − c2
1)

2

[
c∗1c

2
2 − 2c1c2c

∗

2 + c2
1c

∗

3 −c∗1c1c2 + c2c
∗

2 + c2
1c

∗

2 − c1c
∗

3

−c∗1c1c2 + c2c
∗

2 + c2
1c

∗

2 − c1c
∗

3 c∗1c
2
1 − 2c1c

∗

2 + c∗3

]
. (3.3)

We summarize the above findings by saying that

(
θ̂MTM, σ̂MTM

)
∼ AN

(
(θ, σ),

σ2

n
S

)
with S = σ−2DΣD′. (3.4)

Note that the matrix S does not depend on any unknown parameters and can be expressed in terms

of F0, a and b, which are specified by the researcher.

3.2 Pareto model

Let X1, . . . ,Xn be i.i.d. random variables, each with the same Pareto distribution

Pareto(x0, α) : F (x) = 1 −
(

x

x0

)
−α

, x > x0, (3.5)

where α > 0 is an unknown parameter and x0 > 0 is assumed to be known. (The x0 can, for

example, be interpreted as a deductible or a retention level.) The corresponding quantile function is

F−1(t) = x0(1−t)−1/α. Since F has only one unknown parameter, we need only one trimmed moment.

As mentioned in Section 2, the choice h1(t) = log(t/x0) is appropriate in this case.
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Note 3.2 A hint about using the logarithmic function comes from the fact that if X is Pareto(x0, α)

with the cdf defined by equation (3.5), then Z = log X is a shifted-exponential variable with the cdf

G(z) = 1 − e−(z−z0)/θ, z > z0, where z0 = log x0 and θ = α−1. Hence, α−1 represents the unknown

part of the mean of Z and can thus be naturally estimated with a trimmed mean. The relationship

between the Pareto and shifted-exponential distributions has been utilized by Brazauskas and Serfling

(2000a,b, 2003) when developing a robust estimation technique for the Pareto(x0, α) model. �

Having thus chosen the function h1(t) = log(t/x0), we follow the procedure of Section 2 and have

µ̂1 =
1

n − mn(1) − m∗

n(1)

n−m∗

n(1)∑

i=mn(1)+1

log(Xi:n/x0)

with mn(1)/n → a and m∗

n(1)/n → b. The corresponding population trimmed moment is

µ1 := µ1(α) =
1

1 − a − b

∫ 1−b

a
log(F−1(u)/x0) du

=
−1/α

1 − a − b

∫ 1−b

a
log(1 − u) du

=
−1/α

1 − a − b
I0(a, 1 − b)

with the obvious notation for the function I0. Equating µ̂1 to µ1 and then solving the equation with

respect to α yields the MTM estimator

α̂MTM =

(−I0(a, 1 − b)

1 − a − b

)
1

µ̂1
=: g1(µ̂1). (3.6)

The entries of the matrices Σ and D, which are one-dimensional, are as follows. For calculating Σ we

use equation (2.4) and obtain

σ2
11 =

1/α2

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

min{u, v} − uv

(1 − u)(1 − v)
dv du

=
1/α2

(1 − a − b)2
J
(
(a, 1 − b), (a, 1 − b)

)

with the obvious notation for the function J . The Jacobian D is found by differentiating the function

g1 (see equation (3.6)) and then evaluating its derivative at µ1:

∂g1

∂µ̂1

∣∣∣∣∣
µ1

=

(
I0(a, 1 − b)

1 − a − b

)
1

µ̂2
1

∣∣∣∣∣
µ1

=

(
1 − a − b

I0(a, 1 − b)

)
α2.
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Hence,

DΣD′ =
J
(
(a, 1 − b), (a, 1 − b)

)
[
I0(a, 1 − b)

]2 α2.

Summarizing the above findings, we have that

α̂MTM ∼ AN
(

α,
α2

n
C

)
with C =

J
(
(a, 1 − b), (a, 1 − b)

)
[
I0(a, 1 − b)

]2 . (3.7)

We conclude this Paretian subsection with an investigation of how much efficiency we lose because of

using α̂MTM and not the MLE when estimating α. Since the MLE is α̂MLE = n/
∑n

i=1 log(Xi/x0), which

is AN (α, α2/n) (see, e.g., Brazauskas and Serfling, 2000a), we have that ARE(α̂MTM, α̂MLE) = 1/C.

Note 3.3 When mn(1) = m∗

n(1) = 0, then the MTM estimator (3.6) becomes α̂MLE. Furthermore,

note that since C → 1 when a = b → 0, the MLE’s asymptotic distribution follows from (3.7). �

Numerical values of these ARE’s are provided in Table 3.1 for several trimming proportions a

and b. For example, we see from Table 3.1 that when b is fixed, then the MTM estimators with no

b
a 0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 1 .918 .847 .783 .666 .423 .238 .116

0.05 1.00 .918 .848 .783 .667 .425 .242 .122

0.10 1.00 .918 .848 .785 .669 .430 .250 .135

0.15 .999 .919 .850 .787 .672 .437 .261 –

0.25 .995 .918 .851 .790 .679 .452 .285 –

0.49 .958 .897 .839 .786 .688 .487 – –
0.70 .857 .824 .781 .738 .659 – – –
0.85 .681 .688 .663 – – – – –

Table 3.1: ARE(α̂MTM, α̂MLE) for selected a and b, with the boxed numbers highlighting the case a = b.

lower trimming (i.e., a = 0) and with symmetric trimming (i.e., a = b) are almost equivalent. When

b = 0 (i.e., no upper trimming), then the efficiency decreases slowly. Moreover, the MTM allows

some very extreme trimming scenarios yielding valid though inefficient estimators. For instance, α̂MTM

with a = b = 0.49 is practically a percentile (i.e., median) matching estimator described by Klugman,

Panjer and Willmot (2004, Section 12.1), which has about 49% efficiency. This estimator uses actual

values of only 2% of the data. Interestingly, α̂MTM with (a, b) = (0.10, 0.85) and (a, b) = (0.85, 0.10)

are both based on 5% of actual observations but have dramatically different efficiencies: 0.135 and

13



0.663, respectively. This implies that the accuracy of estimators depends not only on the fraction

of the used actual data but also where the data is located in the sample. Certainly, this note just

confirms the well-known fact that most information about the parameter α is contained in the upper

tail of Pareto(x0, α).

3.3 Lognormal model

Let X1, . . . ,Xn be i.i.d. random variables, each with the same lognormal distribution

LN(x0, θ, σ): F (x) = Φ

(
log(x − x0) − θ

σ

)
, x > x0, (3.8)

where −∞ < θ < ∞ and σ > 0 are unknown parameters with Φ denoting the standard normal cdf.

The parameter x0 is assumed to be known and it can be interpreted as in the Pareto case noted

above. Since the logarithmic transformation makes this distribution normal, which is a member of

the location-scale family, results of Section 3.1 apply with two modifications: h1(t) = log(t − x0) and

h2(t) = log2(t − x0). Hence, the MTM estimators of θ and σ are






θ̂MTM = µ̂1 − c1 σ̂MTM,

σ̂MTM =
√

(µ̂2 − µ̂2
1)

/
(c2 − c2

1).
(3.9)

The sample trimmed moments are

µ̂1 =
1

n − mn(1) − m∗

n(1)

n−m∗

n(1)∑

i=mn(1)+1

log(Xi:n − x0),

µ̂2 =
1

n − mn(2) − m∗

n(2)

n−m∗

n(2)∑

i=mn(2)+1

[
log(Xi:n − x0)

]2

with mn(1)/n = mn(2)/n → a and m∗

n(1)/n = m∗

n(2)/n → b. As follows from statement (3.4),

(
θ̂MTM, σ̂MTM

)
∼ AN

(
(θ, σ),

σ2

n
S

)
with S = σ−2DΣD′, (3.10)

where DΣD′ is given by equation (3.3) but now with the standard normal F0 instead of the therein

used standardized location-scale distribution.

We next examine how much efficiency is lost because of using (θ̂MTM, σ̂MTM) instead of the MLE’s





θ̂MLE = n−1
∑n

i=1 log(Xi − x0),

σ̂MLE =
√

n−1
∑n

i=1

(
log(Xi − x0) − θ̂MLE

)2
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when estimating (θ, σ). We know (see, e.g., Serfling, 2002) that

(
θ̂MLE, σ̂MLE

)
∼ AN

(
(θ, σ),

σ2

n
S0

)
with S0 =

[
1 0

0 1/2

]

.

Hence, it follows that ARE((θ̂MTM, σ̂MTM), (θ̂MLE, σ̂MLE)), which is (det(S0)
/
det(S))1/2 by definition, is

equal to
(
0.5

/
det(S)

)1/2
.

Note 3.4 When mn(1) = m∗

n(1) = mn(2) = m∗

n(2) = 0, then the MTM estimators (3.9) become

(θ̂MLE, σ̂MLE). Also note that since S → S0 when a = b → 0, then the MLE’s asymptotic distribution

follows from statement (3.10). �

Numerical values of the ARE’s are provided in Table 3.2 for selected values of a and b. Note

b
a 0 0.05 0.10 0.15 0.25 0.49 0.70 0.85

0 1 .932 .874 .821 .722 .502 .312 .169

0.05 .932 .872 .820 .771 .678 .470 .286 .142

0.10 .874 .820 .769 .722 .633 .430 .248 .097

0.15 .821 .771 .722 .676 .590 .390 .208 –

0.25 .722 .678 .633 .590 .507 .312 .113 –

0.49 .502 .470 .430 .390 .312 .074 – –
0.70 .312 .286 .248 .208 .113 – – –
0.85 .169 .142 .097 – – – – –

Table 3.2: ARE((θ̂MTM, σ̂MTM),
(
θ̂MLE, σ̂MLE)) for selected a and b, with the boxed numbers highlighting

the case a = b.

from Table 3.2 that since the logarithmic transformation of the lognormal random variables makes

the variable normal, which is symmetric, we can expect similar performance of the MTM estimators

with similar trimming schemes. For example, the ARE’s are identical for the MTM estimators with

reversed trimming proportions: e.g., (a, b) = (0.05, 0.25) has ARE = 0.678 and (a, b) = (0.25, 0.05)

also has ARE = 0.678. In fact, we notice that the MTM estimators based on the same fraction of

actual observations (i.e., having same a + b) have similar ARE’s:

• (a, b) = (0.10, 0.15) has ARE = 0.722 and (a, b) = (0.25, 0.00) has ARE = 0.722.

• (a, b) = (0.15, 0.15) has ARE = 0.676 and (a, b) = (0.05, 0.25) has ARE = 0.678.
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• (a, b) = (0.85, 0.10) has ARE = 0.097 and (a, b) = (0.25, 0.70) has ARE = 0.113.

The trimming schemes that focus exclusively on data in the center (i.e., when a = b) are known to

be efficient for estimating the location/center but not necessarily for estimating the scale. For the

joint estimation of θ and σ, we observe that inefficiency of σ estimators dominates the overall ARE:

a = b = 0.05 has ARE = 0.872 (good); a = b = 0.25 has ARE = 0.507 (moderate); a = b = 0.49 has

ARE = 0.074 (very poor). In comparison with the latter case, note that the median estimator of θ is

almost 10 times more efficient: ARE = 0.637.

We conclude this section with a note on a similar type of study by Serfling (2002) where a gen-

eralized median (GM) estimator is proposed in the case of the lognormal distribution. For a fixed

breakdown point (fixed a and b in our case), the GM estimator is more efficient than the MTM es-

timator. However, the latter estimator is more flexible (e.g., it can provide asymmetric protection

against upper and lower outliers) and is not computationally demanding. The flexibility issue of the

GM estimator can be alleviated by considering a generalized quantile (GQ) estimator of which the

GM is a special case. This has been accomplished by Brazauskas and Serfling (2000b) in the Pareto

and exponential cases. There we also find suggestions on how to reduce the computational burden of

the GQ and GM estimators.

4 Combined MTM estimators

Here we suggest a natural extension of the MTM, which we call the combined method of trimmed

moments (CMTM). The main idea is as follows. Using trimmed moments of various orders, we generate

a set of different estimators for the same parameter θ. Denote the estimators by θ̂1, . . . , θ̂k. It follows

from Section 2 (see equation (2.6)) that (θ̂1, . . . , θ̂k) ∼ AN ((θ, . . . , θ), n−1Σ∗), where the covariance-

variance matrix Σ∗ = DΣD′ may depend on θ. Next we combine these estimators of θ in some way

hoping to get an estimator of θ with a smaller variance than that of the best one estimator among

θ̂1, . . . , θ̂k. For example, consider the linear combination of the estimators (see, e.g., Serfling, 1980,

Section 3.4.3)

̂̂
θ =

k∑

i=1

wiθ̂i, (4.1)
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where the weight vector w = (w1, . . . , wk) is such that w1 + · · · + wk = 1. The estimator
̂̂
θ is

AN (θ, n−1wΣ∗w
′). Since our criterion is based on minimizing the variance, we choose the weights

wi so that the quadratic form wΣ∗w
′ is minimized subject to the constraint

∑k
i=1 wi = 1. Assuming

without loss of generality that Σ∗ is nonsingular, a standard variational technique implies that the

minimum is attained and is equal to

w0Σ∗w
′

0 =
1

(1, . . . , 1)Σ−1
∗ (1, . . . , 1)′

with w0 =
(1, . . . , 1)Σ−1

∗

(1, . . . , 1)Σ−1
∗ (1, . . . , 1)′

, (4.2)

where (1, . . . , 1) is the 1 × k vector of ones.

Note 4.1 General situations addressing the case when the matrix Σ∗ depends on θ and when the

parameter θ itself is a vector are discussed by Soong (1969), who studied combined classical (i.e.,

untrimmed) moment estimators with the aim of improving their efficiency. �

Note 4.2 When θ is a scale parameter, the covariance-variance matrix Σ∗ is of the form θ2Σ∗∗,

where Σ∗∗ does not depend on θ. Thus, (θ̂1, . . . , θ̂k) ∼ AN ((θ, . . . , θ), n−1θ2Σ∗∗). This implies

that estimating θ is within the framework of problems studied (though in a different context) by

Brazauskas and Ghorai (2007). Namely, the authors consider a number of asymptotically (when

k → ∞) efficient estimators of θ and examine their sensitivity to various model misspecification

scenarios. The estimators presented by these authors are asymptotically optimal and can be applied

in the current research but they are nonlinear and require a large k to achieve the asymptotic normality

and unbiasedness of the combined estimator. Hence, the CMTM estimator given by equation (4.1) is

preferred in the current project. �

The main benefit of using the combined estimator
̂̂
θ instead of the most efficient but typically

least robust estimator among θ̂1, . . . , θ̂k is that the combined estimator allows us to estimate θ more

efficiently while still maintaining the chosen degree of robustness. For example, if 25% resistance

against both upper and lower outliers is desirable, we select k estimators, each with 0.25 ≤ a < 1−b ≤

0.75, and then combine them according to (4.1). We shall next provide a numerical illustration of how

this works in the case of the single-parameter Pareto distribution. Namely, following subsection 3.2,
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we start with the sample trimmed moments

µ̂j =
1

n − mn(j) − m∗

n(j)

n−m∗

n(j)∑

i=mn(j)+1

log(Xi:n/x0), j = 1, . . . , k,

where mn(j)/n → aj and m∗

n(j)/n → bj . We equate these empirical moments to the corresponding

population trimmed moments

µj := µj(α) =
−1/α

1 − aj − bj
I0(aj , 1 − bj), j = 1, . . . , k,

where an explicit formula for I0 is given in Appendix A. Solving the resulting system of equations

yields the following MTM estimators of α:

α̂MTM, j =

(−I0(aj , 1 − bj)

1 − aj − bj

)
1

µ̂j
=: gj(µ̂j), j = 1, . . . , k.

The entries of the covariance-variance matrix Σ and the Jacobian D are found by straightforward

computations and we arrive at the equation

DΣD′ = α2

[
J
(
(aj , 1 − bj), (ai, 1 − bi)

)

I0(ai, 1 − bi) I0(aj , 1 − bj)

]k

i,j=1

=: α2∆,

where J is given in Appendix A depending on the order of the four proportions ai, aj , 1 − bi, 1 − bj .

Thus, the matrix ∆ is completely specified and can be expressed in terms of the proportions ai and

bi. In summary, we have that

(
α̂MTM, 1, . . . , α̂MTM, k

)
∼ AN

(
(α, . . . , α),

α2

n
∆

)
.

An application of equations (4.1) to the estimators α̂MTM, 1, . . . , α̂MTM, k yields that

̂̂α =

k∑

i=1

w∗

i α̂MTM, i ∼ AN
(

α,
α2

n

1

(1, . . . , 1)∆−1(1, . . . , 1)′

)
,

where

(w∗

1, . . . , w
∗

k) =
(1, . . . , 1)∆−1

(1, . . . , 1)∆−1(1, . . . , 1)′
.

From this we have that ARE(̂̂α, α̂MLE) = (1, . . . , 1)∆−1(1, . . . , 1)′.

We shall next numerically investigate (see Table 4.1 below) the ARE’s for various combined esti-

mators and values of k, as follows:
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• ̂̂α1 combines k symmetrically trimmed estimators with b = a = 0.05 : 0.02 : 0.05 + 0.02(k − 1)

for k = 1, . . . , 5, 10, 15, 20.

For example, when k = 3, this estimator combines α̂MTM’s with a1 = b1 = 0.05, a2 = b2 = 0.07, and

a3 = b3 = 0.09. Thus, its overall lower and upper breakdown points are a∗ = min{a1, a2, a3} = 0.05

and b∗ = min{b1, b2, b3} = 0.05, respectively. Next, to see how important is the choice of component

estimators, we consider

• ̂̂α2 (it has same robustness properties as ̂̂α1) which combines α̂MTM’s with a = 0.05 : 0.02 :

0.05 + 0.02(k − 1) and b1 = · · · = bk = 0.05 for k = 1, . . . , 5, 10, 15, 20.

The other three combined estimators are defined as follows:

• ̂̂α3 combines α̂MTM’s with a = 0.10 : 0.015 : 0.10 + 0.015(k − 1) and b = 0.15 : 0.015 : 0.15 +

0.015(k − 1).

• ̂̂α4 combines α̂MTM’s with a = 0.25 : 0.01 : 0.25 + 0.01(k − 1) and b = a.

• ̂̂α5 combines α̂MTM’s with a = 0.10 : 0.01 : 0.10+0.01(k−1) and b = 0.49 : 0.01 : 0.49+0.01(k−1).

We see from Table 4.1 that for a combined estimator with fixed robustness properties (i.e., fixed

minimum a and b) the ARE as a function of k becomes flat as k increases. In almost all cases, the

Breakdown points k
Estimators Lower(a∗) Upper(b∗) 1 2 3 4 5 10 15 20

̂̂α1 0.05 0.05 .918 .945 .945 .945 .945 .945 .945 .945
̂̂α2 0.05 0.05 .918 .918 .918 .918 .919 .920 .921 .922
̂̂α3 0.10 0.15 .785 .844 .845 .845 .845 .845 .845 .845
̂̂α4 0.25 0.25 .679 .741 .742 .742 .742 .742 .742 .742
̂̂α5 0.10 0.49 .430 .492 .493 .493 .493 .493 .493 .493

Table 4.1: ARE(̂̂α, α̂MLE) for various combined estimators and selected k.

main improvement occurs when a combined estimator with k = 2 is used instead of a non-combined

estimator (k = 1), and there is no additional benefit (up to 3 decimal places) when using ̂̂α with

k ≥ 4 instead of k = 3. A comparison of ̂̂α1 and ̂̂α2 shows that the choice of component estimators is

important. The α̂MTM estimators included in ̂̂α2 all have b = 0.05. As we see from Table 4.1, all MTM
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estimators with b = 0.05 have extremely similar and high ARE’s. This means that they contribute

virtually identical information to the combined estimator and, therefore, the ARE of ̂̂α does not get

better. This provides a hint on how to select component estimators. Namely, they should satisfy the

initially specified robustness requirements and they should also have as different ARE’s as possible.

Finally, the strategy of combining MTM estimators is most beneficial for highly robust but inefficient

estimators and less so for less robust but highly efficient estimators. Indeed, when we use a combined

estimator with k = 3 instead of the non-combined (k = 1), the ARE is improved by 3% for ̂̂α1, by 8%

for ̂̂α3, by 9% for ̂̂α4, and by 15% for ̂̂α5.

5 Simulations

Here we supplement our theoretical results concerning the MTM and CMTM estimators with their

finite-sample performance evaluations. The objective is to see how large the sample size n should be

for the estimators to achieve (asymptotic) unbiasedness and for their finite-sample relative efficiency

(RE) to reach the corresponding ARE level. The univariate and multivariate RE definitions are similar

to those of the ARE except that we now want to account for possible bias, which we do by replacing

all entries in the covariance-variance matrix by the corresponding mean-squared errors.

From a specified distribution F (i.e., Pareto and lognormal) we generate 10,000 samples of a

specified length n using Monte Carlo. For each sample we estimate the parameters of F using various

MTM estimators and then compute the average mean and RE of those 10,000 estimates. This process

is repeated 10 times and the 10 average means and the 10 RE’s are again averaged and their standard

deviations are reported. (Such repetitions are useful for assessing standard errors of the estimated

means and RE’s. Hence, our findings are essentially based on 100,000 samples.) The standardized

MEAN that we report is defined as the average of 100,000 estimates divided by the true value of the

parameter that we are estimating. The standard error is standardized in a similar manner.

We start our simulation study with the Pareto distribution Pareto(x0 = 1, α = 0.50) using the

following parameters:

• Sample size: n = 50, 100, 250, 500, 1000.

• Estimators of α:
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– MLE (corresponds to MTM with a = b = 0).

– MTM with: a = b = 0.05; a = b = 0.10; a = b = 0.25; a = b = 0.49;

a = 0.10 and b = 0.70; a = 0.25 and b = 0.00.

– Combined MTM with: k = 3 (a = b = 0.25 : 0.02 : 0.29) and

k = 9 (a = b = 0.25 : 0.02 : 0.41).

Simulation results are recorded in Table 5.1. The entries of the last column of the table are included

n
a b 50 100 250 500 1000 ∞

MEAN 0 0 1.02(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.05 0.05 0.99(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.10 0.10 1.01(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.25 0.25 1.01(.001) 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
0.49 0.49 1.03(.001) 1.01(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1
0.10 0.70 1.04(.001) 1.02(.001) 1.01(.000) 1.00(.000) 1.00(.000) 1
0.25 0.00 1.03(.000) 1.01(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1
Combined 3 1.00(.001) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1
Combined 9 1.00(.001) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1

RE 0 0 0.92(.005) 0.96(.004) 0.98(.004) 1.00(.004) 1.00(.002) 1
0.05 0.05 0.90(.005) 0.92(.006) 0.92(.004) 0.92(.003) 0.92(.003) 0.918
0.10 0.10 0.80(.005) 0.83(.005) 0.84(.004) 0.85(.002) 0.85(.003) 0.848
0.25 0.25 0.65(.004) 0.65(.004) 0.68(.003) 0.68(.002) 0.68(.002) 0.679
0.49 0.49 0.43(.004) 0.45(.002) 0.47(.002) 0.48(.002) 0.49(.001) 0.487
0.10 0.70 0.21(.002) 0.23(.001) 0.24(.001) 0.25(.001) 0.25(.001) 0.250
0.25 0.00 0.87(.005) 0.95(.004) 0.97(.004) 0.99(.004) 0.99(.002) 0.995
Combined 3 0.71(.004) 0.73(.004) 0.74(.004) 0.74(.002) 0.74(.002) 0.742
Combined 9 0.71(.004) 0.73(.004) 0.74(.004) 0.74(.002) 0.74(.002) 0.742

Table 5.1: Standardized MEAN and RE in the Pareto case. The entries are mean values (with standard
errors in parentheses) based on 100,000 samples.

for completeness and are found in Sections 3 and 4, not from simulations. We see that the MEAN

of all Pareto α estimators converges to the parameter α very fast, mostly overestimating it by a few

percentage points for n = 50 and 100. The bias practically disappears when n ≥ 500. Note how

fast the asymptotic unbiasedness is reached by the combined estimators. The RE’s converge to their

asymptotic counterparts slower. The relative efficiency of the MLE (i.e., a = b = 0) achieves its ARE

level only for n ≥ 500. Other estimators’ RE’s practically reach their ARE levels at n ≥ 250, some

even at n = 100. Note also how similar is the performance of the two combined estimators which
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supports the earlier made note that there is essentially nothing to gain by combining more than three

MTM estimators. But, of course, the combined estimators are performing uniformly better than the

corresponding non-combined estimator with a = b = 0.25.

We continue our simulation study with the lognormal distribution LN(x0 = 1, θ = 5, σ = 3) using

the following parameters:

• Sample size: n = 50, 100, 250, 500.

• Estimators of θ, σ:

– MLE (corresponds to MTM with a = b = 0).

– MTM with: a = b = 0.05; a = b = 0.10; a = b = 0.25; a = b = 0.49;

a = 0.10 and b = 0.70; a = 0.25 and b = 0.00.

Simulation results are recorded in Table 5.2. The lognormal distribution has two parameters. Since

n = 50 n = 100 n = 250 n = 500
a b θ σ θ σ θ σ θ σ

MEAN: Mean values of θ̂/θ and of σ̂/σ

0 0 1.00(.000) 0.98(.000) 1.00(.000) 0.99(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)

0.05 0.05 1.00(.000) 1.04(.000) 1.00(.000) 1.01(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)

0.10 0.10 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)

0.25 0.25 1.00(.000) 1.05(.001) 1.00(.000) 1.01(.001) 1.00(.000) 1.01(.000) 1.00(.000) 1.00(.000)

0.49 0.49 1.00(.000) 1.71(.006) 1.00(.000) 0.87(.003) 1.00(.000) 1.24(.002) 1.00(.000) 1.03(.002)

0.10 0.70 1.01(.001) 1.02(.001) 1.01(.001) 1.01(.001) 1.00(.000) 1.01(.001) 1.00(.000) 1.00(.000)

0.25 0.00 0.99(.000) 0.99(.000) 1.00(.000) 0.99(.000) 1.00(.000) 1.00(.000) 1.00(.000) 1.00(.000)

RE: Finite-sample efficiencies of MTMs relative to MLEs

0 0 0.99(.003) 1.00(.002) 1.00(.003) 1.00(.003)

0.05 0.05 0.82(.002) 0.87(.002) 0.87(.003) 0.87(.003)

0.10 0.10 0.77(.002) 0.77(.001) 0.77(.003) 0.77(.003)

0.25 0.25 0.48(.001) 0.50(.001) 0.50(.002) 0.51(.002)

0.49 0.49 0.04(.000) 0.06(.000) 0.07(.000) 0.07(.000)

0.10 0.70 0.24(.001) 0.25(.001) 0.25(.001) 0.25(.001)

0.25 0.00 0.73(.002) 0.72(.002) 0.72(.002) 0.72(.003)

Table 5.2: Standardized MEAN and RE in the lognormal case. The entries are mean values (with
standard errors in parentheses) based on 100,000 samples.

there are more entries to report, we have thus dropped the limiting case n → ∞. We see from Table 5.2
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that all estimators in the lognormal case successfully estimate the location θ. Indeed, they practically

become unbiased for sample sizes as small as n = 50. Estimation of σ, however, reveals a different

story. Although most estimators have less than 1% relative bias for n ≥ 100, the median-based

estimator (i.e., a = b = 0.49) performs very poorly: it has the relative bias of +71% for n = 50, −13%

for n = 100, +24% for n = 250, +3% for n = 500. Nonetheless, the RE remains practically unaffected

by this and attains its corresponding ARE level for n ≥ 100 for all estimators.

6 Real-data illustration

In this section we apply the MTM to analyze the normalized damage amounts from the 30 most

damaging hurricanes in the United States from 1925 to 1995, as recorded by Pielke and Landsea

(1998). The shape of the distribution (see Figure 6.1) is similar to many insurance loss distributions.
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Figure 6.1: The histogram of the top 30 damaging hurricanes.

A preliminary diagnostics, which we have based on a histogram of log-claims and the lognormal QQ-

plot, shows that the lognormal distribution provides a satisfactory, though not perfect, overall fit

to the data. Nevertheless, we view the current exercise as purely illustrative and fit the lognormal

distribution to the data using the MTM approach with two pairs of trimming proportions a and b.

For comparison, we also fit this model using the MLE approach. The resulting fits are illustrated

in the left panel of Figure 6.3 where the models fitted using the MTM are labeled using T1 (which

corresponds to a = b = 14/30) and T2 (which corresponds to a = b = 1/30). The parameter
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estimates and goodness-of-fit measurements appear in Table 6.1. The goodness-of-fit is measured

Estimators Original data Modified data

θ̂ σ̂ Fit θ̂ σ̂ Fit

MLE 2.077 0.834 0.104 2.154 1.098 0.293

T1
(
a = 14

30 , b = 14
30

)
2.037 1.675 0.662 2.037 1.675 0.651

T2
(
a = 1

30 , b = 1
30

)
2.043 0.852 0.101 2.043 0.852 0.178

Table 6.1: Parameter estimates and goodness-of-fit measurements of the lognormal model to the
original and modified hurricane data.

using the mean absolute deviation (1/30)
∑30

j=1 | log F̂−1((j − 0.5)/30) − log Xj:30| between the log-

fitted and log-observed data. It is clear that the parameter estimates and model fits are strongly

dependent on the trimming proportions a and b and thus the proportions should be chosen carefully.

In particular, the T1 estimator is highly robust but very inefficient, with the ARE being only 14%.

The MLE procedure, being most efficient but non-robust, yields a reasonable overall fit, especially

when compared to that of T1. A closer examination of the QQ-plot reveals, however, that only the

smallest and the largest observations do not follow the straight line pattern. Therefore, symmetric

trimming of one observation at each tail leads to the T2 fit which is practically identical to the MLE

fit. To see benefits of robust fitting, we have slightly modified the original data set by replacing the

largest observation 72.303 with 723.03. The resulting fits are illustrated in the right panel of Figure

6.2. The new parameter estimates and goodness-of-fit measurements appear in Table 6.1. As we see,

the T1 and T2 parameter estimates are not affected by the data modification whereas the new MLE

fit is significantly different.

Consider now estimation of the severity component of the pure premium for an insurance benefit

equal to the amount by which a hurricane’s damage exceeds 5 (billion) with a maximum benefit of 20.

That is, if the hurricane damage is X with distribution function F , we seek

Π[F ] =

∫ 25

5
(x − 5) dF (x) + 20(1 − F (25)). (6.1)

Since it is now most important that our fitted distribution captures the behavior of the underlying

damage distribution between 5 and 25, the MTM estimator is most natural with the choices a = 8/30

(which corresponds to the proportion of observations below 5) and b = 3/30 (which corresponds to
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Figure 6.2: Lognormal fits to the original (left panel) and modified (right panel) hurricane data.

the proportion of observations above 25). We denote this MTM estimator by T3. As we see from

Figure 6.3, the overall T3 fit is very similar to those of T2 and MLE but it yields a closer fit than

−2 −1 0 1 2

0

2

4

Standard  Normal  Quantiles

LO
G

 (
 O

bs
er

va
tio

ns
 )

log (25)

log (5)

MLE

T1

T2

T3

Figure 6.3: Lognormal fits to the top 30 damaging hurricanes with the two dotted lines marking the
layer [5, 25].

the latter two procedures over the layer of interest, which is [5, 25]. In Table 6.2 we also provide the

premiums calculated using (6.1) for each fitted model, and we can compare these premiums with the

empirical premium Π[F̂n], where F̂n denotes the empirical distribution function. In addition, Table 6.2

also contains 95% confidence intervals for the premium Π[F ]. For parametric confidence intervals, we
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Estimators Statistical quantities Actuarial premiums

θ̂ σ̂ Restricted fit Estimate Confidence interval

MLE 2.077 0.834 0.054 5.604 (3.368; 7.839)

T1
(
a = 14

30 , b = 14
30

)
2.037 1.675 0.413 7.347 (2.533; 12.161)

T2
(
a = 1

30 , b = 1
30

)
2.043 0.852 0.057 5.437 (3.168; 7.705)

T3
(
a = 8

30 , b = 3
30

)
2.075 0.766 0.042 5.336 (3.065; 7.606)

Empirical — — — 5.416 (3.111; 7.722)

Table 6.2: Parameter estimates, goodness-of-fit measurements (restricted to the data in [5, 25]), point
estimates, and 95% confidence intervals of the pure premium for the layer [5, 25].

use the delta method applied to the transformation of parameter estimators given by equation (6.1)

together with the MTM and MLE asymptotic distributions, which have been discussed earlier. For

constructing the empirical interval, we use the classical central limit theorem and have that

Π[F̂n] ∼ AN
(
Π[F ], n−1V [F ]

)
,

where V [F ] =
∫ 25
5 (x−5)2 dF (x)+400(1−F (25))−(Π[F ])2 . We observe that the MTM estimates with

appropriate trimming proportions (i.e., the estimators T2 and T3) lead to premium estimates that are

closer to the empirical estimate than those obtained with overtrimming (i.e., T1) or undertrimming

(i.e., MLE). Also, the main advantage of parametric procedures (MTM and MLE) over the empirical

approach is that in general they produce shorter confidence intervals for the measures of interest,

though the advantage is minimal in the current example. In summary, the illustration we have provided

in this section exemplifies the idea that the MTM is an appropriate choice for various model-fitting

situations including those when a close fit in one or both tails of the distribution is not required.

7 Summary and conclusions

In this paper, we have introduced and developed two general methods for estimating the parameters

of claim severity distributions: the method of trimmed moments (MTM) and the combined method of

trimmed moments (CMTM). The two methods utilize the underlying principle of the classical method

of moments and their actions on data are easily seen and understood, which is a most appealing feature

from the practical point of view. Furthermore, we have illustrated with examples that the MTM and

CMTM estimators can achieve various degrees of robustness that can easily be controlled by the user,
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thus allowing us to reach a desired balance between robustness and efficiency. A general asymptotic

theory for the new estimators is provided, which makes them readily applicable for constructing

confidence intervals and sets, and for testing hypotheses. The performance of the MTM and CMTM

estimators for several parametric families of loss distributions and various sample sizes has been

investigated in detail. The MTM estimators have also been applied on a real-life data set to analyze

damage amounts caused by major hurricanes. Our considerations have also revealed that calculating

premiums for layers of insurance coverage is a task for which the MTM is particularly natural.
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A Appendix: Auxiliary results

Location-Scale Family

In subsection 3.1 we expressed the entries of the covariance-variance matrix Σ in terms of the constants

c∗k ≡ c∗k(F0, a, b) and then noted that the latter ones can in turn be expressed in terms of the constants

ck. These expressions are as follows:

c∗1 =
1

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
dF−1

0 (v) dF−1
0 (u)

=
1

(1 − a − b)2

{
a(1 − a)

[
F−1

0 (a)
]2

+ b(1 − b)
[
F−1

0 (1 − b)
]2 − 2abF−1

0 (a)F−1
0 (1 − b)

− 2(1 − a − b)
[
aF−1

0 (a) + bF−1
0 (1 − b)

]
c1 − (1 − a − b)2 c2

1 + (1 − a − b) c2

}
,

c∗2 =
1

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
F−1

0 (u) dF−1
0 (v) dF−1

0 (u)

=
1

2(1 − a − b)2

{
a(1 − a)

[
F−1

0 (a)
]3

+ b(1 − b)
[
F−1

0 (1 − b)
]3

− abF−1
0 (a)F−1

0 (1 − b)
[
F−1

0 (a) + F−1
0 (1 − b)

]
− (1 − a − b)

[
a
[
F−1

0 (a)
]2

+ b
[
F−1

0 (1 − b)
]2

]
c1

− (1 − a − b)
[
aF−1

0 (a) + bF−1
0 (1 − b)

]
c2 − (1 − a − b)2 c1 c2 + (1 − a − b) c3

}
,

and

c∗3 =
1

(1 − a − b)2

∫ 1−b

a

∫ 1−b

a

(
min{u, v} − uv

)
F−1

0 (u)F−1
0 (v) dF−1

0 (v) dF−1
0 (u)

=
1

4(1 − a − b)2

{
a(1 − a)

[
F−1

0 (a)
]4

+ b(1 − b)
[
F−1

0 (1 − b)
]4 − 2ab

[
F−1

0 (a)
]2[

F−1
0 (1 − b)

]2

− 2(1 − a − b)
[
a
[
F−1

0 (a)
]2

+ b
[
F−1

0 (1 − b)
]2

]
c2 − (1 − a − b)2 c2

2 + (1 − a − b) c4

}

.
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Pareto Model

In subsection 3.2 we used the functions I0(x, y) and J((x2, y2), (x1, y1)) when obtaining the MTM

estimators for the Pareto parameter α as well as for deriving their asymptotic properties. We next

present explicit formulas for the functions depending on the values of their arguments. Specifically,

for 0 < x < y < 1, we have that

I0(x, y) :=

∫ y

x
log(1 − u) du = (x − y) + (1 − x) log(1 − x) − (1 − y) log(1 − y),

I1(x, y) :=

∫ y

x

u

1 − u
du = (x − y) + log

(
1 − x

1 − y

)
,

I2(x, y) :=

∫ y

x

u2

1 − u
du = I1(x, y) − 0.5(y2 − x2).

As to the entries of the covariance-variance matrix Σ, we have the following expressions for the function

J
(
(x2, y2), (x1, y1)

)
=

∫ y2

x2

∫ y1

x1

min{u, v} − uv

(1 − u)(1 − v)
dv du

depending on the order of its arguments:

• When 0 < x1 ≤ x2 < y2 ≤ y1 < 1, then J((x2, y2), (x1, y1)) is equal to

(y2 − x2)
[
x1 + log(1 − x1)

]
− I0(x2, y2) + (y1 − 1)I1(x2, y2).

• When 0 < x1 < y1 ≤ x2 < y2 < 1, then J((x2, y2), (x1, y1)) is equal to

(y2 − x2)I1(x1, y1).

• When 0 < x1 ≤ x2 < y1 ≤ y2 < 1, then J((x2, y2), (x1, y1)) is equal to

(y1 − x2)
[
x1 + log(1 − x1)

]
− I0(x2, y1) + (y1 − 1)I1(x2, y1) + (y2 − y1)I1(x1, y1).
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