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It is well known that when (re)insurance coverages involve a deductible, the impact of inflation
of loss amounts is distorted, and the changes in claims paid by the (re)insurer cannot be assumed
to reflect the rate of inflation. A particularly interesting phenomenon occurs when losses follow
a Pareto distribution. In this case, the observed loss amounts (those that exceed the deductible)
are identically distributed from year to year even in the presence of inflation. Nevertheless, in this
paper we succeed in estimating the inflation rate from the observations. We develop appropriate
statistical inferential methods to quantify the inflation rate and illustrate them using simulated
data. Our solution hinges on the recognition that the distribution of the number of observed losses
changes from year to year depending on the inflation rate.
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1. Introduction

A number of challenges arise when an insurance policy covers only loss amounts that exceed
a threshold known as the deductible. The insurer typically does not know about losses
that are less than this amount, making appropriate characterization of the loss distribution
impossible. This can even give rise to misleading and/or paradoxical observations about the
distribution.

An interesting example of this has been observed in actuarial practice. A reinsurer
desired to understand the impact of inflation on loss amounts. However, upon exploring
the losses that were reported to the reinsurer, it was found that no inflation was present.
The losses reported to the reinsurer were only those that exceeded a fixed deductible, which
did not change over time as is typically the case. The losses reported in different years had
near identical distributions. Specifically, the reinsurer found that the distribution of reported
losses in each year could be accurately described by the same Pareto distribution. Moreover,



2 Journal of Probability and Statistics

attempts to model inflation by employing various macroeconomic indexes (e.g., consumer
price index) also failed to yield satisfactory results as the reinsurance data was industry
specific. The details of this problem were obtained through personal communications with
reinsurance industry practitioners.

The Pareto distribution arises quite often in modelling insurance losses. This
distribution uniquely possesses a property that gives rise to the reinsurer’s observation
regarding the inflation of loss amounts.

To examine this phenomenon statistically, we simulated losses corresponding to 10
successive years. The numbers of losses in these years is assumed to be independent
Poisson random variables with mean 1000, and all loss amounts are independent. These are
common assumptions in insurance loss modelling. The losses occurring during the jth year
have a Pareto distribution with scale parameter θ = 1.05j−1 and shape parameter α = 2.
These parameter choices were arbitrary but reflect the phenomenon that has been observed.
Throughout the paper, we will use the shorthand Y ∼ Pareto (θ, α) to indicate that a random
variable Y has the Pareto distribution function
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mean given by

E[Y ] =
αθ

α − 1
, α > 1, (1.3)

and median given by

median[Y ] = 21/αθ. (1.4)

So, losses during the jth year are distributed as Pareto (1.05j−1, 2). We assume that the insurer
will pay only the amount of losses that exceed 5 and therefore will be unaware of any losses
that are less than 5. The simulated data are summarized in Figure 1.

The left-hand graph shows box-and-whisker plots of loss amounts in each year. Each
box extends from the first quartile to the third quartile, with the median indicated by the
line inside the box. The whiskers extend to the most extreme observations that are not more
than 1.5 times the interquartile range outside the box. We see very clearly from the left-hand
graph the impact that inflation has on the loss distribution. The right-hand graph in Figure 1
summarizes the distribution of losses in each year that are greater than 5. These box-and-
whisker plots do not show any signs of inflation of loss amounts.

Table 1 provides some additional information about the simulated loss data. The table
shows that while the average loss amount increases with inflation, the average observed
loss amount does not appear to increase. We also see that the number of observed losses
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Figure 1: Box-and-whisker plots of all loss amounts (a) and observed loss amounts (b).

Table 1: Summary of simulated loss data.

Year Number of losses Average loss
Number of
observed

losses

Average of
observed

losses

Sum of
observed

losses
1 1004 1.9813 37 9.8732 365.3071
2 971 2.1358 43 10.6640 458.5501
3 1029 2.1206 44 9.4408 415.3972
4 1063 2.3359 56 9.8994 554.3648
5 1026 2.3554 62 8.2097 509.0030
6 1030 2.5579 78 9.2125 718.5715
7 1003 2.7498 75 10.7216 804.1190
8 955 2.7866 71 10.0545 713.8679
9 982 3.1771 89 12.1130 1078.0582
10 1029 3.0533 92 9.8543 906.5962

tends to increase over time, and this is how the information about inflation is captured.
The sum of observed losses also increases over time. However, the increases reflect the so-
called leveraging effect of the deductible (see [1, page 189]) and do not properly represent
the increases due to inflation. This is because, if the deductible is kept unchanged, then total
observed losses will not increase by the inflation rate because losses that were previously
below the deductible may, with inflation, exceed the deductible.

The rest of the paper is organized as follows. In Section 2, we provide some
background information and derive two methods for estimation of the inflation rates. In
Section 3, numerical illustrations based on our simulated data are presented.

2. Estimating Inflation Rates

If we were observing every loss, then we would have a realization of the following array of
random variables:

{
Yj,1, . . . , Yj,Nj

}
∼ Pareto

(
θj , α

)
, j = 1, . . . , J, (2.1)
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where J represents the total number of years for which losses are observed, and Nj is the
number of losses that occur in the year j. All random variables in array (2.1) are assumed
independent and, row-wise, have Pareto distributions with the specified parameters, which
are unknown and thus need to be estimated from available data. The data consist of only
those losses whose amounts Yj,k exceed a specified threshold d, as the insurer is not informed
of the losses which are less than this deductible. Hence, our data set is a realization of the
following array:

{
Xj,1, . . . , Xj,Mj

}
, j = 1, . . . , J, (2.2)

which is a subarray of (2.1). Obviously, the observed Mj do not exceed the unobserved
Nj for every 1 ≤ j ≤ J . All random variables in array (2.2) are independent and every
Xj,k ∼ Pareto (d, α). The latter fact can be seen by noting that the Xj,k’s are copies of a random
variable Xj , and the Yj,k’s are copies of a random variable Yj . Now Xj = Yj | Yj > d. Therefore,
for all x ≥ d,

P
[
Xj > x

]
= P
[
Yj > x | Yj > d

]

=
P
[
Yj > x

]

P
[
Yj > d

]

=
(
d

x

)α

.

(2.3)

The fact that this distribution does not depend on j is unique to the Pareto loss distribution
and is reflected in the title of this paper. The property identified in the above equations raises
the question of how to estimate the rate of inflation given the observed losses Xj,k. We note
in passing that this property has been noted and utilized in a number of contexts including
econometrics and engineering sciences (see [2, 3]).

Suppose that the annual inflation rates for the observation period are represented by
r2, . . . , rJ , where these rates are related to the Pareto-scale parameters by the equation

θj

θj−1
= 1 + rj . (2.4)

Equation (2.4) arises from the very reasonable requirement that if rj is the rate of loss inflation
as one goes from year j−1 to year j, then Yj =d (1+rj)Yj−1. Note that if the Pareto distributions
have finite first moments (i.e., α > 1), then the ratio θj/θj−1 in (2.4) can be replaced by
E[Yj]/E[Yj−1]. However, we do not require the finiteness of first moments in this paper.

We first present a simple and intuitively appealing approach to estimating the inflation
rate when we assume that it is the same in each year. We can also view this as a method of
estimating the average inflation rate during the observation period. That is, the inflation rate
r is such that

θj = θ(1 + r)j−1, (2.5)
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with θ = θ1. This method allows us to estimate α and r recognizing that most of the
information about α is provided by the Xj,k’s, and given α, most of the information about
r is provided by the Mj ’s.

We assume that N1, . . . ,NJ are independent Poisson random variables, and for each j,
Nj has mean λj such that λj = λej , where ej represents the known number of exposure units
in year j and λ is a parameter representing the claim rate per exposure unit. In other words,
the ej values indicate the amount of insurance in force in year j, and it is appropriate that
the claim rate is proportional to ej . The assumption that the number of losses has a Poisson
distribution is common in actuarial science, though our first method generalizes easily to
mixed Poisson distributions.

Now since the number of losses Nj has a Poisson distribution with mean λej , the
number of observed losses Mj has a Poisson distribution with mean λej(θj/d)

α. Thus,

E
[
Mj

]
= λej

(
θj

d

)α

,

logE
[
Mj

]
= logλ + log ej − α logd + α log θj

= logλ + log ej − α logd + α log θ +
{
α log(1 + r)

}(
j − 1

)
.

(2.6)

Therefore,

log

(
E
[
Mj

]

ej

)

= logλ − α logd + α log θ +
{
α log(1 + r)

}(
j − 1

)
. (2.7)

Notice that the right-hand side of (2.7) is a linear function of j with the slope α log(1 +
r). We could therefore estimate r by first estimating α by maximum likelihood using the
conditional likelihood of the Xj,k’s, and then fit a linear function to the points (j, log(mj/ej)),
j = 1, . . . , J , by ordinary least squares and estimate r using the estimate of the slope along
with the MLE of α. This gives

α̂ =

∑J
j=1 mj

∑J
j=1

∑mj

k=1 log
(
xj,k/d

) , (2.8)

r̂ = exp

⎧
⎨

⎩

12
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j=1 j log
(
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) − 6(J + 1)
∑J

j=1 log
(
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)

α̂J(J2 − 1)

⎫
⎬

⎭
− 1, (2.9)

where xj,k is the realized value of Xj,k, and mj is the realized value of Mj .
This approach allows us to estimate r without estimating the parameters λ and θ,

which we consider nuisance parameters in our problem.
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A more general approach involves estimating the parameters α and rj , j = 1, . . . , J , by
maximum likelihood estimation using the full likelihood function. That is,
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(2.10)

Note that we have an identifiability problem because λ could be replaced by λ′ = cλ
and θj by θ′

j = θj/c
1/α, and the likelihood is unchanged. So, while we can determine estimates

of λ and θ1, . . . , θJ that maximize the likelihood, these estimates are not unique. However, this
is not a concern because we are not interested in λ, and we are interested in θ1, . . . , θJ only to
the extent that they tell us the year-to-year inflation rates. We proceed with this in mind.

By cancelling multiplicative constants in the likelihood function and taking logs, we
have

� =
J∑

j=1

[

mj logλ + αmj log θj − αmj logd − λej

(
θj

d

)α

+
mj∑

k=1

(
logα + α logd − α logxj,k

)
]

.

(2.11)

Differentiating with respect to θj , we have

∂�

∂θj
=

αmj

θj
−
αλejθ

α−1
j

dα
. (2.12)

Therefore,

mj − λ̂ej

(
θ̂j

d

)α̂

= 0, (2.13)

θ̂j = d

(
mj

λ̂ej

)1/α̂

. (2.14)

This allows us to obtain the MLE of the inflation rate in year j, rj = θj/θj−1 − 1, j = 2, . . . , J .
That is,

r̂j =

(
mjej−1

mj−1ej

)1/α̂

− 1. (2.15)



Journal of Probability and Statistics 7

Differentiating the log-likelihood with respect to α, we have

∂�
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. (2.16)

Replacing the parameters in (2.16) by their MLE’s and using (2.14), we have

J∑

j=1

mj∑

k=1

(
1
α̂
+ logd − logxj,k

)
= 0, (2.17)

which leads to (2.8), the same estimate we obtained using the first method.
The latter approach does not assume any structure between r2, . . . , rJ . However, as we

did earlier, it might be reasonable to assume that r2 = · · · = rJ , in which case we denote the
inflation rate by r. Hence, as before, θj = θ(1 + r)j−1, with θ = θ1. In this case, we have only
four unknown parameters, λ, α, θ, and r, and the log-likelihood function is

� =
J∑

j=1

[

mj logλ + αmj log
{
θ(1 + r)j−1

}
− αmj logd − λej

(
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)
]

.

(2.18)

Our identifiability problem remains. However, we can eliminate the problem by letting φ =
λ(θ/d)α. Then

� =
J∑

j=1

[

mj logφ +mjα
(
j − 1

)
log(1 + r) − ejφ(1 + r)α(j−1) +
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(
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)
]

,

(2.19)

and we can determine the unique MLE’s of α, φ, and r. Differentiating with respect to φ we
have

∂�

∂φ
=
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[
mj

φ
− ej(1 + r)α(j−1)

]
, (2.20)

and hence,

φ̂ =

∑J
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∑J
j=1 ej(1 + r̂)α̂(j−1)

. (2.21)
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Next we differentiate with respect to r and obtain
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which leads to
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Finally, differentiating with respect to α, we have
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(2.24)

Replacing the parameters by their MLE’s, setting the right-hand side of (2.24) equal to 0, and
using (2.23), we obtain (2.8), as before. Substituting (2.21) into (2.23) and dividing by the
numerator of (2.21), we have

∑J
j=1

(
j − 1

)
mj

∑J
j=1 mj

−
∑J

j=1

(
j − 1

)
ej(1 + r̂)α̂(j−1)

∑J
j=1 ej(1 + r̂)α̂(j−1)

= 0. (2.25)

Since (2.8) provides an explicit expression for α̂, we can obtain r̂ by solving (2.25).
In practice, rather than simply assuming that all rj ’s are equal, we should perform a

hypothesis test with the null hypothesis H0 : r2 = · · · = rJ . This can be accomplished by
employing the well-known likelihood ratio test (LRT) whose test statistic is given by

−2
{
[maximum of � under H0] −

[
maximum of � over full parameter space

]}
. (2.26)

As follows, for example, from Casella and Berger [4, Section 10.3], the asymptotic distribution
of the statistic given by (2.26) is chi-squared with (J + 1) − 3 degrees of freedom.

3. Numerical Illustrations

In this section we provide numerical illustrations of the methods presented in Section 2. We
use the simulated data discussed in Section 1. However, assume we do not know the number
of losses and average loss amounts shown in the second and third columns of Table 1. We
do know the number of observed losses given in the fourth column as well as the amount
of each observed loss that occurred in each year. Also, it is reasonable for us to assume that
we know that the exposure is the same each year. The same Poisson parameter was used to
generate the number of losses in each year. Therefore, suppose that ej = 1 for j = 1, . . . , 10.
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Table 2: Maximum likelihood estimates of rj for j = 2, . . . , 10.

j 2 3 4 5 6 7 8 9 10
r̂j 0.0786 0.0116 0.1291 0.0526 0.1226 −0.0196 −0.0272 0.1205 0.0168

Table 3: Point estimates and approximate 95% confidence intervals of r and α using the full likelihood and
using the first approach. Note: the true parameter values are r = 0.05, α = 2.

Full likelihood approach First approach
Parameter Estimate Asymptotic CI Estimate Bootstrap CI

r 0.0503 (0.0353; 0.0654) 0.0526 (0.0375; 0.0702)
α 1.9858 (1.8328; 2.1389) 1.9858 (1.8246; 2.1495)

Applying the first method, we can estimate α and then r using (2.8) and (2.9). We
obtain the estimates 1.9858 and 0.0526, respectively. Recall that the “true” parameter values
are α = 2 and r = 0.05.

In practice, we do not know that the loss inflation rate is the same each year, and our
full maximum likelihood approach allows us to estimate the individual inflation rates. The
estimates reported in Table 2 were obtained using (2.15), with α̂ obtained from (2.8).

If we then impose the restriction that the inflation rate is the same each year, we
can obtain the maximum likelihood estimate of r by solving (2.25). Alternatively, rather
than solving (2.25), the estimates can be obtained by numerically maximizing the log-
likelihood function using, for example, the optim function in R (see [5]). This approach
has the advantage of allowing one to obtain the Hessian matrix as a by-product of the
maximization. Since the Hessian matrix equals (minus) the observed information matrix
evaluated at the maximum likelihood estimates, an estimated variance-covariance matrix
for the parameter estimators can be found by matrix inversion. This approach was used to
obtain the point estimates and approximate 95% confidence intervals presented in Table 3.
The estimates obtained using the first approach are also provided for comparison. In this
case, the approximate confidence intervals were constructed by producing 1000 parametric
bootstrap samples.

Having maximized the log-likelihood with and without the restriction that the
inflation rate in each year is the same, we can perform a likelihood ratio test of the hypothesis
that the inflation rates are the same. Using the LRT statistic in (2.26), we find that its value
is 4.5741. Based on a chi-squared distribution with 8 degrees of freedom we find that the
P -value is .8020 and conclude that the rj ’s are statistically equal.
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