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Abstract

Due to advances in extreme value theory, the generalized Pareto distribution (GPD) emerged as a

natural family for modeling exceedances over a high threshold. Its importance in applications (e.g.,

insurance, finance, economics, engineering and numerous other fields) can hardly be overstated

and is widely documented. However, despite the sound theoretical basis and wide applicability,

fitting of this distribution in practice is not a trivial exercise. Traditional methods such as max-

imum likelihood and method-of-moments are undefined in some regions of the parameter space.

Alternative approaches exist but they lack either robustness (e.g., probability-weighted moments)

or efficiency (e.g., method-of-medians), or present significant numerical problems (e.g., minimum-

divergence procedures). In this article, we propose a computationally tractable method for fitting

the GPD, which is applicable for all parameter values and offers competitive trade-offs between

robustness and efficiency. The method is based on ‘trimmed moments’. Large-sample properties of

the new estimators are provided, and their small-sample behavior under several scenarios of data

contamination is investigated through simulations. We also study the effect of our methodology

on actuarial applications. In particular, using the new approach, we fit the GPD to the Danish

insurance data and apply the fitted model to a few risk measurement and ratemaking exercises.
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1 Introduction

Due to advances in extreme value theory, the generalized Pareto distribution (GPD) emerged as a

natural family for modeling exceedances over a high threshold. Its importance in applications such as

insurance, finance, economics, engineering and numerous other fields, can hardly be overstated and is

widely documented. For a general introduction to this distribution, the reader can be referred to, for

example, Johnson et al . (1994, Chapter 20) and McNeil et al . (2005, Chapter 7).

There is also a substantial literature on various specialized topics involving the GPD. For example,

the problem of parameter estimation has been addressed by Hosking and Wallis (1987), Castillo and

Hadi (1997), Peng and Welsh (2001), and Juárez and Schucany (2004), among others. The work of

Davison and Smith (1990) presents extensions of the GPD to data with covariates and time series

models. It also contains insightful discussions about the validity of the GPD assumption in real-world

applications. An interesting approach toward threshold selection has been proposed by Dupuis (1999);

it is based on robust procedures. Finally, the papers by McNeil (1997) and Cebrian et al . (2003) are

excellent illustrations of the GPD’s role in actuarial applications.

However, despite the sound theoretical basis and wide applicability, fitting of this distribution in

practice is not a trivial exercise. Traditional methods such as maximum likelihood and method-of-

moments are undefined in some regions of the parameter space. Alternative approaches exist and

include estimators that are based on: probability-weighted moments (Hosking and Wallis, 1987),

method-of-medians (Peng and Welsh, 2001), quantiles (Castillo and Hadi, 1997), and minimum-

divergence procedures (Juárez and Schucany, 2004). While each methodology has its own advantages,

it should also be pointed out some of their caveats. For example, the probability-weighted estimators

lack robustness (see the influence curve plots of Davison and Smith, 1990), the method-of-medians

estimators are not very efficient (see He and Fung, 1999, who introduced this method of parameter

estimation), and the minimum-divergence estimators can present significant computational problems

(see the simulation studies of Juárez and Schucany, 2004).

In this article, we propose a computationally tractable method for fitting the GPD, which is

applicable for all parameter values and, in addition, offers competitive trade-offs between robustness
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and efficiency. The method is based on ‘trimmed moments’, abbreviated as MTM, and the resulting

estimators are found by following a general methodology introduced by Brazauskas et al . (2009). Note

that the idea of coupling robust-statistics methods and extreme-value data is not a contradiction. This

has been argued by some of the aforementioned authors, but perhaps the most eloquent discussion

on this topic has been provided by Dell’Aquila and Embrechts (2006). Interestingly, the estimators of

Castillo and Hadi (1997) also possess similar qualities as MTMs, though they have not been presented

or viewed from the robustness and efficiency perspective. As we will show later, the quantile-based

estimators are a special/limiting case of MTMs, which occurs when one trims all the available data

except for a few observations, i.e., the chosen quantiles. It is also worthwhile mentioning that in the

actuarial literature, the quantile-based estimators are better known as estimators that are derived by

employing the percentile-matching approach (see, Klugman et al ., 2004, Section 12.1).

The rest of the article is organized as follows. In Section 2, we first provide key distributional

properties of the GPD and graphically examine shape changes of its density function. Later, we

study various issues related to model-fitting. Specifically, a number of methods for the estimation of

parameters (e.g., method of maximum likelihood, method of moments, percentile-matching method,

and method of trimmed moments) are presented, and large- and small-sample robustness properties

of these estimators are investigated in detail. In Section 3, we fit the GPD to the Danish insurance

data. The fitted models are then employed in a few ratemaking and quantitative risk management

examples. In particular, point estimates for several value-at-risk measures and net premiums are

calculated. Results are summarized and conclusions are drawn in Section 4.

2 Fitting the GPD

In this section, we study essential issues related to model-fitting. The key facts and formulas of the

GPD are presented, illustrated and discussed in subsection 2.1. A number of existing and new methods

for estimation of the GPD parameters are provided in subsection 2.2. Finally, subsection 2.3 is devoted

to small-sample properties of the (theoretically and computationally) most favorable estimators, which

are investigated using simulations.
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2.1 The Model

The cumulative distribution function (cdf) of the GPD is given by

F (x) =

{
1 − (1 − γ(x − x0)/σ)1/γ , γ 6= 0

1 − exp (−(x − x0)/σ) , γ = 0,
(2.1)

and the probability density function (pdf) by

f(x) =

{
σ−1 (1 − γ(x − x0)/σ)1/γ−1 , γ 6= 0

σ−1 exp (−(x − x0)/σ) , γ = 0,
(2.2)

where the pdf is positive for x ≥ x0, when γ ≤ 0, or for x0 ≤ x ≤ σ/γ, when γ > 0. The parameters

−∞ < x0 < ∞, σ > 0, and −∞ < γ < ∞ control the location, scale, and shape of the distribution,

respectively. In insurance applications, the location parameter x0 is typically known and can be

interpreted as a deductible, retention level, or attachment point. But σ and γ are both unknown

and have to be estimated from the data. Note that, when γ = 0 and γ = 1, the GPD reduces to

the exponential distribution (with location x0 and scale σ) and the uniform distribution on [x0, σ],

respectively. If γ < 0, then the Pareto distributions are obtained. In Figure 1, we illustrate shape

changes of f(x) for different choices of the shape parameter γ.
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Figure 1: Probability density functions of the GPD for x0 = 0, σ = 1, and various values of γ.

Further, besides functional simplicity of its cdf and pdf, another attractive feature of the GPD is

that its quantile function (qf) has an explicit formula. This is especially useful for estimation of the
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parameters via MTM and percentile-matching methods, and for portfolio risk evaluations by using

value-at-risk measures. Specifically, the qf is given by

F−1(u) =

{
x0 + (σ/γ) (1 − (1 − u)γ) , γ 6= 0

x0 − σ log(1 − u), γ = 0.
(2.3)

Also, the mean and variance of the GPD are given by

E[X] = x0 +
σ

1 + γ
, γ > −1 (2.4)

Var[X] =
σ2

(2γ + 1) (γ + 1)2
, γ > −1/2. (2.5)

Finally, as discussed by Hosking and Wallis (1987), GPDs with γ > 1/2 have finite endpoints with

f(x) > 0 at each endpoint (see Figure 1), and such shapes rarely occur in statistical applications.

GPDs with γ ≤ −1/2 have infinite variance (see expression (2.5)), and this too is unusual in statistical

applications. We certainly agree with this assessment of the statistical applications but in actuarial

work things are slightly different. For example, when pricing an insurance layer, it is not unreasonable

to employ a probability distribution with both endpoints finite. What is even more common in actu-

arial applications is the heavy-tailed distributions, with no finite moments at all, that often appear in

modeling of catastrophic claims. This discussion, therefore, suggests that parameter-estimation meth-

ods that work over the entire parameter space of the GPD are indeed needed in actuarial applications.

2.2 Parameter Estimation

In subsection 2.2.1, standard estimators, based on the maximum likelihood and method-of-moments

approaches, are presented and their large-sample properties are examined. Then, in subsection 2.2.2,

we briefly review quantile-type (percentile-matching) estimators and specify their large-sample distri-

bution. Finally, in subsection 2.2.3, we consider a recently introduced robust estimation technique,

the method of trimmed moments, and study asymptotic behavior of estimators based on it.

Also, throughout this section, we will consider a sample of n independent and identically distributed

random variables, X1, . . . ,Xn, from a GPD family with its cdf, pdf, and qf given by (2.1), (2.2) and

(2.3), respectively, and denote X1:n ≤ · · · ≤ Xn:n the order statistics of X1, . . . ,Xn.
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2.2.1 Standard Methods

A maximum likelihood estimator of (σ, γ) of the GPD, denoted by (σ̂MLE, γ̂MLE), is found by numerically

maximizing the log-likelihood function:

logL(σ, γ |X1, . . . ,Xn) = −n log σ +
1 − γ

γ

n∑

i=1

log
(
1 − γ

σ
(Xi − x0)

)
.

Note that this function can be made arbitrarily large by choosing γ > 1 and σ/γ close to the maximum

of Xi’s, i.e., close to Xn:n. Hence, the obtained result will be a local maximum, not global. Further,

as presented by Hosking and Wallis (1987), the estimator (σ̂MLE, γ̂MLE) is consistent, asymptotically

normal, and asymptotically efficient when γ < 1/2. Specifically, we shall write that, provided γ < 1/2,

(
σ̂MLE, γ̂MLE

)
∼ AN

(
(σ, γ), n−1Σ0

)
with Σ0 = (1 − γ)

[
2σ2 σ
σ (1 − γ)

]
, (2.6)

where AN stands for ‘asymptotically normal’. On the other hand, if γ ≥ 1/2, then we have the

nonregular situation. The latter case has been treated by Smith (1985) who demonstrated that: for

γ = 1/2, MLE’s asymptotic distribution is still normal but with a different convergence rate; for

1/2 < γ ≤ 1, it is not normal (and very messy); and for γ > 1, the MLE does not exist. We will not

consider the nonregular case in this paper.

Next, a method-of-moments estimator of (σ, γ) can be found by matching the GPD mean and

variance, given by (2.4) and (2.5), with the sample mean X and variance S2, and then solving the

system of equations with respect to σ and γ. This leads to

σ̂MM = 0.5
(
X − x0

) ((
X − x0

)2 /
S2 + 1

)
and γ̂MM = 0.5

((
X − x0

)2 /
S2 − 1

)
.

If γ > −1/4, then
(
σ̂MM, γ̂MM

)
∼ AN

(
(σ, γ), n−1Σ1

)
with

Σ1 =
(1 + γ)2

(1 + 3γ)(1 + 4γ)

[
2σ2(1 + 6γ + 12γ2)/(1 + 2γ) σ(1 + 4γ + 12γ2)

σ(1 + 4γ + 12γ2) (1 + 2γ)(1 + γ + 6γ2)

]
. (2.7)

In the special case γ = 0, the MLE and MM are the same, which implies that the asymptotic

normality results (2.6) and (2.7) are identical. Hence, the MM estimator is asymptotically fully

efficient. In general, the asymptotic relative efficiency (ARE) of one estimator with respect to another

is defined as the ratio of their asymptotic variances. In the multivariate case, the two variances are
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replaced by the corresponding generalized variances, which are the determinants of the asymptotic

variance-covariance matrices of the k-variate parameter estimators, and then the ratio is raised to the

power 1/k. (For further details on these issues, we refer, for example, to Serfling, 1980, Section 4.1).

Thus, for the MLE and MM estimators of the GPD parameters, we have that

ARE(MM, MLE) =
(
|Σ0|

/
|Σ1|

)1/2
=

(1 − γ)(1 + 3γ)

(1 + γ)2

√
(1 − 2γ)(1 + 4γ)

1 + 2γ
, (2.8)

where |Σi| denotes the determinant of matrix Σi, i = 0, 1. In Table 1, we provide numerical illus-

trations of expression (2.8) for selected values of the shape parameter γ. Note that while the MLE

dominates MM for γ < 1/2, the MM continues to maintain the same (simple) asymptotic behavior for

γ ≥ 1/2, and hence it is a more practical method than the MLE in this range of γ.

Table 1: ARE(MM, MLE) for selected values of γ < 0.50.

γ (−∞;−0.25] −0.20 −0.10 −0.05 0 0.05 0.10 0.20 0.30 0.40 0.49

ARE 0 .512 .902 .978 1 .982 .934 .781 .584 .362 .098

Finally, notice that the definition of the MLE and MM estimators as well as the asymptotic results

(2.6)–(2.8) are not valid over the entire parameter space. This prompts us to search for parameter-

estimation methods that work everywhere, i.e., for σ > 0 and −∞ < γ < ∞.

2.2.2 Percentile-Matching

The quantile, or percentile-matching, estimators of the GPD parameters have been proposed by

Castillo and Hadi (1997). In this section, we shall provide the computational formulas of these esti-

mators and specify their large-sample distribution.

A percentile-matching estimator of (σ, γ) of the GPD is found by matching two theoretical quantiles

F−1(p1) and F−1(p2) with the corresponding empirical quantiles Xn:[np1] and Xn:[np2], and then solving

the resulting system of equations with respect to σ and γ. Here the percentile levels p1 and p2

(0 < p1 < p2 < 1) are chosen by the researcher, the quantile function F−1(·) is given by (2.3), and [·]

denotes ‘greatest integer part’. This leads to

σ̂PM =

{
γ̂PM(Xn:[np1] − x0)

/
(1 − (1 − p1)

bγPM), if γ̂PM 6= 0,

−(Xn:[np1] − x0)
/

log(1 − p1), if γ̂PM = 0,
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where γ̂PM is found by numerically solving the following equation with respect to γ

(Xn:[np2] − x0)
/
(Xn:[np1] − x0) − (F−1(p2) − x0)

/
(F−1(p1) − x0) = 0.

Note that the ratio (F−1(p2) − x0)
/
(F−1(p1) − x0) depends only on γ and is a continuous function.

As discussed by Castillo and Hadi (1997, Section 3), the percentile-matching estimators are con-

sistent and asymptotically normal. More specifically,

(
σ̂PM, γ̂PM

)
∼ AN

(
(σ, γ), n−1Σ2

)
with Σ2 = CΣ∗C

′, (2.9)

where

Σ∗ = σ2

[
p1(1 − p1)

2γ−1 p1(1 − p1)
γ−1(1 − p2)

γ

p1(1 − p1)
γ−1(1 − p2)

γ p2(1 − p2)
2γ−1

]

and

C =
1

c∗(p1, p2, γ)

[
−F−1(p2) − σ(1 − p2)

γ log(1 − p2) F−1(p1) + σ(1 − p1)
γ log(1 − p1)

(1 − p2)
γ − 1 1 − (1 − p1)

γ

]

with c∗(p1, p2, γ) = F−1(p2)(1 − p1)
γ log(1 − p1) − F−1(p1)(1 − p2)

γ log(1 − p2).

Remark 1: The γ = 0 case.

The asymptotic normality result (2.9) is valid for −∞ < γ < ∞. When γ = 0, however, the entries

of C have to be calculated by taking the limit γ → 0. (The elements of Σ∗ are computed directly by

substituting γ = 0.) This leads to the following simplified formula of C:

C =
1

log(1 − p1) log(1 − p2) log
(
(1 − p2)/(1 − p1)

)




− log2(1 − p2) log2(1 − p1)

2 log(1 − p2)/σ −2 log(1 − p1)/σ


 .

�

2.2.3 MTM Estimation

The underlying idea of the MTM—method of trimmed moments—is identical to that of the percentile-

matching, except now we match theoretical and empirical trimmed moments instead of percentiles

(quantiles). A general methodology for finding MTM estimators has been introduced and developed

by Brazauskas et al . (2009). Here we adapt their proposal to the GPD case.
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We first calculate two sample trimmed moments (in this case, trimmed means):

µ̂j =
1

n − mn(j) − m∗

n(j)

n−m∗

n(j)∑

i=mn(j)+1

(
Xi:n − x0

)
, for j = 1, 2, (2.10)

where mn(j) and m∗

n(j) are integers such that 0 ≤ mn(j) < n − m∗

n(j) ≤ n, and mn(j)/n → aj and

m∗

n(j)/n → bj as n → ∞. The trimming proportions aj and bj must be chosen by the researcher. If

one selects aj > 0 and bj > 0 (0 < aj + bj < 1), for j = 1, 2, then the resulting estimators will be

resistant against outliers, i.e., they will be robust with the lower and upper breakdown points given

by lbp = min{a1, a2} and ubp = min{b1, b2}, respectively. The robustness of such estimators against

extremely small or large outliers comes from the fact that the order statistics with the index less than

n × lbp or more than n × (1 − ubp) are simply not included in the computation of estimates.

Next, we derive the corresponding theoretical trimmed moments:

µj =
1

1 − aj − bj

∫ 1−bj

aj

(
F−1(u) − x0

)
du

= σ ×





−1 +
1

1 − aj − bj
log

(
1 − aj

bj

)
, if γ = −1,

1 +
bj log(bj) − (1 − aj) log(1 − aj)

1 − aj − bj
, if γ = 0,

(1/γ)

(
1 −

(1 − aj)
γ+1 − bγ+1

j

(γ + 1)(1 − aj − bj)

)
, otherwise.

(2.11)

Now, we match µ̂j, given by (2.10), with µj, given by (2.11), which results in a system of two equations.

After some straightforward simplifications, we find that

σ̂MTM = µ̂1 ×





−
(

1 − log(1 − a1) − log(b1)

1 − a1 − b1

)
−1

, if γ̂MTM = −1,

(
1 − (1 − a1) log(1 − a1) − b1 log(b1)

1 − a1 − b1

)
−1

, if γ̂MTM = 0,

γ̂MTM

(
1 − (1 − a1)

bγMTM+1 − bbγMTM+1
1

(γ̂MTM + 1)(1 − a1 − b1)

)
−1

, otherwise,

where γ̂MTM is found by numerically solving the following equation with respect to γ

µ̂1

/
µ̂2 − µ1

/
µ2 = 0.

Note that the ratio µ1

/
µ2 depends only on γ and is a continuous function. Also, the estimators σ̂MTM

and γ̂MTM are functions of µ̂1 and µ̂2, which we will denote g1(µ̂1, µ̂2) and g2(µ̂1, µ̂2), respectively.
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Further, as demonstrated by Brazauskas et al . (2009), the MTM estimators are consistent and

asymptotically normal. In particular, for the GPD case, we have that

(
σ̂MTM, γ̂MTM

)
∼ AN

(
(σ, γ), n−1Σ3

)
with Σ3 = DΣ∗∗D

′, (2.12)

where Σ∗∗ :=
[
σ2

ij

]2
i,j=1

with the entries

σ2
ij =

1

(1 − ai − bi)(1 − aj − bj)

∫ 1−bi

ai

∫ 1−bj

aj

(
min{u, v} − uv

)
dF−1(v) dF−1(u), (2.13)

and D = [dij ]
2
i,j=1 with the entries dij = ∂gi/∂µ̂j

∣∣
(µ1,µ2)

:

d11 = σ(d∗ − µ′

1µ2)/(µ1d∗), d12 = σµ′

1/d∗, d21 = µ2/d∗, d22 = −µ1/d∗.

Here d∗ = µ′

1µ2 −µ′

2µ1, the trimmed moment µj is given by (2.11), and µ′

j is the derivative of µj with

respect to γ, which is provided in the appendix. Of course, the entries σ2
ij can be derived analytically

by performing straightforward (but tedious!) integration of (2.13), where F−1 is given by (2.3). We,

however, used the bivariate trapezoidal rule to approximate the double integral in (2.13), and found

it to be a much more effective approach than the theoretical one. It also is sufficiently accurate for all

practical purposes. The details of this approximation are presented in the appendix.

Remark 2: MTM and PM estimators.

Suppose that the percentile pj used in the PM estimation is between the aj and 1 − bj of the MTM

approach, i.e., aj < pj < 1−bj . Let aj ↑ pj and 1−bj ↓ pj. Then, it is easy to see that µj → F−1(pj)−x0

and µ̂j → Xn:[npj]−x0. Hence, the MTM estimators can be reduced to the PMs. Similar computations

involving the matrices in (2.12) show that D → C, Σ∗∗ → Σ∗, and thus Σ3 → Σ2 as aj and 1 − bj

approach pj. In summary, for estimation of the GPD parameters, the PM approach is a limiting case

of the MTM. Its robustness properties also directly follow from those of the MTM. That is, the lower

and upper breakdown points of the PM estimator are: lbp = p1 and ubp = 1 − p2. �

We complete this section with an investigation of the efficiency properties of the MTM and PM

procedures with respect to the standard methods. Since the MLE is asymptotically normal (at the

n−1 rate) and fully efficient for γ < 1/2, we will use its generalized variance as a benchmark for that

range of γ. For the case γ ≥ 1/2, the MTM estimators will be compared to the MM. We will choose
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PM and MTM estimators so that they will form pairs with respect to robustness properties. That

is, for each PM estimator with percentile levels p1 and p2, we will choose an MTM estimator with

lbp = p1 and ubp = 1 − p2. That is, the trimming proportions of the MTM estimator shall satisfy:

0 < a1 < 1 − b1 ≤ a2 < 1 − b2 < 1 and (p1, p2) = (a1, 1 − b2).

The other two proportions, a2 and 1 − b1, will be chosen to maximize the efficiency of the MTM

estimator for most of the selected γ values. Note that there are other ways to arrange the proportions

(a1, 1 − b1) and (a2, 1 − b2) while still maintaining lbp = p1 and ubp = 1 − p2. For example, we can

choose: 0 < a1 ≤ a2 < 1−b2 ≤ 1−b1 < 1 with (p1, p2) = (a1, 1−b1), or 0 < a1 ≤ a2 < 1−b1 ≤ 1−b2 < 1

with (p1, p2) = (a1, 1− b2). The advantage of the initial choice is that it directly yields PM estimators

while the other two arrangements do not. The findings of our study are summarized in Table 2.

Table 2: ARE of MTM estimators with respect to: MLE (for γ < 0.50) and MM (for γ ≥ 0.50).

The PM estimators correspond to MTMs with aj ≈ pj ≈ 1 − bj, j = 1, 2, and are marked with ∗.

Trimming Proportions γ < 0.50
(a1, 1 − b1) (a2, 1 − b2) −4 −2 −1 −0.40 −0.20 0 0.20 0.40

0.05, 0.30 0.70, 0.95 0.803 0.839 0.749 0.585 0.502 0.402 0.284 0.141
0.05∗ 0.95∗ 0.474 0.405 0.351 0.294 0.265 0.227 0.174 0.095

0.10, 0.30 0.60, 0.90 0.829 0.802 0.658 0.482 0.403 0.315 0.217 0.105
0.10∗ 0.90∗ 0.648 0.562 0.472 0.373 0.326 0.268 0.196 0.102

0.15, 0.35 0.80, 0.90 0.789 0.802 0.705 0.557 0.483 0.393 0.283 0.143
0.15∗ 0.90∗ 0.705 0.643 0.553 0.443 0.389 0.321 0.236 0.122

0.30, 0.50 0.70, 0.85 0.396 0.591 0.604 0.495 0.429 0.345 0.244 0.120
0.30∗ 0.85∗ 0.679 0.693 0.615 0.490 0.426 0.348 0.251 0.128

0.50, 0.60 0.70, 0.75 0.295 0.391 0.374 0.299 0.258 0.208 0.148 0.073
0.50∗ 0.75∗ 0.404 0.462 0.424 0.337 0.292 0.235 0.168 0.084

γ ≥ 0.50
0.50 0.75 1 1.50 2 2.50 3 4

0.05, 0.30 0.70, 0.95 0.412 0.495 0.614 0.981 1.607 2.674 4.501 13.125
0.05∗ 0.95∗ 0.295 0.420 0.634 1.643 4.832 15.569 53.534 718.650

0.10, 0.30 0.60, 0.90 0.302 0.351 0.419 0.617 0.922 1.385 2.088 4.783
0.10∗ 0.90∗ 0.305 0.397 0.540 1.088 2.384 5.572 13.704 92.599

0.15, 0.35 0.80, 0.90 0.425 0.530 0.687 1.221 2.277 4.394 8.712 36.429
0.15∗ 0.90∗ 0.369 0.481 0.656 1.328 2.919 6.834 16.822 113.740

0.30, 0.50 0.70, 0.85 0.349 0.413 0.497 0.729 1.055 1.503 2.111 4.069
0.30∗ 0.85∗ 0.380 0.478 0.625 1.132 2.162 4.301 8.854 40.752

0.50, 0.60 0.70, 0.75 0.215 0.259 0.321 0.508 0.813 1.301 2.079 5.261
0.50∗ 0.75∗ 0.247 0.302 0.380 0.626 1.057 1.810 3.133 9.644
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Several conclusions emerge from the table. First, note that the PM estimator with p1 = 0.50

and p2 = 0.75 is the well-known Pickands’ estimator which is highly robust but lacks efficiency. The

ARE of PM estimators can be improved by choosing p1 and p2 further apart, and hence by sacrificing

robustness. Second, for a practically relevant robustness properties, e.g., lbp ≤ 0.15 and ubp ≤ 0.10,

efficiency of the PMs can be improved by an equally robust MTM, though the improvements are not

uniform over all values of γ. Third, the least favorable range of γ for PMs and MTMs seems to be

around the exponential distribution, i.e., for γ between −0.20 and 0.40. In that range of γ, their AREs

can fall well below 0.50. Fourth, for γ ≥ 1.50, however, the PMs and MTMs perform spectacularly

with their ARE reaching even hundreds.

Remark 3: A modification of the PMs.

Castillo and Hadi (1997) also noticed that the PM estimators lack efficiency because they are based

on only two data points. Thus the information contained in other observations is not utilized. These

authors, therefore, called such estimators “initial estimates” and proposed to improve their efficiency

properties by using the following algorithm. For a sample of size n, compute PM estimates of σ and

γ for all possible pairs of percentile levels p
(i)
1 = i/n and p

(j)
2 = j/n, 1 ≤ i < j ≤ n. Such an approach

produces
(n
2

)
= n(n − 1)/2 estimates of σ and γ. Then, the “final estimates” are:

σ̃ = median
{
σ̂1, . . . , σ̂n(n−1)/2

}
and γ̃ = median

{
γ̂1, . . . , γ̂n(n−1)/2

}
.

This modification indeed improves efficiency of the PMs, which Castillo and Hadi (1997) successfully

demonstrated using Monte Carlo simulations. The improvement, however, comes at the price of rather

inflexible robustness properties of the estimators. Also, to specify their asymptotic distribution, one

has to deal with very messy analytical derivations. We finally note that these final estimates belong

to a broad class of ‘generalized median’ estimators which, for a single-parameter Pareto model, were

extensively studied by Brazauskas and Serfling (2000). The asymptotic breakdown points of the

generalized median procedures are: ubp = 1 − lbp → 1 − 1/
√

2 ≈ 0.293 as n → ∞. �
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2.3 Simulations

Here we supplement the theoretical large-sample results of Section 2.2 with finite-sample investigations.

The objective of simulations is two-fold:

(a) to see how large the sample size n should be for the MLE, MM, PM, and MTM estimators to

achieve (asymptotic) unbiasedness and for their finite-sample relative efficiency (RE) to reach

the corresponding ARE level, and

(b) to see how robustness or non-robustness of an estimator manifests itself in computations.

To make the calculations of MM, MLE, and AREs (with respect to the MLE) possible, we will confine

our study to the values of γ in the range (−0.25; 0.50). The RE definition is similar to that of the

ARE except that we now want to account for possible bias, which we do by replacing all entries in

the variance-covariance matrix by the corresponding mean-squared errors. Also, for the objective (b),

we will evaluate the bias and RE of estimators when the underlying GPD model is contaminated. In

particular, we will employ the following ε-contamination neighborhoods:

Fε = (1 − ε)F0 + εG, (2.14)

where F0 is the assumed GPD(x0, σ, γ) model, G is a contaminating distribution which generates

observations that violate the distributional assumptions, and the level of contamination ε represents

the probability that a sample observation comes from the distribution G instead of F0. Note that the

choice ε = 0 results in a “clean” scenario which allows us to answer the questions raised in (a).

The study design is as follows: From a specified model (2.14) we generate 10,000 samples of size

n using Monte Carlo. For each sample, we estimate the scale parameter σ and the shape parameter

γ using the estimators of Section 2.2. Then we compute the average mean and RE of those 10,000

estimates. This process is repeated 10 times and the 10 average means and the 10 REs are again

averaged and their standard deviations are reported. (Such repetitions are useful for assessing standard

errors of the estimated means and REs. Hence, our findings are essentially based on 100,000 samples.)

The standardized mean that we report is defined as the average of 100,000 estimates divided by the

true value of the parameter that we are estimating. The standard error is standardized in a similar

fashion. The study was performed for the following choices of simulation parameters:
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• Parameters of F0: x0 = 0, σ = 1, and γ = −0.20,−0.10, 0.15, 0.40.

• Distribution G: GPD with x0 = 0, σ = 1, and γ = −5.

• Level of contamination: ε = 0, 0.01, 0.05, 0.10, 0.15.

• Sample size: n = 25, 50, 100, 500.

• Estimators of (σ, γ):

– MLE and MM.

– PM with (p1, p2): (0.05, 0.95), denoted pm1; (0.15, 0.90), denoted pm2;

(0.30, 0.85), denoted pm3.

– MTM with: (a1, b1) = (0.05, 0.70) and (a2, b2) = (0.70, 0.05), denoted mtm1;

(a1, b1) = (0.15, 0.65) and (a2, b2) = (0.80, 0.10), denoted mtm2;

(a1, b1) = (0.30, 0.50) and (a2, b2) = (0.70, 0.15), denoted mtm3.

Findings of the simulation study are summarized in Tables 3, 4 and 5. Note that the entries of the

column n → ∞ in Tables 3–4 are included as target quantities and follow from the theoretical results

of Section 2.2, not from simulations.

Let us start with Tables 3 and 4 which relate to the objective (a). Several expected, as well as some

surprising, conclusions emerge from these tables. First of all, we observe that it takes quite a large

sample (n = 500) to get the bias of σ and γ within a reasonable range (e.g., within 5%) of the target.

Among the estimators under consideration and for all choices of γ, the MTMs are best behaved. But

for samples of size n ≤ 50, the bias is indeed substantial for all estimators, especially for the shape

parameter γ. Further, the MTMs’ advantage with respect to the bias criterion is even more evident

when we compare all estimators with respect to the RE (see Table 4). In many cases, MTMs nearly

attain their ARE values for n = 100. What is interesting is that REs of the MLE and MM converge to

the corresponding AREs extremely slowly when γ is near the theoretical boundaries. (Recall that the

MLE’s asymptotic normality result is valid for γ < 1/2, and the MM’s for γ > −1/4.) To get a better

idea about this issue, we performed additional simulations and discovered that, for γ = −0.20, RE of

the MM is: 0.81 (for n = 1, 000), 0.74 (for n = 2, 500), 0.70 (for n = 5, 000), 0.65 (for n = 10, 000).
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Table 3: Standardized mean of MLE, MM, PM and MTM estimators for selected values of γ.

The entries are mean values based on 100, 000 simulated samples of size n.

γ Estimator n = 25 n = 50 n = 100 n = 500 n → ∞
σ γ σ γ σ γ σ γ σ γ

−0.20 mle 1.14 0.41 1.06 0.74 1.03 0.87 1.01 0.98 1 1
mm 1.16 0.28 1.10 0.56 1.06 0.73 1.02 0.91 1 1
pm1 1.63 −0.49 1.20 0.74 1.21 0.43 1.04 0.89 1 1
pm2 1.07 1.02 1.08 0.87 1.08 0.78 1.02 0.95 1 1
pm3 1.09 0.98 1.10 0.63 1.05 0.69 1.01 0.95 1 1
mtm1 1.18 0.40 1.03 1.13 1.03 0.90 1.01 0.98 1 1
mtm2 1.04 1.22 1.06 0.82 1.03 0.93 1.01 0.99 1 1
mtm3 1.09 0.93 1.04 1.03 1.03 0.92 1.00 0.98 1 1

−0.10 mle 1.15 −0.26 1.06 0.44 1.03 0.73 1.01 0.95 1 1
mm 1.12 −0.10 1.07 0.37 1.04 0.66 1.01 0.91 1 1
pm1 1.63 −2.10 1.21 0.40 1.21 −0.18 1.04 0.77 1 1
pm2 1.07 1.00 1.07 0.73 1.08 0.52 1.01 0.91 1 1
pm3 1.09 0.93 1.10 0.22 1.05 0.39 1.01 0.90 1 1
mtm1 1.18 −0.33 1.03 1.24 1.03 0.78 1.01 0.96 1 1
mtm2 1.05 1.35 1.05 0.65 1.03 0.83 1.01 0.97 1 1
mtm3 1.09 0.80 1.04 1.02 1.02 0.83 1.00 0.97 1 1

0.15 mle 1.17 2.02 1.07 1.44 1.03 1.22 1.01 1.05 1 1
mm 1.06 1.43 1.03 1.21 1.02 1.10 1.00 1.02 1 1
pm1 1.61 3.35 1.20 1.48 1.21 1.86 1.04 1.17 1 1
pm2 1.07 1.04 1.07 1.22 1.07 1.35 1.01 1.07 1 1
pm3 1.08 1.14 1.09 1.56 1.05 1.40 1.01 1.07 1 1
mtm1 1.17 2.00 1.03 0.91 1.03 1.16 1.01 1.03 1 1
mtm2 1.04 0.84 1.05 1.26 1.02 1.12 1.01 1.03 1 1
mtm3 1.08 1.22 1.04 1.04 1.02 1.12 1.00 1.02 1 1

0.40 mle 1.21 1.49 1.08 1.21 1.04 1.11 1.01 1.03 1 1
mm 1.05 1.13 1.02 1.06 1.01 1.03 1.00 1.01 1 1
pm1 1.61 2.06 1.20 1.25 1.21 1.38 1.04 1.07 1 1
pm2 1.06 1.03 1.07 1.10 1.07 1.15 1.01 1.03 1 1
pm3 1.08 1.08 1.09 1.23 1.05 1.15 1.01 1.02 1 1
mtm1 1.17 1.43 1.03 0.99 1.03 1.07 1.01 1.01 1 1
mtm2 1.03 0.96 1.05 1.10 1.02 1.05 1.00 1.01 1 1
mtm3 1.07 1.10 1.03 1.04 1.02 1.05 1.00 1.01 1 1

Note: The ranges of standard errors for the simulated entries of σ and γ, respectively, are:

0.0001–0.0032 and 0.0007–0.0106 (for γ = −0.20); 0.0001–0.0042 and 0.0012–0.0217 (for γ = −0.10);

0.0002–0.0034 and 0.0008–0.0106 (for γ = 0.15); 0.0001–0.0052 and 0.0003–0.0092 (for γ = 0.40).

Likewise, for γ = 0.40, RE of the MLE is: 0.69 (for n = 1, 000), 0.75 (for n = 2, 500), 0.79

(for n = 5, 000), 0.82 (for n = 10, 000). Note that similar observations, with no specific numbers

though, were also made by Hosking and Wallis (1987). Finally, what is a bit surprising is that the
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MM estimator performs quite well around γ = −0.20 and approaches its ARE from above. In typical

cases, finite-sample REs approach corresponding AREs from below (see, e.g., MLE for γ = 0.40).

Table 4: Relative efficiency of MLE, MM, PM and MTM estimators for selected values of γ.

The entries are mean values based on 100, 000 simulated samples of size n.

γ Estimator n = 25 n = 50 n = 100 n = 500 n → ∞
−0.20 mle 0.61 0.79 0.89 0.98 1

mm 0.84 0.93 0.96 0.87 0.512
pm1 0.13 0.18 0.19 0.24 0.265
pm2 0.32 0.34 0.35 0.38 0.389
pm3 0.36 0.36 0.39 0.42 0.426
mtm1 0.37 0.46 0.47 0.50 0.502
mtm2 0.43 0.44 0.46 0.48 0.483
mtm3 0.36 0.39 0.40 0.41 0.429

−0.10 mle 0.56 0.76 0.87 0.97 1
mm 0.86 0.96 1.00 0.97 0.902
pm1 0.11 0.16 0.18 0.23 0.247
pm2 0.29 0.31 0.32 0.35 0.357
pm3 0.33 0.33 0.36 0.38 0.389
mtm1 0.33 0.42 0.43 0.45 0.454
mtm2 0.39 0.40 0.42 0.44 0.440
mtm3 0.33 0.35 0.36 0.38 0.389

0.15 mle 0.41 0.63 0.75 0.91 1
mm 0.66 0.76 0.81 0.85 0.865
pm1 0.08 0.11 0.12 0.17 0.189
pm2 0.20 0.22 0.23 0.25 0.259
pm3 0.23 0.24 0.25 0.27 0.277
mtm1 0.23 0.29 0.29 0.31 0.315
mtm2 0.28 0.28 0.30 0.31 0.312
mtm3 0.23 0.24 0.25 0.26 0.271

0.40 mle 0.18 0.33 0.44 0.62 1
mm 0.28 0.32 0.35 0.36 0.362
pm1 0.03 0.05 0.06 0.08 0.095
pm2 0.09 0.10 0.10 0.12 0.122
pm3 0.11 0.11 0.11 0.13 0.128
mtm1 0.10 0.13 0.13 0.14 0.141
mtm2 0.13 0.13 0.14 0.14 0.143
mtm3 0.11 0.11 0.11 0.12 0.120

Note: The range of standard errors for the simulated entries is:

0.0007–0.0036 (for γ = −0.20); 0.0007–0.0042 (for γ = −0.10);

0.0005–0.0028 (for γ = 0.15); 0.0002–0.0025 (for γ = 0.40).

In Table 5, we illustrate the behavior of estimators under several data-contamination scenarios.

We choose GPD(x0 = 0, σ = 1, γ = 0.15) as the “clean” model because for γ = 0.15 the MLE
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and MM estimators are much more efficient than the PM and MTM estimators (see Table 4). As

one can see from Table 5, however, just 1% of “bad” observations can completely erase the huge

advantage of standard (non-robust) procedures over the robust PMs and MTMs. Indeed, for ε > 0, the

MLE estimates become totally uninformative, and the MM procedure simply collapses. On the other

hand, the robust estimators stay on target when estimating σ and exhibit a gradually deteriorating

performance as ε increases. The deterioration, in this case, is not unexpected for as the level of data-

contamination reaches or exceeds PMs’ and MTMs’ ubp, they also become uninformative. Finally,

note that for all estimators the primary source of impaired performance is the bias in estimation of γ.

Table 5: Mean and relative efficiency of MLE, MM, PM and MTM estimators under several

data-contamination models Fε = (1 − ε)GPD(x0 = 0, σ = 1, γ = 0.15) + εGPD(σ = 1, γ = −5).

The entries are mean values based on 100, 000 simulated samples of size n = 500.

Statistic Estimator ε = 0 ε = 0.01 ε = 0.05 ε = 0.10 ε = 0.15
σ̂ γ̂ σ̂ γ̂ σ̂ γ̂ σ̂ γ̂ σ̂ γ̂

mean mle 1.01 0.16 0.76 −0.29 0.65 −0.81 0.61 −1.19 0.60 −1.51
mm∗ 1.00 0.15 ∞ −0.41 ∞ −0.50 ∞ −0.50 ∞ −0.50
pm1 1.04 0.18 1.04 0.15 1.04 0.05 1.04 −0.46 1.02 −1.36
pm2 1.01 0.16 1.02 0.14 1.02 0.07 1.03 −0.05 1.03 −0.25
pm3 1.01 0.16 1.01 0.15 1.02 0.08 1.03 −0.01 1.03 −0.12
mtm1 1.01 0.15 1.01 0.14 1.01 0.07 1.01 −0.12 0.96 −0.74
mtm2 1.01 0.15 1.01 0.14 1.01 0.07 1.02 −0.02 1.02 −0.15
mtm3 1.01 0.15 1.01 0.14 1.02 0.08 1.03 0.00 1.03 −0.10

re mle 0.91 0.07 0.03 0.02 0.02
mm∗ 0.85 0 0 0 0
pm1 0.17 0.14 0.05 0.01 0.00
pm2 0.25 0.23 0.10 0.05 0.02
pm3 0.27 0.26 0.14 0.07 0.04
mtm1 0.31 0.28 0.13 0.04 0.02
mtm2 0.31 0.28 0.14 0.07 0.04
mtm3 0.26 0.25 0.15 0.08 0.05

∗ For the MM estimator, the entries ∞ and 0 correspond to numbers of the order 1021 and 10−20, respectively.

3 Actuarial Applications

In this section, we fit the GPD model to the Danish insurance data which has been extensively studied

in the actuarial literature (see, e.g., McNeil, 1997). We also investigate the implications of a model fit

on risk evaluations and ratemaking. In particular, we use empirical, parametric and robust parametric
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approaches to compute point estimates of several value-at-risk measures and net premiums of a few

insurance contracts.

3.1 Fitting Insurance Data

The Danish insurance data were collected at Copenhagen Re and comprise 2167 fire losses over the

period 1980 to 1990. They have been adjusted for inflation to reflect 1985 values and are expressed

in millions of Danish krones (dkk). All losses are one million dkk or larger. A thorough diagnostic

analysis of this data set was performed by McNeil (1997) who concluded that the GPD assumption

is a reasonable one for the Danish insurance data. He then used the MLE approach to fit the GPD

to the whole data set as well as to data above various thresholds. The important issues of ‘model

uncertainty’, ‘parameter uncertainty’, and ‘data uncertainty’ were also discussed by McNeil (1997).

Some of those discussions are taken as motivation for the foregoing investigations.

In this section, we fit the GPD to the entire data set and to data above several thresholds, and

examine the stability of fits under a few data-perturbation scenarios. Our main objectives are to see:

(a) how important is the choice of a parameter-estimation method on the model fit, and (b) what

influence it has on subsequent pricing and risk measurement exercises. For visual and quantitative

assessments of the quality of model fit, we employ the percentile-residual (PR) plot and a trimmed

mean absolute deviation (tMAD), respectively. These tools are taken from Brazauskas (2009) and are

defined as follows. The PR plots are constructed by plotting the empirical percentile levels, (j/n)100%,

versus the standardized residuals

Rj,n =
Xj:n − F̂−1

(
j−0.5

n

)

standard deviation of F̂−1
(

j−0.5
n

) for j = 1, . . . , n, (3.1)

where Xj:n is the observed (j/n)th quantile and the qf F−1, given by (2.3), is estimated by replacing

parameters σ and γ with their respective estimates σ̂ and γ̂. For finding σ̂ and γ̂ we use the following

estimators: MLE, PM3 with (p1, p2) = (0.30, 0.85), MTM3 with (a1, b1) = (0.30, 0.50), (a2, b2) =

(0.70, 0.15), and MTM4 with (a1, b1) = (0.10, 0.55), (a2, b2) = (0.70, 0.05). The MM approach is

excluded from further consideration because its asymptotic properties are not valid for the Danish

insurance data. The denominator of (3.1) will be estimated by using the delta method (see, e.g.,

Serfling, 1980, Section 3.3) in conjunction with the corresponding variance-covariance matrix Σ0, Σ2,
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or Σ3; the matrices are defined by (2.6), (2.9), (2.12), respectively. In the PR-plot, the horizontal line

at 0 represents the estimated quantiles, and the ±2.5 lines are the tolerance limits. A good fit would

be the one for which the majority of points (ideally, all points) are scattered between the tolerance

limits. The PR-plots for MLE, PM, and MTM fits are presented in Figure 2. The plots are based on

the whole data set, i.e., on 2156 losses in excess of one million dkk.
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Figure 2: PR-plots for the GPD model fitted by the MLE, PM, and MTM methods.

As one can see from Figure 2, all parameter-estimation methods do a mediocre job at fitting the

“small” losses, i.e., those slightly above the threshold of one million, but they perform reasonably well
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for the “medium” and “large” section of the losses. Overall, among the four PR-plots, the MLE fit

looks worst. One should keep in mind, however, that the vertical deviations in these plots depend on

the efficiency of the estimator. Thus, the same value of absolute residual will appear as significantly

larger on the MLE’s plot than it will on, for example, the MTM4’s because the latter estimator is

less efficient. Indeed, its ARE is: 0.832 (for γ = −1), 0.711 (for γ = −0.50), 0.609 (for γ = −0.25).

Therefore, since for practical decision-making the actual (not statistical!) discrepancies matter more,

it is important to monitor the non-standardized residuals as well.

Next, the tMAD measure evaluates the absolute distance between the fitted GPD quantiles and

the observed data. It is defined by ∆δ = 1
[nδ]

∑[nδ]
i=1 bi:n, where bi:n denotes the ith smallest distance

among
∣∣Xj:n − F̂−1 ((j − 0.5)/n)

∣∣, j = 1, . . . , n. We use the following values of δ: 0.50, 0.75, 0.90,

0.95, 1. The choice δ = 0.90, for instance, indicates how far, on the average, are the 90% closest

observations from their corresponding fitted quantiles. In Table 6, we report parameter estimates and

the goodness-of-fit measurements ∆δ for various data thresholds x0.

Table 6: Parameter estimates and goodness-of-fit measurements of the GPD model

for selected model-fitting procedures and several data thresholds x0.

Threshold Fitting Parameter Estimates Model Fit (∆δ)
(Excesses) Procedure σ̂ γ̂ δ = 0.50 δ = 0.75 δ = 0.90 δ = 0.95 δ = 1

x0 = 1 mle 0.946 −0.604 0.02 0.04 0.05 0.06 0.19
(2156) pm3 1.036 −0.501 0.01 0.03 0.05 0.07 0.43

mtm3 0.989 −0.520 0.02 0.03 0.04 0.07 0.41
mtm4 1.035 −0.515 0.01 0.04 0.05 0.07 0.39

x0 = 3 mle 2.189 −0.668 0.03 0.06 0.16 0.23 0.74
(532) pm3 2.171 −0.788 0.03 0.10 0.17 0.29 2.34

mtm3 2.079 −0.794 0.03 0.08 0.12 0.22 2.19
mtm4 2.209 −0.720 0.03 0.10 0.16 0.21 1.26

x0 = 10 mle 6.975 −0.497 0.12 0.26 0.46 0.61 2.21
(109) pm3 7.101 −0.345 0.13 0.28 0.41 0.64 3.53

mtm3 7.819 −0.290 0.08 0.15 0.24 0.47 3.51
mtm4 7.546 −0.377 0.08 0.18 0.33 0.43 2.85

x0 = 20 mle 9.635 −0.684 0.28 0.52 0.91 1.34 3.32
(36) pm3 11.751 −0.476 0.29 0.70 1.12 2.51 6.27

mtm3 9.920 −0.686 0.31 0.64 1.13 1.80 3.59
mtm4 10.524 −0.813 0.37 1.33 2.73 4.06 9.13

After examining Table 6 we make the following observations. Clearly, the MLE fits are best for
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all data-thresholds under consideration if we measure the fit by ∆δ with δ = 1. This should not be

surprising since likelihood-based procedures attempt, and are designed, to fit all data points. But if

we look at the other values of δ (which reflect the fit for most—not all—observations), we see that

the MLE and robust fits are similar and fairly close to the actual data, for all data-thresholds. We

also note a strong performance by MTMs for x0 = 10. Aside from the last point, however, so far

the robust procedures have not offered any significant improvements over the MLE. But this changes

substantially when we perform a sensitivity analysis under a few data-perturbation scenarios.

Table 7: Parameter estimates and goodness-of-fit measurements of the GPD model

for selected model-fitting procedures, x0 = 10, and under several data-perturbation scenarios.

Scenario Fitting Parameter Estimates Model Fit (∆δ)
Procedure σ̂ γ̂ δ = 0.50 δ = 0.75 δ = 0.90 δ = 0.95 δ = 1

Remove mle 7.230 −0.390 0.09 0.19 0.30 0.40 1.14
x = 263 pm3 7.132 −0.321 0.11 0.23 0.35 0.47 1.66

mtm3 7.709 −0.267 0.08 0.15 0.24 0.38 1.73
mtm4 7.420 −0.336 0.08 0.16 0.26 0.35 1.32

Add mle 6.778 −0.598 0.16 0.32 0.68 0.90 3.70
x = 350 pm3 7.422 −0.304 0.11 0.29 0.49 0.90 6.70

mtm3 7.897 −0.316 0.09 0.16 0.26 0.56 6.09
mtm4 7.620 −0.421 0.09 0.21 0.40 0.53 5.14

Replace mle 6.892 −0.517 0.13 0.26 0.51 0.68 3.02
x = 263 pm3 7.101 −0.345 0.13 0.28 0.41 0.64 4.42

with mtm3 7.819 −0.290 0.08 0.15 0.24 0.47 4.40
x = 350 mtm4 7.546 −0.377 0.08 0.18 0.33 0.43 3.74

In Table 7, we report parameter estimates and the goodness-of-fit measurements ∆δ for x0 = 10

under the following three scenarios. The first two scenarios are taken from McNeil (1997) and the

third one is a combination of the other two. In the first scenario (labeled “Remove x = 263”) we

remove the largest loss from the original sample. In the second scenario (labeled “Add x = 350”) we

introduce a new largest observation of 350 to the data set. And in the third scenario (labeled “Replace

x = 263 with x = 350”) we replace the current largest point of 263 with a new loss of 350. If we

compare parameter estimates and ∆δ evaluations with the original results in Table 6 (for x0 = 10),

we see that robust estimates and their fits are significantly less affected by the removal or addition of

the largest loss than those of the MLE. Moreover, for the third scenario all robust estimates and their

fit measurements for δ < 1 are absolutely identical to the original ones whilst the results for MLE
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are distorted. In the next two sections, we further explore the data-perturbation effects in insurance

applications by studying their influence on the estimates of risk measures and net premiums.

3.2 Risk Measurement

To see how the quality of model fit affects insurance risk evaluations, we compute empirical, parametric

and robust parametric point estimates for several value-at-risk (VaR) measures. The computations are

performed for the whole data set (i.e., for x0 = 1) and for data above the threshold x0 = 10 including

some data-perturbation scenarios of Section 3.1. Mathematically, the VaR measure is the (1−β)-level

quantile of the distribution function F , that is, VaR(β) = F−1(1 − β). For empirical estimation, we

replace F with the empirical cdf F̂n and arrive at

V̂aREMP(β) = Xn:n−[nβ].

For parametric (MLE) and robust parametric (PM, MTM) estimation, F̂−1 is found by simply replac-

ing parameters σ and γ with their respective MLE, PM, and MTM estimates in (2.3). Note that for

parametric quantile-estimation based on upper tail of the data (i.e., for the thresholds x0 > 1), we

apply the results of McNeil (1997, Section 3.5). In particular, we use σ, γ and location x0 estimates

which are calculated according to the following formulas:

γ̃ = γ̂, σ̃ = σ̂(1 − F̂n(x0))
−eγ , x̃0 = x0 + (σ̃/γ̃)

(
(1 − F̂n(x0))

eγ − 1
)

,

where σ̂ and γ̂ are the parameter estimates based only on data above x0. Table 8 presents empirical,

parametric, and robust parametric point estimates of VaR(β) for several levels of β.

A number of conclusions emerge from the table. First, for the whole data set (x0 = 1), GPD-based

risk evaluations of not-too-extreme significance levels (β ≥ 0.01) are fairly close to their empirical

counterparts. Second, for very extreme significance levels (β < 0.01), the empirical and parametric

estimates of VaR diverge. Of course, one can argue that the empirical approach underestimates

VaR(β = 0.0001) because there is simply no observed data at that level. On the other hand, the

MLE’s estimate seems like an exaggeration of risk. Third, the last point gains even more credibility

if we look at VaR(β < 0.01) estimates which are based on data above x0 = 10. Indeed, the MLE’s

evaluations are now substantially reduced. Fourth, overall the robust procedures tend to provide lower
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estimates of risk at the most extreme levels of significance than the MLE. This actually can easily

be seen from the PR-plots (see Figure 2): near the 100th percentile, MLE’s residuals are below the

fitted line whilst the PM’s and MTM’s are above. Fifth, when we employ data-perturbation scenarios,

robust estimators’ risk evaluations are quite stable compared to those of the MLE.

Table 8: Point estimates of various value-at-risk measures computed by employing

empirical, parametric (MLE), and robust parametric (PM and MTM) methods.

Scenario Estimation VaR(β)
Method β = 0.10 β = 0.05 β = 0.01 β = 0.001 β = 0.0001

All Data mle 5.73 9.0 25 101 408
(x0 = 1) pm3 5.48 8.2 20 65 207

mtm3 5.40 8.1 20 68 228
mtm4 5.57 8.4 21 70 230

empirical 5.56 10.1 26 145 263

x0 = 10 mle 5.96 10.1 27 95 306
pm3 5.68 10.1 25 69 166

mtm3 5.16 10.1 26 67 147
mtm4 5.46 10.1 27 78 199

x0 = 10 mle 6.04 10.1 27 98 331
and replace pm3 5.68 10.1 25 69 166

x = 263 mtm3 5.16 10.1 26 67 147
with x = 350 mtm4 5.46 10.1 27 78 199

x0 = 10 mle 6.20 10.1 29 117 469
and add pm3 5.43 10.1 26 66 147
x = 350 mtm3 5.15 10.1 27 71 164

mtm4 5.48 10.1 28 86 241

3.3 Contract Pricing

Consider now estimation of the pure premium for an insurance benefit equal to the amount by which

a loss exceeds l (million dkk) with a maximum benefit of m. That is, if the fire damage is X with

distribution function F , we seek

Π[F ] =

∫ l+m

l
(x − l) dF (x) + m

(
1 − F (l + m)

)
. (3.2)

Since Π[F ] is a functional of the underlying loss distribution F , we can estimate it by replacing F with

its estimate. To accomplish that, we employ three approaches: empirical, parametric (MLE), and
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robust parametric (PM and MTM). In addition, we also provide (estimated) standard errors of the

premium Π[F ] estimates. To find parametric estimates of the errors, we use the delta method applied

to the transformation of parameter estimators given by equation (3.2) together with the MLE, PM,

and MTM asymptotic distributions, which have been discussed earlier. For the empirical estimation

of standard errors, we use the classical central limit theorem and have that

Π[F̂n] ∼ AN
(
Π[F ], n−1V [F ]

)
,

where V [F ] =
∫ l+m
l (x−l)2 dF (x)+m2(1−F (l+m))−(Π[F ])2 and F̂n denotes the empirical distribution

function. Further, the reliability of premium estimates is studied by employing two data-perturbation

scenarios. In the first scenario (labeled “Replace Top 10 with ∼ 350”), we make the ten largest losses

even larger by replacing them with 351, 352, . . . , 360. In the second scenario (labeled “Replace Top

10 with ∼ 100”), we replace the ten largest losses with 101, 102, . . . , 110. Table 9 summarizes our

numerical investigations for contract pricing.

Table 9: Empirical, parametric (MLE), and robust parametric (PM and MTM) point

estimates of Π[F ], for selected insurance contracts and under two data-perturbation scenarios.

Estimated standard errors of the premium estimates are presented in parentheses.

Scenario Estimation Insurance contract specified by (l,m)

Method (l,m) = (2, 3) (l,m) = (5, 10) (l,m) = (20, 20) (l,m) = (50, 50)
Premium Premium Premium Premium

Original mle 0.69 (0.021) 0.51 (0.037) 0.16 (0.025) 0.09 (0.021)

Data pm3 0.69 (0.024) 0.44 (0.051) 0.10 (0.032) 0.04 (0.021)

(x0 = 1) mtm3 0.67 (0.023) 0.43 (0.056) 0.10 (0.035) 0.05 (0.024)

mtm4 0.70 (0.023) 0.46 (0.043) 0.11 (0.027) 0.05 (0.019)

empirical 0.66 (0.023) 0.54 (0.043) 0.17 (0.034) 0.08 (0.041)

Replace mle 0.70 (0.021) 0.55 (0.038) 0.19 (0.028) 0.12 (0.026)

Top 10 pm3 0.69 (0.024) 0.44 (0.051) 0.10 (0.032) 0.04 (0.021)

with mtm3 0.67 (0.023) 0.43 (0.056) 0.10 (0.035) 0.05 (0.024)

∼ 350 mtm4 0.70 (0.023) 0.46 (0.043) 0.11 (0.027) 0.05 (0.019)

empirical 0.66 (0.023) 0.54 (0.043) 0.17 (0.034) 0.08 (0.041)

Replace mle 0.69 (0.021) 0.52 (0.037) 0.17 (0.026) 0.09 (0.022)

Top 10 pm3 0.69 (0.024) 0.44 (0.051) 0.10 (0.032) 0.04 (0.021)

with mtm3 0.67 (0.023) 0.43 (0.056) 0.10 (0.035) 0.05 (0.024)

∼ 100 mtm4 0.70 (0.023) 0.46 (0.043) 0.11 (0.027) 0.05 (0.019)

empirical 0.66 (0.023) 0.54 (0.043) 0.17 (0.034) 0.08 (0.041)
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We observe that premium estimates for the contract (l,m) = (2, 3), which covers events that

are quite likely but have relatively low economic impact, are practically identical. And the data-

perturbation scenarios have no effect on any of the estimators, including the MLE. For more ex-

treme coverages, i.e., for contracts (l,m) = (5, 10) and higher, which cover low-probability-but-high-

consequence events, the estimates diverge. The MLE and empirical estimates are usually close to

each other whilst the robust estimates form their own cluster which yields fairly different prices

from those of the MLE and empirical methods. Further, for very extreme layers of losses such as

(l,m) = (20, 20), (50, 50), the parametric estimators produce smaller standard errors than the empir-

ical approach. Finally, since both data contaminations occur outside the defined layers, one would

assume that the premium should not change. This property is exhibited by the empirical and robust

approaches, but the MLE is clearly affected by contamination.

4 Discussion

In this article, we have introduced a new method for robust fitting of the GPD. It is based on ‘trimmed

moments’ and therefore called the method of trimmed moments (MTM). Its large- and small-sample

properties have been explored and compared to some well-established standard approaches (MLE

and MM) as well as to some less-known but conceptually sound methods such as ‘percentile match-

ing’ (PM). We have found that the new MTM procedure is computationally attractive, it possesses

competitive efficiency properties and provides sufficient protection against various data contamination

sources. A connection between the MTMs and PMs has also been established. Thus it is not surprising

at all that these two procedures have some desirable properties in common. In particular, they offer

a variety of robustness-efficiency trade-offs and, unlike other existing proposals in the literature, both

are applicable and valid for the entire parameter space of the GPD (i.e., for −∞ < γ < ∞).

In addition, the favorable theoretical and computational properties of the new method translate

into accurate risk evaluations as well as fair pricing. Indeed, as it is confirmed by our numerical

illustrations, the value-at-risk estimates based on the robust procedures show more stability under

various scenarios of data-perturbation than those based on the MLE. Also, robustly estimated contract

prices for extreme layers of losses are less volatile than the empirical ones, and more outlier resistant
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than the MLE-based prices.
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A Appendix: Auxiliary Results

A.1 Differentiation of µi

The derivative of a trimmed moment µj , given by (2.11), with respect to the shape parameter γ is

necessary for computations of the variance-covariance matrix Σ3, given by (2.12). The general case is

found by straightforward differentiation. The special cases γ = −1 and γ = 0 represent the limit of

the general case when γ → −1 and γ → 0, respectively. Thus, we have:

µ′

j = −σ ×





1 − log(1 − aj) − log(bj)

1 − aj − bj
− log2(1 − aj) − log2(bj)

2(1 − aj − bj)
, if γ = −1,

1 − (1 − aj) log(1 − aj) − bj log(bj)

1 − aj − bj
+

(1 − aj) log2(1 − aj) − bj log2(bj)

2(1 − aj − bj)
, if γ = 0,

1

γ(γ + 1)

[
(2γ + 1)(µj/σ) − 1 +

(1 − aj)
γ+1 log(1 − aj) − bγ+1

j log(bj)

1 − aj − bj

]
, otherwise.

A.2 Approximation of σ
2

ij

The entries σ2
ij appear in the variance-covariance matrix Σ∗∗ which is a part of Σ3, given by (2.12).

Instead of pursuing exact formulas for these entries, we use the bivariate trapezoidal rule.

Let us define the region R = [a, b] × [c, d] which is a subset of [0, 1) × [0, 1). Next, we divide each

interval, [a, b] and [c, d], into k subintervals and define

hx = (b − a)/k, xi = a + ihx, i = 0, . . . , k,

hy = (d − c)/k, yj = c + jhy , j = 0, . . . , k,

where the number k is fixed.

The double integral over R to be approximated is of the form

I =

∫ b

a

∫ d

c
g(x, y)f ′(x)f ′(y) dy dx.
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Using the composite trapezoidal rule in both spatial directions yields

I ≈ Ik =

k∑

i=0

k∑

j=0

g(xi, yj) f ′(xi)f
′(yj)wiwj ,

where

wi = hx ×
{

1/2, if i = 0 or i = k,
1, otherwise,

and wj = hy ×
{

1/2, if j = 0 or j = k,
1, otherwise.

If the integrand g(·, ·) f ′(·)f ′(·) is sufficiently smooth, then the order of convergence is O(h2).

The derivatives f ′(x) and f ′(y) are approximated by

f ′(xi) ≈ 1

2hx

(
f(xi+1) − f(xi−1)

)
, i = 1, . . . , k,

f ′(yj) ≈ 1

2hy

(
f(yj+1) − f(yj−1)

)
, j = 1, . . . , k,

where xi, yj, hx and hy are given above. Here, if the function f is assumed to be sufficiently smooth,

then the order of convergence is O(h2). This means that the error-of-convergence ratios,

eoc =
I − Ik/2

I − Ik
,

approach 4 if the true solution is known. If not, then the following ratios

eoc ≈
Ik − Ik/2

Ik/2 − Ik/4

approach 4.

Finally, note that all the smoothness conditions made above are satisfied by the GPD.
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