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tion (CTE) functions, which are of considerable interest in actuarial science. In particular, we
construct estimators for the CTE functions, develop the necessary asymptotic theory for the
estimators, and then use the theory for constructing confidence intervals and bands for the
functions. Both parametric and non-parametric approaches are explored. Simulation studies
illustrate the performance of estimators in various situations. Results are obtained under min-
imal assumptions, and the general Vervaat process plays a crucial role in achieving these goals.
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1. Introduction

In recent years, risk measures have become important tools in finance and actuarial science. One often wishes to place a
value on a random financial quantity, such as an insurance liability, in such a way that this value allows for the variability of the
quantity. This is accomplished using a risk measure, which can be defined as a mapping from the set of possible outcomes of the
financial quantity to the real numbers. For simplicity in our presentation, we refer to the financial quantity as a "loss'' denoted
by the random variable X. There are certain properties that a risk measure should have in order to be sensible. In fact, the term
"coherent'' risk measure is reserved for risk measures that satisfy a specific set of properties (cf. Artzner, 1999). The conditional
tail expectation (CTE) riskmeasure (also known as Tail-VaR or expected shortfall), which is the subject of this paper, is an example
of a coherent risk measure (cf. Acerbi and Tasche, 2002; Artzner, 1999; Tasche, 2002; Wirch and Hardy, 1999).

The CTE riskmeasure is the conditional expectation of the loss random variable X given that X exceeds a specified quantile. The
CTE has become increasingly popular due to its simplicity as well as its coherence. In fact, use of the CTE for determining liabilities
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associated with variable life insurance and annuity products with guarantees is required in Canada (cf. Canadian Institute of
Actuaries, 2002) and recommended in the United States (cf. American Academy of Actuaries, 2002).

Application of the CTE in a multivariate context to elliptical distributions was considered by Landsman and Valdez (2003).
Hardy andWirch (2004) recognize the fact that there is normally no allowance for riskmeasures to evolve over timeby introducing
a dynamic risk measure called the iterated CTE. We do not consider such generalizations in this paper.

Manistre and Hancock (2005) present an empirical estimator of the CTE as well as an estimator of its variance. These authors
deal with the situation in which the CTE is estimated based on simulated outcomes that are generated under a specified set of
assumptions. In this case, the value of the CTE is, in principle, known but rather difficult to determine. In the present paper we
address the case in which the CTE must be estimated from data.

Formally, the CTE risk measure, or function, can be defined as follows. Given a loss variable X (which is a real-valued random
variable) with finite mean E[X], let FX denote its distribution function. Next, let F−1

X be the left-continuous inverse of FX called
the quantile function in the statistical literature. That is, for every t ∈ [0,1], we have

F−1
X (t) = inf{x : FX(x)� t}.

With the above notations, the CTE function is defined by

CTEX(t) = E[X|X > F−1
X (t)].

If FX is a continuous function, then we have that FX(F−1
X (t))= t for every t ∈ [0,1]. Hence, F−1

X (t) is the point such that t ×100%
of losses are on or below the point. This can equivalently be reformulated by saying that there are (1 − t) × 100% of losses above
the point F−1

X (t). To see how CTEX looks in the continuous case, we first note that in this case the random variable U = FX(X) is
uniformly distributed on the interval [0,1]. We therefore have the equality:

CTEX(t) = 1
P{U > t}E[F−1

X (U)I{U>t}]. (1.1)

Denote the right-hand side of (1.1) by CX(t). The following equality holds:

CX(t) = 1
1 − t

∫ 1

t
F−1
X (u)du. (1.2)

The function CX is well defined for all distributions. Equality (1.1) shows that the functions CTEX and CX coincide on the whole
interval [0,1] when the distribution function FX is continuous. Note, however, that when FX is not continuous, then the two
curves CTEX and CX might not coincide (cf. Appendix at the end of the paper). Nevertheless, both CTEX and CX are called CTE in
the literature.

Throughout the paper we concentrate on estimating CX . We do not assume the continuity of FX unless we need to do so.
Specifically, when constructing consistent estimators of CX , we do not assume the continuity of FX , but in the case of confidence
intervals we need and thus do assume it.

An empirical estimator of the function CX is defined as follows. Let X1, . . . , Xn be independent and identically distributed
randomvariables.Denote thecorrespondingempiricaldistribution functionbyFX,n andthequantile functionbyF−1

X,n. Theempirical
estimator of CX is defined by

CX,n(t) = 1
1 − t

∫ 1

t
F−1
X,n(u)du.

In following sectionswe investigate point-wise anduniformover the interval [0,1] consistency ofCX,n, aswell as its asymptotic
distribution. Based on these results, we then derive point-wise and simultaneous confidence intervals for the function CX .

We conclude this section with brief discussions of two topics that are closely related to our paper. The first topic concerns
the mean residual life (MRL) function, which is a somewhat less complicated mathematical object than the CTE. The second topic
concerns the absolute concentration curve (ACC), which is a somewhat more complicated object than the CTE. Definitions and
further details about these functions follow.

There might be situations when instead of the quantile F−1
X (t) one would wish to use a specified value x that does not depend

on the population distribution. This problem is directly linked to the MRL function

MRLX(x) = E[X − x|X > x].

There is an extensive literature on estimating the MRL function point-wise and simultaneously over its domain of definition,
usually [0, ∞) but possibly the whole real line. For example, we refer to Csörgö et al. (1986), Csörgö and Zitikis (1996) and Kochar
et al. (2000) and references therein. We conclude this paragraph with the note that estimating MRL and CTE functions are two
closely related but obviously different tasks.
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A more general curve than the CTE function CTEX(t) is the dual to the ACC. The latter is defined by

ACCY,X (t) = E[Y |X �F−1
X (t)],

whereY is a randomvariablewith finitemeanE[Y ]anddependentonX. Note thatwhenY=X , thenACCY,X (t)equalsE[X|X �F−1
X (t)].

The latter function (in t) is the dual to the above defined CTE function E[X|X > F−1
X (t)].

The ACC was introduced by Shalit and Yitzhaki (1994). For subsequent developments in the area we refer, for example,
to Mayshar and Yitzhaki (1995), Chow (2001), Seiler (2001), Shalit and Yitzhaki (2003), Schechtman and Yitzhaki (2004), and
references therein.

2. Consistency

Since CX,n(t) is a function of t, its consistencymight, for example, mean convergence of CX,n(t) to CX(t)when n → ∞ either at a
given fixed point t ∈ [0,1] or uniformly over all points t ∈ [0,1]. Furthermore, convergence can, for example, be almost surely or
in probability. The latter mode of convergence is more natural from the applications point of view, but the former one is stronger
and thus implies the latter one. Since our considerations would be almost identical for any of the two modes of convergence, we
therefore restrict ourselves to convergence almost surely, that is, to strong consistency of CX,n(t). Naturally, we start with the
simpler case of point-wise consistency.

Theorem 2.1. Assuming that the first moment E[X] is finite, we have for every t ∈ [0,1] that CX,n(t) converges to CX(t) almost surely
and thus in probability. In other words, CX,n(t) is a strongly (and thus weakly) consistent estimator of CX(t) for every fixed t ∈ [0,1].

The proof of Theorem 2.1 as well as those of subsequent theorems are given in the Appendix at the end of the paper.
Uniform over the interval [0,1] consistency does not hold, which is seen from the following considerations:

sup
0<t<1

|CX,n(t) − CX(t)|� sup
1−1/n<t<1

|CX,n(t) − CX(t)|

= sup
1−1/n<t<1

|Xn:n − CX(t)|

� − sup
1−1/n<t<1

Xn:n + sup
1−1/n<t<1

CX(t) (2.1)

which is infinite since the order statistic is finite almost surely and the supremum is infinite for distributions whose right-end
of the support is infinite. Thus, in this case the right-hand side of (2.1) does not converge to 0 (neither almost surely nor in
probability), and thus, in turn, the left-hand side does not converge either. We therefore conclude that CX,n is not a uniformly
consistent estimator of CX over the whole interval [0,1].

The reason why the uniform consistency fails is that the denominators 1− t in the definitions of the theoretical and empirical
CTE functions emphasize the corresponding numerators so much when t approaches 1 that the difference between CX,n(t) and
CX(t) becomes large. This, in turn, suggests away to fix the problem.Namely, let q : (0,1) → [0, ∞) be a function such that q(t) → 0
when t → 1. We expect that if we multiply |CX,n(t) − CX(t)| by q(t), then the resulting quantity will converge to 0 uniformly over
the interval [0,1]. The following theorem describes the class of weight functions q that can be used for the purpose. Certainly, the
class depends on the upper tail of the distribution function FX , which we control using a moment condition.

Theorem 2.2. Let the rth moment E[|X|r ] be finite for some r �1, and let the weight function q : (0,1) → [0, ∞) be such that

sup
0<t<1

q(t)

(1 − t)1/r
< ∞. (2.2)

Then

sup
0<t<1

q(t)|CX,n(t) − CX(t)|→a.s.0. (2.3)

One might be interested to know whether assumption (2.2) can be relaxed. Note in this regard that the assumption allows
us to use the weight function q(t) = (1 − t)1/r−� with � = 0, but not with �>0 no matter how small it is. The following theorem
shows that these notes are also applicable in the case of statement (2.3) itself, thus proving the optimality of assumptions in
Theorem 2.2.

Theorem 2.3. For any (small) �>0, the supremum in (2.3) with the weight function q(t) = (1 − t)1/r−� does not converge to 0 in
probability and thus, in turn, almost surely.
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3. Confidence intervals and bands

In the previous section we discussed when it is appropriate to use CX,n(t) for estimating CX(t) either at any fixed points
t ∈ [0,1] or uniformly over all t. The next step is to construct point-wise and simultaneous confidence intervals for CX(t). We call
them confidence intervals and confidence bands, respectively. The following two paragraphs justify this research in the actuarial
context.

We start with the note that in many cases one may be interested in a confidence interval for the CTE at a given value of t.
For example, the Canadian Institute of Actuaries Task Force on Segregated Fund Investment Guarantees (cf. Canadian Institute
of Actuaries, 2002) recommends using t = 0.90 in determining the balance sheet liability for variable products with investment
guarantees.

In other instances, onemaywish to explore the impact of changing the value of t, say from t1 to t2 for certain 0< t1 < t2 <1, on
the resulting CTE estimates. One might then estimate the CTE for values of t in the interval [t1, t2]. To properly reflect uncertainty
about the estimates, it is appropriate to construct a confidence band for the values of the CTE function.

We start with (point-wise) confidence intervals, whose construction is based on the following asymptotic result.

Theorem 3.1. Assume that the second moment E[X2] is finite. Let t ∈ [0,1] be fixed, and let the distribution function FX be continuous
at the point F−1

X (t). Then

√
n(CX,n(t) − CX(t))→dN(0,�2

X(t)), (3.1)

whereN(0,�2
X(t)) denotes a centered normal random variable with the variance

�2
X(t) = 1

(1 − t)2

∫ ∞
F−1
X

(t)

∫ ∞
F−1
X

(t)
(FX(x ∧ y) − FX(x)FX(y))dxdy. (3.2)

In particular, statement (3.1) holds for any fixed t ∈ [0,1] if the distribution function FX is continuous everywhere on the real line.

Quantities like �2
X(t) in (3.2) appear naturally and frequently when investigating L- and R-statistics. For results and discussions

on the subject, we refer, for example, to Puri and Sen (1971), Serfling (1980) and Shorack and Wellner (1986).
Using statement (3.1), we derive the following (1 − �)100% level asymptotic confidence interval for the CTE CX(t):

CX,n(t) ± z�/2�X(t)√
n

,

where z�/2 is the (1 − �/2) × 100% percentile of the standard normal distribution. The standard deviation �X(t) is unknown and
thus needs to be estimated empirically. This we do next.

Under the assumptions of Theorem 3.1, we can easily check that

�2
X,n(t) = 1

(1 − t)2

∫ ∞
F−1
X,n

(t)

∫ ∞
F−1
X,n

(t)
(FX,n(x ∧ y) − FX,n(x)FX,n(y))dxdy (3.3)

is a consistent estimator of �2
X(t). Hence, we have the following (1−�)100% level asymptotic confidence interval for the CTE CX(t):

CX,n(t) ± z�/2�X,n(t)√
n

.

We note in passing that formula (3.3) can be rewritten in a more computationally convenient form (for details, see Eq. (A.27)
in Appendix):

�2
X,n(t) = 1

(1 − t)2

∑
nt � j�n−1

∑
nt �k�n−1

(
j ∧ k

n
− j

n

k

n

)
(Xj+1:n − Xj:n)(Xk+1:n − Xk:n). (3.4)

In view of statement (3.1), we can also use a bootstrap approximation to construct confidence intervals. To this end, we sample
with replacement from X1, . . . , Xn and obtain a new sample X∗

1, . . . , X∗
n . Using the latter sample, we then obtain the corresponding

CTE, which we denote by C∗
X,n(t). Hence, we obtain a value of the quantity (note the absolute value)

√
n|C∗

X,n(t) − CX,n(t)|. (3.5)

We repeat the above simulation procedure M times and obtain M values of quantity (3.5). Then we define x∗ as the smallest
number x such that the proportion of those M values of quantity (3.5) that are at or below x is at least 1 − �. We arrive at the
following asymptotic (1 − �)100% level confidence interval for the CTE CX(t):

CX,n(t) ± x∗
√

n
.
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Summarizing the discussion above, we have constructed point-wise confidence intervals for the CTE CX(t) at any fixed point
t ∈ [0,1]. These confidence intervals, however, do not imply simultaneous confidence intervals for the function CX over the
interval [0,1]. A stronger asymptotic result than that in Theorem 3.1 is needed, and we formulate it as Theorem 3.2.

Before formulating the theorem, we find it instructive to give a few introductory notes on the assumptions to be imposed.
First, recall that in Theorem 3.1 we required continuity of FX at a fixed point. Due to its uniform character, Theorem 3.2 will
require continuity of FX at every point. Second, as we can guess from the above result concerning uniform consistency, we shall
need to employ weight functions in the theorem that follows. Third, certain moment assumptions will be imposed to control the
behavior of the aforementioned weight functions, depending on the tail behavior of the underlying distribution function FX . Now
we are ready to formulate our next theorem.

Theorem 3.2. Let the distribution function FX be continuous. Assume that the moment E[|X|2+�] is finite for some �>0, and let the
moment E[Xr+] be also finite for some r >2,where X+ =max(X,0). If the weight function q : (0,1) → [0, ∞) is such that, for some �>0,

sup
0<t<1

q(t)

(1 − t)1/r+1/2+� < ∞, (3.6)

then we have that

√
n sup
0<t<1

q(t)|CX,n(t) − CX(t)|→d sup
0<t<1

q(t)

1 − t

∣∣∣∣∣
∫ ∞
F−1
X

(t)
B(FX(x))dx

∣∣∣∣∣ , (3.7)

whereB is the Brownian bridge on the interval [0,1].

From (3.7) we obtain the following (1 − �)100% level asymptotic confidence band for the CTE function CX :

CX,n(t) ± s�
q(t)

√
n

for all t ∈ [0,1] such that q(t) >0,

where s� is the (1 − �)th quantile of the distribution function of the limiting random variable on the right-hand side of (3.7).
Obviously, s� depends on both the distribution function FX and the weight function q.

Since s� depends on the (unknown) distribution function FX , it needs to be estimated empirically. This can be done using a
bootstrap approximation analogous to the one described in the two paragraphs below Eq. (3.4) but now with

√
n sup
0<t<1

q(t)|C∗
X,n(t) − CX,n(t)| (3.8)

instead of quantity (3.5). We obtain the asymptotic (1 − �)100% level confidence band for the CTE function CX :

CX,n(t) ± x∗
q(t)

√
n

for all t ∈ [0,1] such that q(t) >0.

Note that if a confidence band for CX is desired, for example, over an interval [t1, t2] ⊆ [0,1], then it is natural to choose q so that
q(t) = 0 for all t's outside the interval [t1, t2].

4. Parametric confidence intervals

In this section we derive parametric confidence intervals for the CTE function at any given t ∈ [0,1]. Just like non-parametric
confidence intervals above, the parametric ones constructed in this section are also asymptotic. They are constructed using
asymptotic theory for the maximum likelihood estimators (MLE) and also the delta method.

Let us focus on interval estimation of the expected maximum loss CX(t) in the (1 − t)100% worst cases, based on a sam-
ple X1, . . . , Xn having distribution function FX . First we note that empirical (i.e., non-parametric) confidence intervals for CX(t)

are readily available (see Section 3). Below we shall construct parametric confidence intervals for CX(t) for three parametric
distributions:

• Exponentialwith the cdf given by FX1
(x) = 1 − e−(x−x0)/�, for x > x0 and �>0.

• Paretowith the cdf given by FX2
(x) = 1 − (x0/x)�, for x > x0 and �>0.

• Lognormal with the cdf given by FX3
(x) = �(log(x − x0) − 	), for x > x0 and −∞ <	< ∞, where �(·) denotes the cdf of the

standard normal distribution.

Application of these distributions covers a wide spectrum of areas ranging from actuarial science, economics, finance to
telecommunications and extreme value theory. A more detailed discussion of these applications along with various techniques
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for estimation of parameters of these families can be found in Brazauskas and Serfling (2000), Serfling (2002) and Brazauskas and
Kaiser (2004). Practical aspects of fitting Pareto models to real loss data are investigated in Brazauskas and Serfling (2003).

The parameter x0 in the above distributions can be interpreted as a deductible or a retention level and, thus, assumed to be
known. (Note that, due to x0, the distribution functions FX1

, FX2
, and FX3

have the same support.) The parameters �, �, and 	 are
unknown but can be estimated from the data using, for example, the maximum likelihood approach. Straightforward derivations
yield the following formulas for the MLE's of the parameters �, �, and 	, respectively:

�̂ = 1
n

n∑
i=1

(Xi − x0), �̂ =
⎛⎝1

n

n∑
i=1

log
(

Xi

x0

)⎞⎠−1

, 	̂ = 1
n

n∑
i=1

log(Xi − x0). (4.1)

It is well known from asymptotic theory for themaximum likelihood procedures that theMLE's �̂, �̂, and 	̂ are each asymptotically
normal with, respectively, the means �, �, and 	, and the variances �2/n, �2/n, and 1/n.

The CTE measures for the exponential, Pareto, and lognormal distributions are found by computing integral (1.2) with FX1
,

FX2
, and FX3

, respectively. This yields the formulas, respectively:

CX1
(t) = x0 − �(log(1 − t) − 1), CX2

(t) = x0�
� − 1

(1 − t)−1/�,

CX3
(t) = x0 + 1

1 − t
e	+0.5�(1 − �−1(t)).

The corresponding empirical estimators of CTE's are then found by replacing unknown parameters with their respective MLE's.
That is, we have

ĈX1
(t) = x0 − �̂(log(1 − t) − 1), ĈX2

(t) = x0�̂
�̂ − 1

(1 − t)−1/̂�,

ĈX3
(t) = x0 + 1

1 − t
e	̂+0.5�(1 − �−1(t)).

In view of the discussion above, in order to get parametric confidence intervals for the CTE measures, one has to apply the
classical theory of transformations for asymptotically normal statistics (see, e.g., Serfling, 1980, Chapter 3). Application of this
approach---also known as the delta method---implies the following statement, for k = 1,2,3,

√
n(ĈXk

(t) − CXk
(t))→dN(0, Q2

Xk
), (4.2)

where the asymptotic variances are given by formulas:

Q2
X1

= (1 − log(1 − t))2�2,

Q2
X2

= x20(1 − t)−2/�

(� − 1)2

(
log(1 − t)

�
− 1

� − 1

)2
�2,

Q2
X3

=
(

1
1 − t

e	+0.5�(1 − �−1(t))

)2
.

Wecannowformulate the100(1−�)%parametric confidence intervals for theCTEmeasuresCX1
(t),CX2

(t), andCX3
(t), respectively:

x0 − �̂(log(1 − t) − 1)(1 ± z�/2
√
1/n),

x0�̂
�̂ − 1

(1 − t)−1/̂�(1 ± z�/2(log(1 − t)/̂� − 1/(̂� − 1))
√
1/n),

x0 + 1
1 − t

e	̂+0.5�(1 − �−1(t))(1 ± z�/2
√
1/n),

where z�/2 is the (1 − �/2)th quantile of the standard normal distribution.

5. A simulation study

In this sectionweexamine---viaMonte Carlo simulations---finite-sample performance of the proposed (asymptotic) confidence
intervals for the CTEmeasure, with particular emphasis on comparisons between empirical (i.e., non-parametric) and parametric
confidence intervals. Data are generated by three similar shape parametric families that have equal CTE measures and their
"CTE-riskiness'' is either "mild'' or "severe''.
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We used the following design for the Monte Carlo simulation study. Ten thousand samples of size n were generated from
a distribution FX . For each sample, a (1 − �)100% confidence interval for the CTE measure was constructed using the empirical
and parametric approaches. Then, based on these 10,000 intervals for each approach, the average length of the interval and the
proportion of times the interval covered the true value of the CTEmeasure was evaluated. This procedure was repeated 10 times,
and themeans and standard errors of the average length and the proportion of coveragewere recorded. The studywas performed
for the following (specific) choices of simulation parameters:

• Sample sizes: n = 20,100,250.
• Confidence level: 1 − � = 0.95.
• Threshold levels: t = 0.95,0.80.
• Target quantities: We choose to work with the exponential (FX1

), Pareto (FX2
), and lognormal (FX3

) distribution functions
(cf. the previous section for formulas). The parameters x0, �, �, and 	 are chosen so that all three distributions are equally risky,
i.e., they have identical CTE values, that is, CX1

(t) = CX2
(t) = CX3

(t), which can equivalently be written as the equalities

x0 − �(log(1 − t) − 1) = x0�
� − 1

(1 − t)−1/�

= x0 + 1
1 − t

e	+0.5�(1 − �−1(t)).

Since x0 is known, without loss of generality we can and thus do assume that x0 = 1. Next, taking into consideration that the
three CTE values are equal by our choice, we select values of the parameters �, �, and 	 in such a way that they represent the
following two scenarios:

◦ Mild riskiness:

� = 10,

� = 1 − (10/9)(1 − t)−1/10

log(1 − t) − 1
,

	 = log

(
(1 − t)((10/9)(1 − t)−1/10 − 1)

�(1 − �−1(t))

)
− 0.5.

Hence, the values

CX1
(0.95) = CX2

(0.95) = CX3
(0.95) = 1.499,

CX1
(0.80) = CX2

(0.80) = CX3
(0.80) = 1.305.

◦ Severe riskiness:

� = 3,

� = 1 − 1.5(1 − t)−1/3

log(1 − t) − 1
,

	 = log

(
(1 − t)(1.5(1 − t)−1/3 − 1)

�(1 − �−1(t))

)
− 0.5.

Hence, the values

CX1
(0.95) = CX2

(0.95) = CX3
(0.95) = 4.072,

CX1
(0.80) = CX2

(0.80) = CX3
(0.80) = 2.565.

Our simulation results are summarized in Table 1. The following information is presented there: length and proportion of
coverage of 95% empirical andparametric confidence intervals forCX(t), for selected t and sample sizen, when losses are generated
from exponential, Pareto, and lognormal distributions. Parameters of the distributions are chosen so that, under a fixed scenario
of riskiness, mild or severe, all three families are equally risky according to the CX(t) criterion. Standard errors for the entries are
presented in parentheses. A discussion of our findings presented in Table 1 is given in the next paragraph.

Coverage proportions of the empirical intervals are quite low in small samples (0.52--0.61 for n = 20) for t = 0.95 and for both
scenarios of riskiness of underlying distributions. These proportions increase as sample size gets larger (0.76--0.85 for n = 100;
0.82--0.89 for n = 250) or when t is less extreme (0.74--0.83 for t = 0.80 and n = 20). Overall, coverages of the empirical intervals
get reasonably close to the intended 95% confidence level for n�250. Parametric intervals, on the other hand, perform very well
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Table 1

t Method of estimation Sample size Exponential Pareto Lognormal

Length Coverage Length Coverage Length Coverage

Riskiness of distributions: mild [true values: CX(0.80) = 1.305, CX(0.95) = 1.499]
0.95 Empirical 20 0.48 (0.004) 0.61 (0.004) 0.55 (0.007) 0.59 (0.004) 0.69 (0.009) 0.54 (0.006)

100 0.29 (0.001) 0.85 (0.003) 0.35 (0.001) 0.83 (0.003) 0.48 (0.005) 0.79 (0.003)
250 0.18 (0.000) 0.89 (0.003) 0.23 (0.001) 0.87 (0.002) 0.32 (0.002) 0.85 (0.002)

Parametric 20 0.44 (0.001) 0.93 (0.003) 0.55 (0.001) 0.92 (0.003) 0.45 (0.001) 0.94 (0.003)
100 0.20 (0.000) 0.94 (0.002) 0.24 (0.000) 0.94 (0.003) 0.20 (0.000) 0.95 (0.002)
250 0.12 (0.000) 0.95 (0.002) 0.15 (0.000) 0.95 (0.002) 0.12 (0.000) 0.95 (0.003)

0.80 Empirical 20 0.29 (0.002) 0.82 (0.004) 0.33 (0.002) 0.81 (0.003) 0.40 (0.004) 0.76 (0.004)
100 0.13 (0.000) 0.92 (0.003) 0.16 (0.000) 0.90 (0.004) 0.21 (0.001) 0.88 (0.003)
250 0.09 (0.000) 0.93 (0.002) 0.10 (0.000) 0.93 (0.003) 0.14 (0.001) 0.91 (0.004)

Parametric 20 0.27 (0.001) 0.92 (0.002) 0.32 (0.001) 0.92 (0.002) 0.27 (0.001) 0.94 (0.002)
100 0.12 (0.000) 0.94 (0.002) 0.14 (0.000) 0.94 (0.002) 0.12 (0.000) 0.95 (0.001)
250 0.08 (0.000) 0.95 (0.002) 0.09 (0.000) 0.95 (0.002) 0.08 (0.000) 0.95 (0.002)

Riskiness of distributions: severe [true values: CX(0.80) = 2.565, CX(0.95) = 4.072]
0.95 Empirical 20 2.93 (0.022) 0.61 (0.004) 4.66 (0.067) 0.52 (0.004) 4.23 (0.057) 0.54 (0.005)

100 1.78 (0.007) 0.84 (0.003) 3.46 (0.040) 0.76 (0.004) 2.99 (0.021) 0.79 (0.002)
250 1.14 (0.002) 0.89 (0.003) 2.35 (0.016) 0.82 (0.003) 1.98 (0.012) 0.84 (0.003)

Parametric 20 2.69 (0.007) 0.93 (0.001) 6.40 (0.034) 0.89 (0.004) 2.76 (0.008) 0.94 (0.002)
100 1.20 (0.001) 0.95 (0.002) 2.47 (0.008) 0.94 (0.002) 1.21 (0.001) 0.95 (0.003)
250 0.76 (0.000) 0.95 (0.002) 1.53 (0.003) 0.94 (0.002) 0.76 (0.001) 0.95 (0.003)

0.80 Empirical 20 1.46 (0.010) 0.83 (0.005) 2.30 (0.020) 0.74 (0.004) 2.05 (0.018) 0.76 (0.003)
100 0.69 (0.002) 0.92 (0.003) 1.21 (0.008) 0.86 (0.004) 1.05 (0.004) 0.88 (0.003)
250 0.44 (0.001) 0.93 (0.003) 0.82 (0.005) 0.89 (0.004) 0.69 (0.002) 0.91 (0.002)

Parametric 20 1.37 (0.003) 0.92 (0.002) 2.65 (0.008) 0.90 (0.004) 1.41 (0.003) 0.94 (0.002)
100 0.61 (0.001) 0.95 (0.003) 1.07 (0.002) 0.94 (0.002) 0.62 (0.001) 0.95 (0.002)
250 0.39 (0.000) 0.95 (0.002) 0.67 (0.001) 0.94 (0.002) 0.39 (0.000) 0.95 (0.003)

with respect to the coverage criterion having coverage proportions of at least 0.89 (=0.89 for severe riskiness, at Pareto, t = 0.95,
n = 20) for both scenarios of riskiness and for all sample sizes that we considered. Further, except for a few cases (e.g., severe
riskiness, at Pareto, n = 20), they also dominate empirical counterparts with respect to the length criterion. Superior overall
performance of parametric intervals should not come as a surprise because they have an advantage of "knowing'' the underlying
distribution, i.e., they are equipped with additional information. Empirical procedures, however, are more flexible and perform
similarly under all distributional scenarios. Finally, for both methods of estimation, the impact of specific distribution or type of
riskiness on coverage proportions is minimal but is significant on the interval length, sometimes even dramatic (e.g., for t = 0.95,
parametric approach, n = 20, at Pareto, the interval length increases more than 10 times at severe riskiness (6.40) compared to
mild riskiness (0.55), whereas the true value of CX(0.95) changes from 4.072 to 1.499).

6. Comparing CTE's when samples are independent

There are situations when it is of interest to compare the CTE functions CX and CY that correspond to loss variables X and Y,
respectively. Here is an example.

In an insurance context, companies may be interested in comparing the CTE risk measure values corresponding to different
policy characteristics. For example, an automobile insurer may offer policyholders a choice of deductible. It is well known that
losses for those who choose a less expensive high deductible policy do not have the same distribution (before applying the
deductible) as losses for those who choose a more expensive low deductible policy.

Just like in previous sections, we estimate CX using CX,n based on independent and identically distributed random variables
X1, . . . , Xn, and estimate CY using CY,m based on independent and identically distributed random variables Y1, . . . , Ym. In practice,
there might be many possible scenarios of interest concerning dependence between X's and Y's. In this section we consider the
case when the two samples are independent. An example where such a situation arises is as follows.

The insurer may wish to compare the CTE for policies with different deductibles. This can be done by collecting data on claims
arising from policies with the different deductibles. These samples can be assumed to be independent.

Testing hypotheses about the equality CX(t) = CY (t) or, say, dominance CX(t)�CY (t) either at a fixed point t ∈ [0,1] or
over a region of the interval [0,1] are, naturally, based on the asymptotic behavior of the appropriately normalized difference
CX,n(t) − CY,m(t). In the case when the X's and Y's are independent, the asymptotic behavior of the aforementioned difference can
be obtained using the corresponding one-sample results already established above. Namely, assuming that the ratio n/(n + m)

converges to a constant 
 ∈ [0,1] when both n and m tend to infinity, we have under the conditions of Theorem 3.1 for both FX
and FY that the following statement holds:

�n(t) =
√

nm

n + m
((CX,n(t) − CY,m(t)) − (CX(t) − CY (t)))→dN(0, (1 − 
)�2

X(t) + 
�2
Y (t)). (6.1)
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Using statement (6.1), we can construct confidence intervals for the difference CX(t) − CY (t), test hypotheses about whether,
say, CX(t) is equal to or above/below CY (t). For example, we write the following (1− �)100% level asymptotic confidence interval
for the difference CX(t) − CY (t):

CX,n(t) − CY,m(t) ± z�/2

√
�2

X,n(t)

n
+

�2
Y,m(t)

m
.

Instead of using the asymptotic variance and their empirical estimators, we can use bootstrapmethods instead. As an example,
suppose we are interested in having (two-sided) confidence intervals for the difference CX(t) − CY (t). We generate independent
random variables X∗

1, . . . , X∗
n from the distribution FX,n, as well as independent random variables Y∗

1 , . . . , Y∗
m from the distribution

FY,m. From these new samples we then calculate C∗
X,n(t) and C∗

Y,m(t), respectively. We obtain a numerical value of the quantity√
nm

n + m
|(C∗

X,n(t) − C∗
Y,m(t)) − (CX,n(t) − CY,m(t))|. (6.2)

Next we proceed as in the two paragraphs below Eq. (3.4) but nowwith quantity (6.2) instead of (3.5). We obtain the asymptotic
(1 − �)100% level confidence interval for the difference CX(t) − CY (t):

CX,n(t) − CY,m(t) ± x∗
√

n + m

nm
.

The above discussion concerned the case when t ∈ [0,1] was fixed. However, similar considerations are also applicable for
comparing CTE functions CX and CY over regions of the interval [0,1] aswell. The onlymajor difference is that nowwe need to use
considerations in the proof of Theorem 3.2 to obtain, for example, convergence in distribution of quantities such as supt q(t)�n(t),
supt q(t)|�n(t)|, or other ones depending on the problem of interest. For more detail on choosing appropriate functionals, we
refer, for example, to Horváth et al. (2006), Schechtman et al. (2008), and references therein.

The asymptotic distributions of the aforementioned quantities are not distribution free. Hence, a bootstrap approximation can
be used. Below we present an illustration of how it can be done when we want, for example, to determine whether or not two
CTE functions, say CX and CY , coincide on a certain region, say [t1, t2], of their domain of definition [0,1].

We sample with replacement from X1, . . . , Xn and Y1, . . . , Ym, and obtain C∗
X,n(t) and C∗

Y,m(t), respectively, and so in turn the
quantity√

nm

n + m
sup

0<t<1
q(t)|(C∗

X,n(t) − C∗
Y,m(t)) − (CX,n(t) − CY,m(t))|, (6.3)

where the weight function q vanishes outside the region of interest [t1, t2]. Next we follow the two paragraphs below Eq. (3.4)
but now with quantity (6.3) instead of (3.5) and arrive at the asymptotic (1 − �)100% level confidence band for the difference
CX − CY :

CX,n(t) − CY,n(t) ± x∗
q(t)

√
n + m

nm
for all t ∈ [0,1] such that q(t) >0.

Various other tests about relationships between CX and CY can be developed along the lines above. We omit the details and
refer to the already noted papers by Horváth et al. (2006) and Schechtman et al. (2008) for further hints and references.

7. Comparing CTE's when observations are paired

In this sectionwedealwith twoCTE functionswhenobservations are independent and identically distributedbivariate random
vectors (X1, Y1), . . . , (Xn, Yn). This situation may arise, for example, in the following context.

An insurer selling variable products with guarantees may wish to compare the CTE risk measure values associated with
products with different policy designs, which may reflect different guaranteed returns. This can be done by collecting data on
losses in several years for each policy design. In comparing the resulting risk measure estimates, however, it is important to
recognize that the losses in a given year for the different policy designs will be dependent if both are linked to the performance
of the same investment fund.

Obtaining asymptotic results for two empirical CTE functions in the case of paired observations is a more complex problem
than that in the case of independent samples. In particular, statement (6.1) does not hold in the paired case, nor therefore its
uniform (over a range of t values) version based on Theorem 3.2. To rectify the situation, we shall now look at the proofs of
Theorems 3.1 and 3.2 and see what changes have to be made there in order to derive the limiting distribution of

�n(t) = √
n((CX,n(t) − CY,n(t)) − (CX(t) − CY (t)))

either at any fixed t ∈ [0,1] or uniformly over a range of t values.
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Under the assumptions of Theorem 3.1 for both X's and Y's, we have representation (A.16) for X's and a similar one for Y's.
Hence, up to a negligible remainder term, we have that �n(t) is the arithmetic mean of the random variables H(Xi; t) − H(Yi; t).
Hence, the asymptotic distribution of �n(t) is normal with mean zero and variance �2

X(t) + �2
Y (t) − 2�X,Y (t), where

�X,Y (t) = 1

(1 − t)2

∫ ∞
F−1
X

(t)

∫ ∞
F−1
Y

(t)
(FX,Y (x, y) − FX(x)FY (y))dxdy.

Based on this asymptotic result, we can now derive, for example, confidence intervals for the difference CX(t) − CY (t), test
hypotheses about whether any of the two quantities CX(t) or CY (t) dominates another one. These considerations proceed along
the above lines where we discussed the case of two independent samples. Themain difference now is that we have to empirically
estimate the covariance �X,Y (t). This we do next.

An estimator for �X,Y (t) can be constructed by replacing FX , FY , and FX,Y (x, y) by their empirical counterparts FX,n, FY,n, and
FX,Y,n(x, y), respectively. We obtain the formula (cf., Section 8 for details)

�X,Y,n(t) = 1

(1 − t)2

∑
nt � j�n−1

∑
nt �k�n−1

(
n(j, k)

n
− j

n

k

n

)
(Xj+1:n − Xj:n)(Yk+1:n − Yk:n) (7.1)

with the notation

n(j, k) =
j∑

i=1

I{Y IND
i:n �Yk:n},

whereY1:n � · · · �Yn:n denote theorder statisticsofY1, . . . , Yn, andY IND
1:n , . . . , Y IND

n:n denote the inducedorder statisticsbyX1, . . . , Xn.
The right-hand side of equality (7.1) gives a computationally convenient formula for �X,Y,n(t).

The above considerations lead, for example, to the following (1−�)100% level asymptotic confidence interval for the difference
CX(t) − CY (t):

CX,n(t) − CY,n(t) ± z�/2√
n

√
�2

X,n(t) + �2
Y,n(t) − 2�X,Y,n(t).

One can also construct bootstrap based confidence intervals for the difference CX,n(t) − CY,m(t). This can be done by using
simple random sampling from the pairs (X1, Y1), . . . , (Xn, Yn), and thus getting n new ones (X∗

1, Y∗
1 ), . . . , (X∗

n, Y∗
n). From the first

coordinates of the new pairs we construct C∗
X,n(t), and then C∗

Y,n(t) from the second coordinates. This gives a value for the quantity

√
n|(C∗

X,n(t) − C∗
Y,n(t)) − (CX,n(t) − CY,n(t))|. (7.2)

Following the two paragraphs below Eq. (3.4) but using quantity (7.2) instead of (3.5), we arrive at the asymptotic (1 − �)100%
level confidence interval for the difference CX(t) − CY (t):

CX,n(t) − CY,n(t) ± x∗
√

n
.

Withobviousmodifications, similar considerations to those in the last fewparagraphsof Section6hold in the caseof comparing
two CTE functions when observations are paired. We omit further details to avoid repetition.

8. Parametric comparison of CTE's

When all the X's and Y's are independent, then, just like in the above discussed non-parametric case, statistical inferential
theory for comparing CX(t) and CY (t) can be derived from the corresponding "univariate'' statements, cf. (4.2). Namely, we obtain
the following asymptotic statement:

(ĈX (t) − ĈY (t)) − (CX(t) − CY (t))√
Q2

X /n + Q2
Y /m

→dN(0,1) (8.1)

when n andm converge to infinity in such a way that the ratio n/(n+m) converges to a constant 
 ∈ (0,1). If X and Y in statement
(8.1) are random variables from the set {X1, X2, X3} (i.e., exponential, Pareto, and lognormal, respectively), then expressions for
Q2

X and Q2
Y can be found below statement (4.2). In turn, their parametric estimators can be obtained by replacing �, � and 	 by

the corresponding MLE �̂, �̂, and 	̂ in the formulas for Q2
X and Q2

Y . Denote the estimators by Q̂2
X and Q̂2

Y , respectively. Hence, for
example, we can now formulate the following 100(1 − �)% asymptotic confidence interval for CX(t) − CY (t):

ĈX (t) − ĈY (t) ± z�/2

√
Q̂2

X

n
+ Q̂2

Y

m
. (8.2)
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When the samples are paired, then the individual asymptotic results for the empirical measures ĈX (t) and ĈY (t)may not imply
the corresponding results for their differences. Indeed, with n denoting the number of observed pairs, we write the following
asymptotic result:

√
n((ĈX (t) − ĈY (t)) − (CX(t) − CY (t)))√

Q2
X + Q2

Y − 2QX,Y

→dN(0,1), (8.3)

where the denominator on the left-hand side of (8.3) is the asymptotic standard deviation of
√

n(ĈX (t) − ĈY (t)).
Depending on X and Y, the formulas for Q2

X and Q2
Y can be found below statement (4.2). Thus, we only need to find a formula

for QX,Y depending on the parametric distribution of X and Y. To illustrate how this problem can be solved, we now assume that
X is exponential and Y is lognormal. We have the equalities:

√
n((ĈX (t) − ĈY (t)) − (CX(t) − CY (t)))

= −√
n

(
(̂� − �)(log(1 − t) − 1) + 1

1 − t
(e	̂+0.5 − e	+0.5)�(1 − �−1(t))

)
= 1√

n

n∑
i=1

{
((Xi − x0) − �)(1 − log(1 − t))

− (log(Yi − x0) − 	)
1

1 − t
e	+0.5�(1 − �−1(t))

}
+ oP(1). (8.4)

From (8.4), we see that

QX,Y = 1 − log(1 − t)

1 − t
e	+0.5�(1 − �−1(t))Cov(X − x0, log(Y − x0)). (8.5)

The joint distribution of X and Y can be specified by choosing a suitable copula. Copulas might involve unknown parameters, but
they can be estimated (along with � and �) using the maximum likelihood estimation technique. We refer to Frees and Valdez
(1998) for a discussion on copulas, their use in an actuarial context, as well as for estimation of copula parameters.
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Appendix A. Proofs

Proof that CTEX . may differ from CX when FX is not continuousFix values of X1, . . . , Xn, and let X∗ denote a random variable with
the distribution function FX,n. Then

CTEX∗ (t) = E[X∗|X∗ > F−1
X,n(t)]

= 1

1 − FX,n(F−1
X,n(t))

∫
(F−1

X,n
(t),∞)

xdFX,n(x). (A.1)

Subdivide the interval (0,1] into n subintervals ((k − 1)/n, k/n], k = 1, . . . , n. When t ∈ ((k − 1)/n, k/n], then we have that
F−1
X,n(t) = Xk:n, the kth order statistic of X1, . . . , Xn. Clearly, FX,n(F−1

X,n(t)) = k/n and
∫
(F−1

X,n
(t),∞)

xdFX,n(x) = (1/n)
∑n

i=k+1Xi:n. Hence,

for all t ∈ ((k − 1)/n, k/n] we have the equation

CTEX∗ (t) = 1
n − k

n∑
i=k+1

Xi:n. (A.2)

Furthermore, for the same values of t ∈ ((k − 1)/n, k/n] we have that

CX∗ (t) = 1
1 − t

(
k

n
− t

)
Xk:n + 1

n − nt

n∑
i=k+1

Xi:n. (A.3)

From (A.2) and (A.3) we see that the equality CTEX∗ (t) = CX∗ (t) holds only when t = k/n. �
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Proof of Theorem 2.1. The statement of Theorem 2.1 is equivalent to the convergence almost surely of
∫ 1
t F−1

n (u)du to∫ 1
t F−1(u)du. This latter convergence follows (even uniformly over all t ∈ [0,1]) if the statement∫ 1

0
|F−1

X,n(u) − F−1
X (u)|du→a.s.0 (A.4)

holds. The integral on the left-hand side of (A.4) is the L1-distance between the quantile functions F−1
X,n and F−1

X . Using another
terminology, the integral is the Dobrushin's distance between the distribution functions FX,n and FX . Hence, assuming that the
random variables X1, X2, . . . are independent and identically distributed, we know (cf., e.g., Shorack andWellner, 1986, p. 65) that
statement (A.4) is true if and only if the following two statements FX,n ⇒ FX (weak convergence) and

∫ |x|dFX,n(x) → ∫ |x|dFX(x)

hold almost surely. The first statement follows from the classical Glivenko--Cantelli theorem, which says that the supremum
distance between FX,n and FX converges almost surely to 0. The second statement can be written as n−1∑n

i=1|Xi|→a.s.E[|X|],
which holds by the strong law of large numbers whenever the moment E[X] is finite. This finishes the proof of Theorem 2.1. �

Proof of Theorem 2.2. Using Hölder's inequality, we have the bounds

sup
0<t<1

q(t)|CX,n(t) − CX(t)|� sup
0<t<1

q(t)

1 − t

∫ 1

t
|F−1

X,n(u) − F−1
X (u)|du

� sup
0<t<1

q(t)

(1 − t)1/r

(∫ 1

t
|F−1

X,n(u) − F−1
X (u)|r du

)1/r

� sup
0<t<1

q(t)

(1 − t)1/r

(∫ 1

0
|F−1

n,X (u) − F−1
X (u)|r du

)1/r

. (A.5)

The integral on the left-hand side of (A.5) is the Lr-distance between the quantile functions F−1
X,n and F−1

X . We know
(cf., e.g., Shorack and Wellner, 1986, p. 65) that∫ 1

0
|F−1

n,X (u) − F−1
X (u)|r du→a.s.0

if and only if FX,n ⇒ FX (holds due to the Glivenko--Cantelli theorem) and
∫ |x|r dFX,n(x)→a.s.

∫ |x|r dFX(x). The latter statement
holds due to the strong law of large numbers and the assumption E[|X|r ] < ∞. �

Proof of Theorem 2.3. We start as follows:

sup
0<t<1

q(t)|CX,n(t) − CX(t)|� sup
1−1/n<t<1

q(t)|CX,n(t) − CX(t)|

= sup
1−1/n<t<1

q(t)|Xn:n − CX(t)|

� sup
1−1/n<t<1

q(t)Xn:n − sup
1−1/n<t<1

q(t)CX(t)

= �n, (A.6)

where

�n = 1
n1/r−� Xn:n − sup

1−1/n<t<1

(1 − t)1/r−�

1 − t

∫ 1

t
F−1
X (u)du.

We shall now find a distribution function such that E[|X|r ] < ∞ but the right-hand side of (A.6) does not converge to 0 in
probability. Let FX(x)=1−1/x1/(1/r−�) for all x�1, with the same �>0 as above. The quantile F−1

X (u) in this case is 1/(1−u)1/r−�,
the rthmoment is finite, and the supremumon the right-hand sideof (A.6) equals 1/(1−1/r+�). Furthermore, since thedistribution
function FX is continuous, we have that Xn:n = F−1

X (Un:n), where Un:n = FX(Xn:n) is the largest uniform on [0,1] order statistic.
Hence,

�n = 1

(n(1 − Un:n))1/r−� − 1
1 − 1/r + �

. (A.7)

It is an easy exercise to show that, for any �>0,

lim
n→∞P{�n ��} >0. (A.8)

This concludes the proof of the theorem. �
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Proof of Theorem 3.1. We start the proof of Theorem 3.1 with the representation

CX,n(t) − CX(t) = 1
1 − t

∫ 1

t
(F−1

X,n(u) − F−1
X (u))du. (A.9)

Our next step is to extract a sum of random variables from the right-hand side of (A.9). To understand how to do this, we shall
now look at the integral∫ 1

t
(F−1

X,n(u) − F−1
X (u))du. (A.10)

When t = 0, the integral is the difference between the empirical mean n−1∑n
i=1Xi and the theoretical one E[X]. This difference is

certainly a sum of centered i.i.d. random variables, which is a desired representation. Note also that the difference can be written
as the integral

−
∫ ∞
−∞

(FX,n(x) − FX(x))dx, (A.11)

which is again a sum of centered i.i.d. random variables. The latter representation gives a most important clue on how to extract
a sum of i.i.d. random variables from the integral in (A.10). This we rigorously accomplish next.

We start with the equation∫ 1

t
(F−1

X,n(u) − F−1
X (u))du = −

∫ ∞
F−1
X

(t)
(FX,n(x) − FX(x))dx + RX,n(t), (A.12)

where the remainder term RX,n(t) is defined by Eq. (A.12) itself. Note that RX,n(t) equals 0 when t = 0, which follows from the
already noted equality of the integrals in (A.10) and (A.11). This equality, in turn, implies the following representation:

RX,n(t) = −VX,n, (A.13)

where

VX,n(t) =
∫ t

0
(F−1

X,n(u) − F−1
X (u))du +

∫ F−1
X

(t)

0
(FX,n(x) − FX(x))dx.

At first sight it is difficult to see why one should prefer representation (A.13) to the original definition of RX,n(t) given by
Eq. (A.12). The reason is as follows. The process VX,n has been thoroughly investigated in the literature and is known as the
(general) Vervaat process (cf., e.g., the survey papers by Zitikis, 1998, and Davydov and Zitikis, 2004). Among many facts about
the process, we know, for example, that VX,n(t) is non-negative for all t ∈ [0,1] and satisfies the following bound:

VX,n(t)� − (FX,n(F−1
X (t)) − t)(F−1

X,n(t) − F−1
X (t)) (A.14)

for any distribution function FX . If, however, we know that the distribution function FX is continuous at the point F−1
X (t), then we

have the equality t = FX(F−1
X (t)) and thus, in turn, the following bounds:

|VX,n(t)|� |FX,n(F−1
X (t)) − FX(F−1

X (t))||F−1
X,n(t) − F−1

X (t)|
� sup

x∈R
|FX,n(x) − FX(x)||F−1

X,n(t) − F−1
X (t)|. (A.15)

By the classical Kolmogorov--Smirnov theorem (cf., e.g., Shorack and Wellner, 1986), the supremum on the right-hand side
of (A.15) is of the order OP(n−1/2). Thus,

√
n|VX,n(t)| = oP(1) whenever F−1

n (t)→PF−1(t). The latter convergence holds if the

distribution function FX is continuous at the point F−1
X (t). Hence, for every fixed t ∈ [0,1], we have that

√
n(CX,n(t) − CX(t)) = − 1

1 − t

∫ ∞
F−1(t)

√
n(Fn(x) − F(x))dx − 1

1 − t

√
nVX,n(t)

= − 1
1 − t

∫ ∞
F−1(t)

√
n(Fn(x) − F(x))dx + oP(1)

= 1√
n

n∑
i=1

H(Xi; t) + oP(1), (A.16)

where

H(Xi; t) = − 1
1 − t

∫ ∞
F−1(t)

(I{Xi �x} − F(x))dx.
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For every fixed t ∈ [0,1], the random variables H(Xi; t), 1� i�n, are centered, i.i.d., and have variances �2
X(t). The variance �2

X(t)

is finite for every t ∈ [0,1] if the second moment of X is finite. The latter holds by assumption. This completes the proof of
Theorem 3.1. �

Proof of Theorem 3.2. With VX,n denoting the Vervaat process, we have the equality

q(t)(CX,n(t) − CX(t)) = − q(t)

1 − t

∫ ∞
F−1(t)

(Fn(x) − F(x))dx − q(t)

1 − t
VX,n(t). (A.17)

We shall now prove that

√
n sup
0<t<1

q(t)

1 − t
VX,n(t)→P0. (A.18)

Using the first bound in (A.15), we have that |VX,n(t)| does not exceed the product of t1/2−�(1 − t)1/2−�|F−1
X,n(t) − F−1

X (t)| and

sup
0<u<1

|FX,n(F−1
X (u)) − FX(F−1

X (u))|
u1/2−�(1 − u)1/2−� . (A.19)

By the weighted Kolmogorov--Smirnov theorem (cf., e.g., Shorack and Wellner, 1986), quantity (A.19) is of the order OP(n−1/2)

for any �>0. Hence, statement (A.18) holds provided that

sup
0<t<1

q(t)t1/2−�

(1 − t)1/2+� |F−1
n (t) − F−1(t)|→P0. (A.20)

In view of assumption (3.6), statement (A.20) follows from the statement

sup
0<t<1

t1/r1 (1 − t)1/r |F−1
n (t) − F−1(t)|→P0. (A.21)

Since, by assumption, E[Xr1− ] < ∞ with some r1 >2 and E[Xr+] < ∞, we have (cf., e.g., Shorack and Wellner, 1986) that statement
(A.21) holds. This proves statement (A.18).

From equality (A.17) and statement (A.18) we have that

√
n sup
0<t<1

q(t)|CX,n(t) − CX(t)| = √
n sup
0<t<1

q(t)

1 − t

∣∣∣∣∫ ∞
F−1(t)

(Fn(x) − F(x))dx

∣∣∣∣+ oP(1). (A.22)

We need to establish convergence in distribution of the main term on the right-hand side of (A.22). For this, we rewrite the term
as follows:

sup
0<t<1

q(t)

1 − t

∣∣∣∣∣
∫ ∞
F−1(t)

[√
n(Fn(x) − F(x))

(1 − F(x))1/2−�

]
(1 − F(x))1/2−� dx

∣∣∣∣∣ , (A.23)

where �>0will be specified below. The processwith respect to−∞ < x < ∞ in the brackets [·] above converges in the appropriate
functional space to the processB(F(x))/(1 − F(x))1/2−� (cf., e.g., Shorack and Wellner, 1986). Hence, if the quantity

sup
0<t<1

q(t)

1 − t

∫ ∞
F−1(t)

(1 − F(x))1/2−� dx (A.24)

is finite for some �>0, then by the continuous mapping theorem (cf., e.g., Shorack and Wellner, 1986) we have that quantity
(A.23) converges in distribution to the right-hand side of (3.7). Hence, in order to finish the proof of Theorem 3.2, we only need
to verify that the quantity in (A.24) is finite for some �>0.

If we replace the supremum in quantity (A.24) by the supremum over 0< t� 1
2 , then the resulting quantity will be finite

for sufficiently small �>0, due to the assumption that E[|X|2+�] < ∞ for some �>0. Thus, we are left to check that quantity
(A.24) is also finite if we replace the supremum there by the supremum over 1

2 � t <1. We do this as follows. First, using (3.6),
we have that

sup
1/2� t<1

q(t)

1 − t

∫ ∞
F−1(t)

(1 − F(x))1/2−� dx

�c sup
1/2� t<1

1

(1 − t)1−(1/r+1/2+�)

∫ ∞
F−1(t)

(1 − F(x))1/2−� dx. (A.25)
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Now we choose �>0 sufficiently small so that 1/r + 1/2 + �<1 would hold (such a choice is possible since r >2). Continuing
with (A.25), we have

sup
1/2� t<1

1

(1 − t)1−(1/r+1/2+�)

∫ ∞
F−1(t)

(1 − F(x))1/2−� dx

� sup
1/2� t<1

∫ ∞
F−1(t)

(1 − F(x))1/2−�

(1 − F(x))1−(1/r+1/2+�)
dx

�
∫ ∞
F−1(1/2)

(1 − F(x))1/r+�−� dx. (A.26)

Choose now � = �/2. Since E[Xr+] < ∞ by assumption, the right most integral in (A.26) is finite. This finishes the proof of
Theorem 3.2. �

Proof of Formula (7.1). The following equalities are straightforward:

�X,Y,n(t) = 1

(1 − t)2

∫ ∞
−∞

∫ ∞
−∞

(FX,Y,n(x, y) − FX,n(x)FY,n(y))I{FX,n(x)� t}I{FY,n(x)� t}dxdy

= 1

(1 − t)2

∑
nt � j�n−1

∑
nt �k�n−1

∫ Xj+1:n
Xj:n

∫ Yk+1:n
Yk:n

⎛⎝1
n

n∑
i=1

I{Xi �x, Yi �y} − j

n

k

n

⎞⎠ dxdy

= 1

(1 − t)2

∑
nt � j�n−1

∑
nt �k�n−1

(
n(j, k)

n
− j

n

k

n

)
(Xj+1:n − Xj:n)(Yk+1:n − Yk:n). (A.27)

This completes the proof of formula (7.1). �
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