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Inspired by the problem of testing hypotheses about the equality of several risk measure values, we

find that the ‘nested L-statistic’*a notion introduced herein* is natural and particularly convenient.

Indeed, the test statistic that we explore in this paper is a nested L-statistic. We discuss large-sample

properties of the statistic, investigate its performance using a simulation study, and consider an

example involving the comparison of risk measure values where the risks of interest are those

associated with tornado damage in different time periods and different regions.
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1. Introduction

In valuing a portfolio of risks, one often uses a risk measure which captures the riskiness

associated with the portfolio. Formally, a risk measure is a functional mapping from the

set of all distribution functions to the set of extended real numbers. There exist infinitely

many such functional mappings, and the choice of a suitable risk measure is a subjective

decision that depends on one’s intuition regarding the nature of the risk and one’s

preference.

In constructing nonparametric estimates of risk measure values, R�R[F], based on a

sample of size n, where F is the distribution function of the underlying risk, it is often

appropriate to replace F by its empirical estimator F̂ ; so that R̂�R[F̂ ]: Sometimes a

modification of the functional R is appropriate and useful. For example, we can often

increase robustness by suitably choosing the functional R to depend on the sample size.

There are, of course, situations where it is appropriate to use parametric estimators.
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However, in this paper, we shall concentrate on the nonparametric approach, which is

justified in applications such as automobile insurance where data sets are sufficiently large

and the underlying distributions are unknown.

In many cases, nonparametric estimators that are constructed as described above are

L-statistics. That is, they are linear combinations of the ordered sample outcomes, which

may, for example, be asset returns or insurance losses. Jones and Zitikis (2003) employed

this representation in studying estimators of risk measures and their asymptotic

properties. As we shall see below the well-known Gini index (cf. Eq. (1.1) below), which

has been used for measuring income inequality for almost a century, can also be estimated

by an L-statistic (cf. Eq. (1.2) below).

Portfolios of interest often contain natural groupings of risks. For example, a portfolio

of automobile insurance policies may include policies from several different geographic

regions, and a portfolio of assets may comprise several classes of assets. In other

situations, temporal groupings may be of interest. When groups of risks arise, it is

important to understand how the risk measure value varies across groups. In an insurance

context, this is essential in establishing appropriate rating classes. In an investment

context, differences among risk measure values are important in portfolio selection. It is

therefore of practical importance to study hypothesis tests associated with the relative

values of the risk measure for several groups.

Relationships among risk measure values were explored by Wang and Young (1998)

and Wirch and Hardy (2000). Jones and Zitikis (2005) considered nonparametric and

parametric tests for the order of two risk measure values. Nonparametric tests of

hypotheses about the equality of several risk measures were provided by Jones, Puri and

Zitikis (2006). These authors considered null hypotheses involving both known and

unknown (but equal) risk measure values. In the latter case, alternative hypotheses

involving ordered risk measure values were investigated. In the present paper, we also

consider nonparametric tests about the equality of several risk measure values. However,

the alternative hypothesis involves no order specification. The test statistic is based on the

Gini index (cf. Eq. (1.1) below) applied to risk measure estimators, and therefore results in

a nested L-statistic. We next define the problem formally.

Let /R
1
; . . . ;Rk be risk measure values corresponding to k populations with distribution

functions /F
1
; . . . ;Fk , respectively. The populations can be dependent or independent.

In the current paper we concentrate on the independent case, but for those who may

wish to apply the herein developed method for dependent populations, we offer a hint in

Note 2.3.

The risk measure values /R
1
; . . . ;Rk are obtained using a risk measure, R, which is

common to all k populations. The risk measure could, for example, be the mean, a

distorted mean, or some other functional. There may be many hypotheses of interest. In

this paper, however, we focus our interest on whether or not the k risk measures are all

equal. That is, we wish to test the hypothesis

H
0
: R

1
� � � ��Rk; against

H
1
: � (i; j) such that Ri"Rj:
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With the help of the parameter

g :�
1

k2

X

15i; j5k

jRi�Rj j; (1:1)

which is the Gini index (Gini, 1914) of the risk measure values /R
1
; . . . ;Rk, we can

reformulate the hypotheses as follows:

H
0
: g�0;

H
1
: g�0:

It is interesting to note that the aforementioned parameter g can be expressed as (David,

1970)

g�
1

k2

X

k

i�1

(4i�2(k�1))Ri:k

�
X

k

i�1

�

g
i=k

(i�1)=k

K(u)du

�

Ri:k; (1:2)

where

K(u) :�4u�2; (1:3)

and /R
1:k; . . . ;Rk:k are the k ordered risk measure values. We shall use the representation

(1.2) later in the paper.

To test the hypothesis H0, we construct an empirical estimator for g and then establish

its asymptotic distribution when the sample size increases. A natural way to introduce

such an estimator is

ĝ :�
1

k2

X

15i; j5k

jR̂i�R̂j j;

where R̂i denotes an empirical estimator of Ri. We construct the estimator R̂i as follows.

First, we assume that, for all 15i5k, the risk measure values Ri can be expressed by the

equation Ri�R[Fi], where R[ � ] is a functional defined on a set of distribution functions

F by the equation

R[F ]�g
1

0

F�1(u)J(u)du; (1:4)

where the function J is such that the integral in Eq. (1.4) is finite for the set of distribution

functions F under consideration. Many risk measures can be expressed in this form, and

we therefore do not consider representation (1.4) unnecessarily restrictive

(cf. Jones and Zitikis, 2003, Brazauskas et al., 2007, and references therein). The risk

measure R[F ] is also called ‘spectral risk measure’ and the function J a ‘risk aversion

function’; we refer to Acerbi (2002) for more detail on the subject as well as for further

references. The following are examples of such risk measures.
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EXAMPLE 1.1 (MEAN). With J(u)�1 for all 05u51, Eq. (1.4) gives the mean of the

distribution F. Instead of the traditional m or mF, we shall frequently use the notation

MEAN[F], which makes the presentation of risk measures consistent throughout the paper.

EXAMPLE 1.2 (PHT, proportional hazards transform). Let r�0 be a fixed number,

chosen by an actuary and called the distortion level. With the function J(u)�r(1�u)r�1

for all 05u51, Eq. (1.4) gives the PH transform (cf. Wang, 1995; Jones and Zitikis, 2003).

The values of r of practical interest are 0Br51. We shall frequently denote the PHT risk

measure value by PHT[F], or by PHT[F, r] if we need to specify the distortion level r.

EXAMPLE 1.3 (CTE, conditional tail expectation). Let 05tB1 be a fixed number,

chosen by an actuary, and called the threshold level. With the function J(u)�0 for all

05uBt, and J(u)�1/(1�t) for all t5u51, Eq. (1.4) gives the 100t% CTE. We shall

frequently denote the CTE risk measure value by CTE[F] or by CTE[F, t] if we need to

specify the threshold level t. Finally, we note that the CTE risk measure is also called Tail

Conditional Expectation (TCE), Conditional Value-at-Risk (CVaR), Expected Shortfall

(ES); we refer to Artzner et al. (1999), Acerbi (2002), Acerbi and Tasche (2002) for

extensive discussions of this risk measure and further references on the subject.

Note 1.1. The risk functional R in Eq. (1.4) can be further generalized into the following

one:

R[F ;C]�g
1

0

F�1(u)dC(u);

where C(u) is a function of bounded variation. We first note that if C(u) is differentiable

with the first derivative J(u), then R[F;C] equals R[F ] given by Eq. (1.4). If, however,C(u)

is the indicator function, that is, C(u)�0 for all u � (0,a) and C(u)�1 for all u � [a,1],

where a � (0,1) is a fixed parameter, then R[F ;C]�F�1(a); which is the a-th quantile or, in

other words, Value-at-Risk (VaR) (cf. Artzner et al., 1999). The latter risk measure (i.e.

VaR) is not covered by the results of the present paper, as assumptions (A1)�(A3) to be

formulated in the next section are not satisfied for indicator functionsC(u). This is natural

as the smoothing character of the integration operator disappears in this case, and thus

quite different mathematical forces start acting. (This is convincingly seen by comparing

the classical results on estimating the mean m�f1
0
F�1(u)du and the quantile F�1(a).)

Now we are in the position to define the estimator R̂i by the equation

R̂i :�g
1

0

F̂�1

i (u)J(u)du;

where F̂ i is the empirical distribution function based on the sample X
1
(i); . . . ;Xni

(i) of size

ni drawn from the population with the distribution function Fi, and F̂�1

i is the

corresponding quantile function. We assume that, for every fixed 15 i5k; the random

variables X
1
(i); . . . ;Xni

(i) are independent and identically distributed. As to whether the

vectors
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X(i) :�(X
1
(i); . . . ;Xni

(i)); 15 i5k;

are independent or not depends on the problem considered. Our focus in this paper is on

independent vectors.

We now reformulate the above quantities so that the main object of the present paper �

nested L-statistics � would emerge in a most natural way. First we write the expression

R̂i�
X

ni

m�1

�

g
m=ni

(m�1)=ni

J(u)du

�

Xm:ni
(i); (1:5)

where X
1:ni

(i)5 � � �5Xni :ni
(i) are the ordered observations from the population i. Hence,

R̂i is a linear combination of order statistics or, in other words, an L-statistic, based on the

random variables X
1
(i); . . . ;Xni

(i):

Following Eq. (1.2) for g, we introduce an estimator for g by the equation

ĝ :�
X

k

i�1

�

g
i=k

(i�1)=k

K(u)du

�

R̂i:k: (1:6)

Since R̂
1
; . . . ; R̂k are L-statistics, as we have shown above, the estimator ĝ can naturally be

called a ‘nested L-statistic’. With the notation

L[c;Y ] :�L[c;Y
1
; . . . ;Yk] :�

X

k

i�1

�

g
i=k

(i�1)=k

c(u)du

�

Yi:k;

where Y :�(Y
1
; . . . ;Yk); we express ĝ as follows

ĝ�L[K ; L[J;X(1)]; . . . ;L[J;X(k)]]: (1:7)

The right-hand side of Eq. (1.7) justifies the herein introduced name ‘nested L-

statistic’ for the estimator ĝ: In the special case J(u)�1 for all 0BuB1, we have the

equality ĝ�L[K ; X̄(1); . . . ; X̄(k)]; where X̄(i) is the sample mean of the random variables

X
1
(i); . . . ;Xni

(i); which are the coordinates of X(i).

The rest of the paper is organized as follows. The next section, Section 2, presents large-

sample statistical inferential results for the nested L-statistics introduced above. In Section

3 we describe a simulation study which illustrates the performance of our theoretical

results. An example of practical relevance is explored in Section 4. Concluding remarks

are offered in Section 5.

2. Asymptotic results

Statistical inference dealing with the problem stated in the previous section depends on

two accomplishments concerning the test statistic

T :�
ĝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk

m�1
n�1
m

q :
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They are:

. Establishing the asymptotic distribution of T under the null hypothesis H0, so that

critical values would be possible to obtain.

. Showing that, under the alternative H1, the test statistic T converges to infinity when

the sample sizes nm increase, in which case the asymptotic power is 1.

Using the notation Di :�R̂i�Ri; we obtain under the null hypothesis H0 that

ĝ�
1

k2

X

15i; j5k

jDi�Dj j

�
1

k2

X

k

i�1

(4i�2(k�1))Di:k; (2:1)

where D
1:k5 � � �5Dk:k are the ordered values of /D

1
; . . . ;Dk. Continuing with Eq. (2.1),

we have

T�
1

k2

X

k

i�1

(4i�2(k�1))Di:k; (2:2)

where D
1:k5 � � �5Dk:k are the ordered values of

Di :�Ui(n1; . . . ; nk)
ffiffiffiffi

ni
p

(R̂i�Ri); i�1; . . . ; k;

with the notation Ui(n1; . . . ; nk)�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1

i =ak
m�1

n�1
m

q

: It is now natural to make an

assumption about the ‘comparability of sample sizes,’ which requires that there are

constants ui � (0; 1) such that ak
i�1

u2

i �1 and the sample sizes ni tend to infinity in such a

way that, for every 15i5k,

Ui(n1; . . . ; nk) 0 ui;

when mini(ni) 0 �: With the function T k : Rk 0 Rk defined by

T k(x1
; . . . ; xk) :�

1

k2

X

k

i�1

(4i�2(k�1))xi:k;

we rewrite Eq. (2.2) as follows:

T�T k(D1
; . . . ;Dk): (2:3)

In view of the asymptotic result, when ni 0 �;
ffiffiffiffi

ni
p

(R̂i�Ri) 0d siGi; (2:4)

whose validity is discussed in the next paragraph, we have that Di 0d uisiGi: Hence, with

the help of Eq. (2.3) we obtain that, when mini(ni) 0 �;

T 0d T k(u1
s
1
G

1
; . . . ; ukskGk); (2:5)

where, under the assumption of independent populations, /G
1
; . . . ;Gk are independent

standard normal random variables. Given statement (2.5), we can test hypotheses about,

or construct confidence intervals for, the parameter g. To make this result readily
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applicable in practice, we shall later discuss a bootstrap technique for calculating critical

values of the test.

The validity of statement (2.4) is thoroughly discussed in the literature (cf. Serfling,

1980, Chapter 8; Shorack and Wellner, 1986, Chapter 19). We know from these references

that the result holds under the following assumptions:

(A1) The weight function J is continuous on the interval (0, 1), except possibly at a

finite number of points at which Fi
�1 is continuous (this condition can, if desired,

be relaxed; cf. Assumption 2 on page 664 in Shorack and Wellner, 1986).

(A2) There exist a, b�1/2 and cB� such that ½J(t)½5c ta�1(1�t)b�1 on the interval

(0,1).

(A3) The moment E[½X
1
(i)½g] is finite for some g such that g�1=(a�1=2) and

g�1=(b�1=2):

In the case of the PHT risk measure, the above three assumptions (A1)�(A3) hold

provided that r � (1=2; 1] and the moment E[X p] is finite for some p�1=(r�1=2): When

r�1, we have the MEAN risk measure and need to assume that E[X p]B� for some

p�2, even though the classical CLT requires only p�2. However, this would be an

improvement of no particular significance in the context of the present paper. As to the

CTE risk measure, we need to assume that the quantile function F�1(t) is continuous at

the point t�a and that the moment E[X p] is finite for some p�2. We have relegated

more detailed thoughts on moment conditions to Note 4 at the end of the current

section.

Now we shall prove that under the alternative H1 the test statistic T converges to

infinity when mini(ni) 0 �: We proceed as follows:

T�
1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk

m�1
n�1
m

q

X

15i; j5k

j(Di�Dj)�(Ri�Rj)j

]�
1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk

m�1
n�1
m

q

X

15i; j5k

jDi�Dj j�
1

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk

m�1
n�1
m

q

X

15i; j5k

jRi�Rjj (2:6)

We already know that the first summand (with ‘minus’ in front of it) on the right-hand

side of bound (2.6) has a non-degenerate distribution. The second summand converges to

infinity, since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ak
m�1

n�1
m

q

converges to 0 and the sum a
15i; j5k½Ri�Rj ½ is strictly positive

under the currently assumed H1.

We suggest the following bootstrap approximation for calculating critical values of the

test. For every 15 i5k; we sample with replacement from the set of random variables

X
1
(i); . . . ;Xni

(i) and obtain ni new ones, which we denote by X�
1
(i); . . . ;X�ni (i): Using the

latter variables, for every 15 i5k we calculate the risk measure value R̂�i; which is defined

using formula (1.5) with Xm:ni
(i) replaced by X�m:ni

(i): Denote

ĝ� :�
1

k2

X

k

i�1

(4i�2(k�1))D�i:k;
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where D�
1:k5 � � �5D�k:k are the ordered values of D�i :�R̂�i�R̂i; i�1; . . . ; k:

With the above notation, we define the bootstrapped version of the test statistic T as

follows:

T� :�
ĝ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pk

m�1
n�1
m

q :

We repeat the above resampling procedure B times and in this way obtain B values of /T�.

Then we calculate the 100(1�a) percentile of these values of /T�. Denote the percentile by

xa[T�]; which is, by definition, the critical value of the test. Specifically, the decision rule is

as follows: we reject the null hypothesis H0 in favour of the alternative H1 if the value of

the test statistic T exceeds xa[T�]; otherwise, we retain H0.

Note 2.1. From the practical (and pragmatic) point of view, it makes sense to

reformulate the above decision rule in terms of ĝ and ĝ�: Namely, after resampling

B times we obtain B values of ĝ�: Then we calculate the 100(1�a) percentile of these

values; denote the percentile by xa[ĝ�]: The decision rule is as follows: we reject the

null hypothesis H0 in favour of the alternative H1 if the value of ĝ exceeds xa[ĝ�];

otherwise, we retain H0. We adopt this approach for testing H0 against H1 in Section 4

below.

Note 2.2. The standard deviation si in statement (2.4) is given by the equation (cf., e.g.,

Serfling, 1980; Helmers, 1982; Shorack and Wellner, 1986)

s2

i :�gg (Fi(xffly)�Fi(x)Fi(y))J(Fi(x))J(Fi(y))dxdy;

where xffly denotes the minimum of x and y. A non-parametric estimator of the variance

si
2 can easily be constructed by replacing the theoretical distribution functions Fi by their

empirical counterparts, which leads to the estimator

s2i :�
X

15k5ni�1

X

15m5ni�1

(Xk�1:ni
(i)�Xk:ni

(i))(Xm�1:ni
(i)�Xm:ni

(i))

	

�

k ffl m

ni
�

k

ni

m

ni

�

J

�

k

ni

�

J

�

m

ni

�

:

Note 2.3. It is well known (cf., e.g., Shorack and Wellner, 1986, Chapter 19) that, under

the three assumptions (A1)�(A3), we have the representation

ffiffiffiffi

ni
p

(R̂i�Ri)�
1

ffiffiffiffi

ni
p

X

ni

m�1

Ai(Xm(i))�oP(1) (2:7)

when ni 0 �; where

Ai(y) :��g
�

��

(1fy5xg�Fi(x))J(Fi(x))dx:
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We easily check that the variance of Ai(Xm(i)) is equal to the above noted si
2.

From representation (2.7) we therefore arrive at statement (2.4). In an obvious way,

representation (2.7) can also be used for deriving the asymptotic distribution of the test

statistic Twhen the vectors X(i)�(X
1
(i); . . . ;Xni

(i)); 15 i5k; are dependent. In this case,

the limiting distribution is of the same form as that on the right-hand

side of statement (2.5), but now with the standard normal random variables G
1
; . . . ;Gk

being dependent, with the entries of the covariance matrix being equal to

s�1

i s�1

j cov(Ai(X1
(i));Aj(X1

(j))):

Note 2.4. The asymptotic results and, consequently, statistical tests discussed in this

section require at least two finite moments, if not more, as in the case of the PHT risk

measure, which depends on the distortion level r. The moment requirements are natural

since the very nature of asymptotically normal distributions (that we aim at) does not

allow the observations to move towards infinity with too large a probability. If it is not

reasonable to assume that the first two moments are finite, then we suggest using a

parametric model with a heavy-tail and developing the corresponding parametric

inferential tools. This, however, does not remove the problem, as mle’s are still desired

to be asymptotically normal, for which a moment-type assumption is needed.

Employing asymptotically stable distributions, instead of asymptotically normal used

above, provides a further venue for relaxing moment assumptions.

3. Simulation study

In this section we augment the asymptotic results of Section 2 with finite-sample

performance investigations. We have two objectives. The first one is to see how large

the sample size n�minfn
1
; . . . ; nkg is needed for the proposed (asymptotic) test to attain

the nominal level of significance, and the second is to estimate the power of the test

against selected types of alternatives, for various n. Using Monte Carlo simulations, we

generate three portfolios (of insurance losses) that are either equally risky (H0 setting) or

unequally risky (H1 setting) according to a fixed risk measure, then perform the test

and compute its proportion of rejections. (Such a proportion estimates the nominal level

of significance under H0 and the power of the test under H1.) Specifically, for generation

of insurance portfolios, we follow the similar work done by Brazauskas and Kaiser (2004),

Brazauskas et al. (2007), and Kaiser and Brazauskas (2006), and choose the following

three parametric families:

� Exponential with the cdf

F
1
(x)�1�e�(x�x

0
)=u; x�x

0
; u�0:

� Pareto with the cdf

F
2
(x)�1�(x

0
=x)b; x�x

0
; b�0:

170 V. Brazauskas et al.



� Lognormal with the cdf

F
3
(x)�F(log(x�x

0
)�m); x�x

0
; ��BmB�;

where F(�) denotes the standard normal cdf.

The parameter x0 in the above distributions can be interpreted as a deductible or a

retention level. (Note that, due to x0, the distributions F1, F2, and F3 have the same

support.) The remaining parameters u, b, and m are selected so that the families F1, F2, F3

follow the hypothesized scenario with respect to a fixed risk measure. In particular, under

H0, they are equally risky and therefore satisfy the equation

R[F
1
] � R[F

2
] � R[F

3
]; (3:1)

where R[�] represents any of the three risk measures presented in Examples 1.1�1.3

(i.e., MEAN, PHT, CTE). Evaluation of these measures for the distributions F1, F2, F3 yields

the following expressions of Eq. (3.1).

� For the MEAN measure:

x
0
�u�

x
0
b

b� 1
�x

0
�em�0:5; (3:2)

� For the PHT measure:

x
0
�

u

r
�x

0
�

x
0

br� 1
�x

0
�Cr e

m; (3:3)

where, for fixed r, the integral Cr�f�
��

[1�F(z)]rez dz is found numerically. For

example, as reported by Brazauskas and Kaiser (2004), C0.55�3.896, C0.70�2.665,

C0.85�2.030, C0.95�1.758. Note that when r�1, then the PHT measure becomes the

MEAN.

� For the CTE measure:

x
0
�u(log(1�t)�1)�

x
0
b

b� 1
(1�t)�1=b�x

0
�

1

1� t
em�0:5 F(1�F�1(t)): (3:4)

Note that when t�0, then the CTE measure becomes the MEAN.

Under H1, the families are unequally risky, and we consider two types of alternatives:

� Two portfolios are equally risky but the third one differs; that is,

R[Fw
1
]�c

w
R[F

1
]; R[Fw

2
]�R[F

2
]; R[Fw

3
]�R[F

3
]; (3:5)

where c
w
"1 and R[F

1
]�R[F

2
]�R[F

3
]:

� Relative riskiness of all three portfolios is equally-spaced; that is,

R[Fww
1

]�c
ww

R[F
1
]; R[Fww

2
]�R[F

2
]; R[Fww

3
]�c2

ww
R[F

3
]; (3:6)

where c
ww

�1 and R[F
1
]�R[F

2
]�R[F

3
]:

Note that the choices c
w
�1 and c

ww
�1 reduce the H1 scenario to that of H0.

We use the following design for the simulation study. For a fixed risk measure and a

fixed scenario of riskiness, we generate three independent samples of size n (�n1�n2�n3)
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from the distributions F1, F2, and F3, respectively. These samples are then resampled

according to the bootstrap method described in the previous section, an a-level test is

performed, and its decision*reject the null hypothesis or not*is recorded. This proce-

dure is repeated 5000 times, for each of the three risk measures and for each of the hypo-

thesized scenarios. Using the recorded 5000 decisions for the tests based on the MEAN,

PHT, and CTE measures, respectively, we estimate the proportion, say p̂; of test’s rejections.

The standard error of such an estimate is then evaluated using the formula
ffiffiffi

p̂
p

(1�

p̂)=5000: The study was performed for the following choices of simulation parameters:

. Level of significance: a�0.01, 0.05, 0.10.

. Sample size: n�25, 50, 100, 200.

. Number of bootstrap samples: B�1000.

. Measure-related parameters:

/k Distortion level (for PHT measure): r�0.85.

/k Threshold level (for CTE measure): t�0.75.

. Distribution-related parameters, under H0 (derived from Eqs (3.2)�(3.4)):

/k 1.222�MEAN[F1]�MEAN[F2]�MEAN[F3],

where

* F1 is exponential with x0�1, u�0.222,

* F2 is Pareto with x0�1, b�5.5,

* F3 is lognormal with x0�1, m��2.004, s�1.

/k/ 1:272�pht[F
1
; r�0:85]�pht[F

2
; r�0:85]�pht[F

3
; r�0:85];

where

* F1 is exponential with x0�1, u�0.231

* F2 is Pareto with x0�1, b�5.5,

* F3 is lognormal with x0�1, m��2.010, s�1.

/k/ 2:107�cte[F
1
; t�0:75]�cte[F

2
; t�0:75]�cte[F

3
; t�0:75];

where

* F1 is exponential with x0�1, u�0.277,

* F2 is Pareto with x0�1, b�5.5,

* F3 is lognormal with x0�1, m��2.044, s�1.

. Distribution-related parameters, under H1 (derived from Eqs (3.5)�(3.6)):

/k H1 specified by Eq. (3.5): /Fw
2
�F

2
; Fw

3
�F

3
and

* For MEAN: /Fw
1
is exponential with x

0
�1; uw�x

0
(c
w
�1)�c

w
u;

* For PHT: /Fw
1
is exponential with x

0
�1; uw�x

0
r(c

w
�1)�c

w
u;

* For CTE: /Fw
1
is exponential with x

0
�1; uw�

x
0
(c
w
� 1)

1� log(1� t)
�c

w
u;

where u as under H0 and c
w
�0:85; 0.90, 0.95, 1.05, 1.10, 1.15, 1.25, 1.50, 2.00.

/k H1 specified by Eq. (3.6): /Fww
2

�F
2
and

* For MEAN: F1
ww is exponential with x0�1, uww�x

0
(c
ww

�1)�c
ww

u; and

F3
ww is lognormal with x0�1, mww� log(x

0
(c2
ww

�1)�c2
ww

em�0:5)�0:5; s�1,
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* For PHT: F1
ww is exponential with x

0
�1; uww�x

0
r(c

ww
�1)�c

ww
u; and

F3
ww is lognormal with x

0
�1; mww� log

� x
0
(c2
ww

� 1)

Cr

�c2
ww

em
�

; s�1;

* For CTE: F1
ww is exponential with x

0
�1; uww�

x
0
(c
ww

� 1)

1� log(1� t)
�c

ww
u; and

F3
ww is lognormal with x0�1, mww� log

� (1� t)x
0
(c2
ww

� 1)

F(1� F�1(t))
�c2

ww
em�0:5

�

�0:5;

s�1,

where u and m as under H and c
ww

�1:05 : (0:05) : 1:25; 1:50 : (0:50) : 3:00:

Our simulation results are summarized in Table 1 with probabilities of type I error, as

well as in Tables A.1 and A.2 with estimated power function values. Specifically, we notice

in Table 1 that the convergence of estimated probability of the type I error depends on the

underlying risk measure. For instance, if the risk measure is ‘light’ (such as the MEAN),

then the nominal level of significance is attained even with sample sizes as small as n�25.

However, for ‘heavier’ risk measures (such as the PHT and CTE), the sample size n�100

may still be not large enough. In summary, for the risk measures considered in our study,

the results for n�200 are satisfactory at all levels of a.

Tables A.1 and A.2 provide power estimates against the two types of alternatives

described above, for various choices of a and n. (As a quick reference, we repeated, though

with lesser accuracy, the entries of Table 1 in these two tables; they correspond to the cases

c
w
�1 and c

ww
�1:) Similar to the type I error investigations, we notice that the power of

the test depends on ‘heaviness’ of the underlying risk measure. That is, all things being

equal, the test is more powerful for the ‘light’ measure than for the ‘heavy’ one. Other

patterns of estimated power function values agree with the general behavior of any

reasonable statistical test. Specifically, for a fixed alternative, i.e., fixed c
w
or c

ww
; and

fixed n, the power increases (decreases) as a increases (decreases); for fixed alternative and

a, the power changes in unison with n; and for fixed a and n, the test becomes more

powerful as c
w
(/c
ww

) moves further away from c
w
�1 (/c

ww
�1); i.e., when data go further

into the alternative. Also, comparison of the two types of alternatives reveals that the test

is more powerful against the second type of alternatives, which can be anticipated because

under the second scenario the differences in portfolio riskiness are more pronounced.

Table 1. Estimated probabilities of the type I error of the tests based on the MEAN, PHT, CTE measures, for

selected n and a. Standard errors for the entries are presented in parentheses.

a Risk measure n�25 n�50 n�100 n�200

0.01 MEAN 0.009 (.001) 0.009 (.001) 0.008 (.001) 0.009 (.001)

PHT [r�0.85] 0.014 (.002) 0.011 (.001) 0.014 (.002) 0.012 (.002)

CTE [t�0.75] 0.022 (.002) 0.011 (.001) 0.014 (.002) 0.011 (.002)

0.05 MEAN 0.051 (.003) 0.053 (.003) 0.049 (.003) 0.052 (.003)

PHT [r�0.85] 0.072 (.004) 0.067 (.004) 0.067 (.004) 0.059 (.003)

CTE [t�0.75] 0.083 (.004) 0.063 (.003) 0.060 (.003) 0.051 (.003)

0.10 MEAN 0.113 (.004) 0.114 (.004) 0.104 (.004) 0.104 (.004)

PHT [r�0.85] 0.144 (.005) 0.136 (.005) 0.134 (.005) 0.119 (.005)

CTE [t�0.75] 0.153 (.005) 0.123 (.005) 0.111 (.004) 0.105 (.004)
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Finally, we conclude that, except for some extreme situations (related to CTE and

small a), the test will successfully detect, with the probability substantially above 0.50, the

differences in portfolio riskiness of at least 15% (corresponding to c
w
50:85 or c

w
]1:15;

and c
ww

]1:15) for portfolios of n]100 insurance losses.

4. Example

To illustrate the methods presented in this paper, we consider data from Brooks and

Doswell (2000), providing the damage from 137 major tornadoes in the United States

from 1890 to 1999. The possibility of tornado damage creates an important risk for

insurers. The need to understand this and other catastrophic risks is stated very well by

Brooks and Doswell: ‘‘A major challenge to preparedness and recovery is maintaining a

level of readiness during the gaps. Catastrophic events pose significant threats to the

insurance and reinsurance industries. Thus, accurate estimates of the threat are important

for long-term planning both in the private and public sectors.’’

Brooks and Doswell (2000) argue that, in order to compare tornado losses over time, it

is appropriate to adjust for inflation and wealth. We therefore normalized the damage

amounts by dividing each by the nominal GDP per capita in the year of occurrence and

scaling the resulting values so that the smallest is 100. The GDP estimates were obtained

from Johnston and Williamson (2005). The resulting damage amounts are shown in

Table A.3 along with the year and census region of occurrence. The test described in this

paper was used to investigate whether or not the normalized damage amounts differ by

time period and by census region.

Nonparametric estimates of risk measure values were obtained for each of three time

periods using each of the following three different risk measures: the MEAN, the PHT

with r�0.85, and the CTE with t�0.75. Specifically, the estimates were obtained using

Eq. (1.5) with the function J given by

J(u)�1; 05u51 (mean);

J(u)�0:85 (1�u)�0:15; 05u51 (pht);

J(u)�
0; 05uB0:75
4; 0:755u51

(cte);

	

respectively. The resulting estimates of R̂i (corresponding to the time periods 1890�1929,

1930�1969, 1970�1999), and ĝ are shown in Table 2.

To test the hypothesis that the risk measure values are equal for the three time periods,

10,000 bootstrap samples were generated, and for each bootstrap sample, the value of ĝ�

was computed. The critical values at 5 and 10% levels of significance where calculated as

the empirical 95th and 90th percentiles of the 10,000 values of ĝ�: These critical values are

shown for each of the three risk measures in Table 2. We see that, using all three risk

measures, we are unable to reject the hypothesis of equal risk measures at the 10% level,

since the values of ĝ do not exceed the corresponding values of x
0:1[ĝ�]: This is consistent

with the conclusion of Brooks and Doswell (2000), who state ‘‘We find nothing to suggest
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that damage from individual tornadoes has increased through time, except as a result of

the increasing cost of goods and accumulation of wealth of the U.S.’’

We next perform a similar analysis by census region. Since almost all tornadoes

occurred in the Midwest (region 2) or the South (region 3), only these two regions were

included in the analysis. We consider the same three risk measures and summarize our

results in Table 3. Comparing the ĝ values to the corresponding critical values, we see that

for the MEAN and the PHT, we reject the null hypothesis of equal risk measure values at the

5% level. However for the CTE, ĝ is less than the 5% critical value (but greater than the

10% critical value). So, we have rather weak evidence against the null hypothesis that the

CTE value is the same for the two regions. This reflects our greater uncertainty about the

CTE values for the two regions.

The latter analysis brings out the important point that, depending on the choice of risk

measure, conclusions may differ as to whether or not to reject the null hypothesis of

equality of the risk measure values. However, there is no inconsistency here, as two

distributions may indeed produce the same risk measure value under one risk measure

and different risk measure values under another risk measure.

5. Concluding remarks

In this paper, we have considered testing hypotheses about the equality of risk measures

using a nested L-statistic, which appears to be a natural construct in this context. We have

investigated asymptotic properties of the test statistic and assessed its performance using a

simulation study. We have applied the herein developed approach to a practical example.

There are several avenues for further research that go beyond the scope of the present

paper, but are certainly of interest. One of them involves robustification of the herein

Table 3. Estimates for analysis of Tornado damage by region.

MEAN PHT CTE

/R̂
2

12287.30 14819.00 31314.50

/R̂
3

5786.50 7381.12 16883.80

/ĝ 3250.38 3718.95 7215.35

/x
0:05[ĝ�] 2336.75 2888.30 7750.51

/x
0:1[ĝ�] 1952.77 2432.66 6469.71

Table 2. Estimates for analysis of Tornado damage by time period.

MEAN PHT CTE

/R̂
1890�1929 7119.66 9531.28 23548.7

/R̂l930�1969 7244.21 8615.25 18067.3

/R̂
1970�1999 11692.60 13885.00 30832.1

/ĝ 2032.41 2342.10 5673.25

/x
0:05[ĝ�] 2864.78 3445.64 9528.50

/x
0:l[ĝ�] 2477.16 3009.17 8215.26
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proposed test statistic by using trimming techniques. Another avenue involves relaxing the

presently used assumption of independence within the sub-populations. Yet another

problem would be to investigate asymptotic properties of the nested L-statistic when the

number kof sub-populations increases. Theremay, of course, bemanyother generalizations

that arise in practice and require modifications to the approach presented in this paper.

Acknowledgements

The authors wish to thank an anonymous referee whose helpful comments have improved

the paper. Research of the second and fourth authors was partially supported by

individual Discovery Research Grants from the Natural Sciences and Engineering

Research Council (NSERC) of Canada. We also gratefully acknowledge the hospitality

of the Department of Mathematics at Indiana University in Bloomington, where all four

of us met for a week in February, 2006, and started working on the project.

References

Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of

Banking & Finance 26, 1487�1503.

Acerbi, C. & Tasche, D. (2002). On the coherance of expected shortfall. Journal of Banking & Finance 26, 1487�

1503.

Artzner, P., Delbaen, F., Eber, J.-M. & Heath, D. (1999). Coherent measures of risk. Mathematical Finance 9,

203�228.

Brazauskas, V., Jones, B. L., Puri, M. L. & Zitikis, R. (2007). Estimating conditional tail expectations with

actuarial applications in view. Journal of Statistical Planning Inference (in press).

Brazauskas, V. & Kaiser, T. (2004). Discussion of ‘‘Empirical estimation of risk measures and related quantities’’

by B. L. Jones and R. Zitikis. North American Actuarial Journal 8, 114�117.

Brooks, H. E. & Doswell, C. A. III (2000). Normalized Damage from Major Tornadoes in the United States:

1890�1999. http://www.nssl.noaa.gov/users/brooks/public_html/damage/tdam1.html (accessed 18 December

2006).

David, H. A. (1970). Order statistics. New York: Wiley.

Gini, C. (1914). On the measurement of concentration and variability of characters. Metron LXIII (2005), 3�38

(translation of the original C. Gini (1914) article by Fulvio De Santis).

Helmers, R. (1982). Edgeworth Expansions for Linear Combinations of Order Statistics. Amsterdam: Mathema-

tisch Centrum.

Johnston, L. D. & Williamson, S. H. (2005). The Annual Real and Nominal GDP for the United States, 1790 �

Present. Economic History Services, October 2005, http://www.eh.net/hmit/gdp/

Jones, B. L. & Zitikis, R. (2003). Empirical estimation of risk measures and related quantities. North American

Actuarial Journal 7 (4), 44�54.

Jones, B. L. & Zitikis, R. (2005). Testing for the order of risk measures: an application of L-statistics in actuarial

science. Metron LXIII (2), 193�211.

Jones, B. L., Puri, M. L. & Zitikis, R. (2006). Testing hypotheses about the equality of several risk measure values

with applications in insurance. Insurance Mathematics and Economics 38, 253�270.

Kaiser, T. & Brazauskas, V. (2006). Interval estimation of actuarial risk measures. North American Actuarial

Journal 10 (4), 249�268.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley.

Shorack, G. R. & Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. New York: Wiley.

Wang, S. (1995). Insurance pricing and increased limits ratemaking by proportional hazards transforms.

Insurance Mathmatics and Economics 17 (1), 43�54.

Wang, S. S. & Young, V. R. (1998). Ordering risks: expected utility theory versus Yaari’s dual theory of risk.

Insurance Mathematics and Economics 22 (2), 145�161.

Wirch, J. L. & Hardy, M. L. (2000). Proper ordering of risk measures, AFIR Congress Proceedings. Tromso,

Norway.

176 V. Brazauskas et al.



Appendix A

Table A.1. The first type of alternatives. Estimated power function values of the tests based on the MEAN, PHT,

CTE measures, for selected n and a .

Risk measure a n c
w

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.25 1.50 2.00

MEAN 0.01 25 0.74 0.18 0.02 0.01 0.04 0.13 0.27 0.58 0.92 0.99

50 0.96 0.54 0.04 0.01 0.08 0.30 0.59 0.91 1.00 1.00

100 1.00 0.94 0.13 0.01 0.17 0.62 0.91 1.00 1.00 1.00

200 1.00 1.00 0.44 0.01 0.37 0.91 1.00 1.00 1.00 1.00

0.05 25 0.97 0.54 0.11 0.05 0.14 0.33 0.54 0.83 0.99 1.00

50 1.00 0.89 0.19 0.05 0.22 0.54 1.00 0.98 1.00 1.00

100 1.00 1.00 0.41 0.05 0.38 0.82 0.97 1.00 1.00 1.00

200 1.00 1.00 0.77 0.05 0.60 0.97 1.00 1.00 1.00 1.00

0.10 25 1.00 0.74 0.22 0.11 0.24 0.46 0.66 0.90 0.99 1.00

50 1.00 0.96 0.33 0.11 0.33 0.67 0.88 0.99 1.00 1.00

100 1.00 1.00 0.59 0.10 0.50 0.89 0.99 1.00 1.00 1.00

200 1.00 1.00 0.88 0.10 0.71 0.99 1.00 1.00 1.00 1.00

PHT [r�0.85] 0.01 25 0.55 0.11 0.02 0.01 0.05 0.15 0.28 0.56 0.91 0.99

50 0.89 0.29 0.03 0.01 0.08 0.28 0.53 0.85 0.99 1.00

100 0.99 0.73 0.07 0.01 0.14 0.51 0.81 0.98 1.00 1.00

200 1.00 0.98 0.20 0.01 0.28 0.80 0.97 1.00 1.00 1.00

0.05 25 0.90 0.36 0.09 0.07 0.16 0.32 0.51 0.79 0.98 1.00

50 0.99 0.66 0.13 0.07 0.23 0.50 0.74 0.94 1.00 1.00

100 1.00 0.95 0.26 0.07 0.31 0.71 0.92 0.99 1.00 1.00

200 1.00 1.00 0.50 0.06 0.48 0.91 0.99 1.00 1.00 1.00

0.10 25 0.97 0.55 0.19 0.14 0.26 0.44 0.63 0.86 0.99 1.00

50 1.00 0.82 0.24 0.14 0.34 0.62 0.83 0.97 1.00 1.00

100 1.00 0.98 0.41 0.13 0.44 0.80 0.95 1.00 1.00 1.00

200 1.00 1.00 0.67 0.12 0.60 0.95 1.00 1.00 1.00 1.00

CTE [t�0.75] 0.01 25 0.07 0.03 0.02 0.02 0.04 0.07 0.12 0.23 0.53 0.84

50 0.09 0.03 0.01 0.01 0.03 0.07 0.15 0.36 0.79 0.98

100 0.27 0.06 0.01 0.01 0.04 0.13 0.28 0.63 0.97 1.00

200 0.74 0.20 0.02 0.01 0.07 0.26 0.55 0.91 1.00 1.00

0.05 25 0.21 0.11 0.08 0.08 0.12 0.18 0.26 0.42 0.74 0.96

50 0.33 0.13 0.06 0.06 0.10 0.19 0.32 0.59 0.93 1.00

100 0.68 0.25 0.07 0.06 0.13 0.29 0.50 0.82 0.99 1.00

200 0.96 0.52 0.11 0.05 0.18 0.47 0.75 0.98 1.00 1.00

0.10 25 0.35 0.20 0.16 0.15 0.21 0.27 0.36 0.54 0.83 0.98

50 0.53 0.25 0.12 0.12 0.18 0.30 0.44 0.70 0.96 1.00

100 0.85 0.42 0.15 0.11 0.21 0.41 0.62 0.89 1.00 1.00

200 0.99 0.71 0.22 0.11 0.28 0.59 0.84 0.99 1.00 1.00

NOTE: Standard errors for all entries do not exceed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5(1�0:5)=5000
p

�0:007.
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Table A.2. The second type of alternatives. Estimated power function values of the tests based on the MEAN,

PHT, CTE measures, for selected n and a .

Risk measure a n c
ww

1.00 1.05 1.10 1.15 1.20 1.25 1.50 2.00 2.50 3.00

MEAN 0.01 25 0.01 0.04 0.19 0.40 0.58 0.71 0.92 0.95 0.96 0.96

50 0.01 0.12 0.53 0.82 0.93 0.96 0.99 0.99 0.99 0.99

100 0.01 0.37 0.91 0.99 1.00 1.00 1.00 1.00 1.00 1.00

200 0.01 0.76 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.05 25 0.05 0.19 0.48 0.74 0.99 0.95 0.99 0.99 1.00 1.00

50 0.05 0.35 0.82 0.97 0.99 1.00 1.00 1.00 1.00 1.00

100 0.05 0.64 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

200 0.05 0.91 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.10 25 0.11 0.32 0.65 0.87 0.96 0.99 1.00 1.00 1.00 1.00

50 0.11 0.51 0.90 0.99 1.00 1.00 1.00 1.00 1.00 1.00

100 0.10 0.76 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

200 0.10 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

PHT [r�0.85] 0.01 25 0.01 0.05 0.17 0.35 0.53 0.68 0.93 0.96 0.97 0.97

50 0.01 0.10 0.41 0.71 0.89 0.95 0.99 0.99 0.99 0.99

100 0.01 0.23 0.77 0.96 0.99 0.99 1.00 1.00 1.00 1.00

200 0.01 0.52 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.05 25 0.07 0.19 0.44 0.67 0.83 0.92 0.99 1.00 1.00 1.00

50 0.07 0.30 0.70 0.91 0.98 0.99 1.00 1.00 1.00 1.00

100 0.07 0.47 0.92 0.99 1.00 1.00 1.00 1.00 1.00 1.00

200 0.06 0.75 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.10 25 0.14 0.30 0.58 0.80 0.92 0.96 1.00 1.00 1.00 1.00

50 0.14 0.43 0.80 0.96 0.99 1.00 1.00 1.00 1.00 1.00

100 0.13 0.61 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00

200 0.12 0.84 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CTE [t�0.75] 0.01 25 0.02 0.03 0.06 0.11 0.17 0.25 0.58 0.80 0.84 0.85

50 0.01 0.02 0.08 0.17 0.31 0.47 0.84 0.94 0.95 0.95

100 0.01 0.04 0.19 0.46 0.69 0.85 0.98 0.99 0.99 0.99

200 0.01 0.09 0.49 0.86 0.97 0.99 1.00 1.00 1.00 1.00

0.05 25 0.08 0.10 0.19 0.28 0.40 0.51 0.85 0.96 0.97 0.97

50 0.06 0.11 0.25 0.45 0.63 0.78 0.98 0.99 1.00 1.00

100 0.06 0.15 0.45 0.75 0.91 0.97 1.00 1.00 1.00 1.00

200 0.05 0.28 0.77 0.97 1.00 1.00 1.00 1.00 1.00 1.00

0.10 25 0.15 0.18 0.31 0.43 0.56 0.68 0.96 1.00 1.00 1.00

50 0.12 0.20 0.40 0.61 0.78 0.89 1.00 1.00 1.00 1.00

100 0.11 0.27 0.60 0.85 0.96 0.99 1.00 1.00 1.00 1.00

200 0.11 0.41 0.86 0.99 1.00 1.00 1.00 1.00 1.00 1.00

NOTE: Standard errors for all entries do not exceed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5(1�0:5)=5000
p

�0:007:
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Table A.3. Normalized Damage from Major Tornadoes in the United States: 1890�1999 with Year and Census

Region (1 Northeast, 2 Midwest, 3 South) of Occurrence.

Year Region Damage Year Region Damage Year Region Damage

1890 3 18809 1932 3 2561 1967 2 7850

1893 3 130 1932 3 1601 1968 2 9891

1893 2 2606 1932 3 640 1968 2 9891

1896 3 1380 1933 3 1005 1968 2 6923

1896 2 2071 1933 3 670 1968 3 1648

1896 2 82827 1933 3 335 1969 3 923

1898 3 12135 1936 3 6902 1969 2 4617

1899 2 1153 1936 3 29910 1970 3 39901

1899 2 1730 1942 3 747 1971 3 2209

1900 3 1106 1942 3 3111 1973 3 20470

1902 3 987 1942 3 622 1973 3 5520

1903 3 4658 1942 3 622 1974 2 21401

1904 3 479 1944 3 5458 1974 3 6420

1905 2 437 1944 1 13646 1974 2 10700

1905 3 1312 1945 3 1340 1974 3 3210

1908 3 2200 1947 3 7073 1974 3 3638

1908 3 2200 1947 3 707 1974 2 7490

1908 3 2200 1948 2 2939 1974 3 3210

1908 3 440 1949 3 1088 1975 3 11081

1909 3 2536 1952 3 2289 1975 2 49470

1909 3 423 1952 3 458 1975 2 3958

1909 3 423 1952 3 1962 1978 3 6262

1909 3 423 1953 3 9412 1978 3 14563

1913 2 18669 1953 3 25727 1979 3 52731

1917 2 3905 1953 2 11922 1979 3 3559

1917 2 5207 1953 1 32629 1979 1 26366

1917 3 2603 1953 3 15687 1980 2 6129

1918 2 4094 1955 3 4767 1980 2 17160

1919 2 7031 1956 2 5754 1982 3 5354

1920 3 3626 1957 2 22242 1982 2 10709

1920 3 363 1957 2 8341 1984 2 3609

1920 3 363 1959 2 5236 1985 1 8483

1921 3 222 1964 3 6501 1986 3 6477

1921 3 4439 1965 2 14172 1987 3 100

1924 3 1975 1965 2 8098 1988 3 5550

1924 2 23696 1965 2 10123 1989 3 6772

1925 2 30787 1965 2 6074 1990 2 10680

1925 3 385 1965 2 4049 1991 2 3809

1927 3 2249 1965 2 6074 1993 3 5875

1927 3 3935 1965 2 4859 1993 3 2761

1927 2 41224 1966 3 6724 1994 3 2799

1929 3 1591 1966 3 11207 1994 3 2799

1930 3 2031 1966 2 37356 1995 3 5416

1930 3 203 1966 2 4483 1998 3 2373

1932 3 960 1967 2 5352 1999 3 45302

1932 3 4802 1967 2 10704

179Nested L-statistics and their use


