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ROBUST AND EFFICIENT METHODS FOR
CREDIBILITY WHEN CLAIMS ARE APPROXIMATELY

GAMMA-DISTRIBUTED
Harald Dornheim* and Vytaras Brazauskas†

ABSTRACT

As is well known in actuarial practice, excess claims (outliers) have a disturbing effect on the
ratemaking process. To obtain better estimators of premiums, which are based on credibility the-
ory, Künsch and Gisler and Reinhard suggested using robust methods. The estimators proposed
by these authors are indeed resistant to outliers and serve as an excellent example of how useful
robust models can be for insurance pricing. In this article we further refine these procedures by
reducing the degree of heuristic arguments they involve. Specifically we develop a class of robust
estimators for the credibility premium when claims are approximately gamma-distributed and thor-
oughly study their robustness-efficiency trade-offs in large and small samples. Under specific data-
generating scenarios, this approach yields quantitative indices of estimators’ strength and weak-
ness, and it allows the actuary (who is typically equipped with information beyond the statistical
model) to choose a procedure from a full menu of possibilities. Practical performance of our
methods is illustrated under several simulated scenarios and by employing expert judgment.

1. INTRODUCTION AND PRELIMINARIES

The earliest works in credibility theory date back to the beginning of the twentieth century, when
Mowbray (1914) and Whitney (1918) laid the foundation for limited fluctuation credibility theory. It is
a stability-oriented form of credibility, the main objective of which is to incorporate into the premium
as much individual experience as possible while keeping the premium sufficiently stable. Despite nu-
merous attempts, this approach never arrived at a unifying principle that covered all special cases and
that opened new venues for generalization. Its range of applications is quite limited, and, thus, it never
became a full-fledged theory.

Instead of solely focusing on the stability of the premium, the modern and more flexible approach
to credibility theory concentrates on finding the most accurate estimate of an insured’s pure risk
premium. Initial contributions to this area can be traced back to the work of Keffer (1929) and Bailey
(1945, 1950). However, it is generally agreed that the systematic development of the field of greatest
accuracy credibility started in the late 1960s with fundamental contributions by Bühlmann (1967,
1969). Later Bühlmann and Straub (1970) introduced a credibility model as a means to rate reinsur-
ance treaties, which generalized previous results and became the cornerstone of greatest accuracy
credibility theory. The model is one of the most frequently applied credibility models in insurance
practice, and it enjoys some desirable optimality properties. We will use the Bühlmann-Straub model
as a reference for our robust model (defined in Section 2.1).
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From a practical point of view, the Bühlmann-Straub model requires that unknown model parameters
be estimated from the data. Methods of estimation proposed in the actuarial literature include purely
parametric and standard non- and semiparametric procedures (see, e.g., Klugman, Panjer, and Willmot
2004, Section 16.5; Young 1997). However, as discussed by Norberg (1979) and Goulet (1998), the
main practical problem with these approaches is that they are nonrobust, that is, they are sensitive to
outliers and/or model misspecification. The problem of robustness in the Bayesian context, where one
is concerned with the uncertainty in the prior distribution, is addressed by Young (1998). Another
approach toward robustness, proposed by Künsch (1992) and Gisler and Reinhard (1993), is to use
procedures that extract information from the majority of the data, then identify outliers (i.e., obser-
vations not in the majority) and treat them separately. Antecedents of this approach have been used
by Swiss actuaries for the calculation of the pure risk premium in industrial fire insurance (see dis-
cussion by Gisler and Reinhard 1993).

The robust estimators proposed by Künsch (1992) and Gisler and Reinhard (1993) are indeed resis-
tant to outliers and serve as an excellent example of how useful robust models can be for insurance
pricing. In this article we further refine these procedures by reducing the degree of heuristic arguments
they involve. Specifically we develop a class of robust estimators for the credibility premium when claims
are approximately gamma-distributed and thoroughly study their robustness efficiency trade-offs in
large and small samples. Under specific data-generating scenarios, this approach yields quantitative
indices of estimators’ strength and weakness, and it allows the actuary (who is typically equipped with
information beyond the statistical model) to choose a procedure from a full menu of possibilities. For
implementation of this approach in practice, expert judgment is also needed but at a different stage.
That is, an expert would first have to decide on the level of exposure (of the whole portfolio) to extremes
and then recommend a procedure that offers the necessary degree of protection while having high
efficiency.

The article is organized as follows. In the remainder of this introduction we present the quantitative
tools for investigation of the robustness and efficiency properties of estimators (Section 1.1) and de-
scribe the standard Bühlmann-Straub credibility model (Section 1.2). Further, in Section 2 our robust
credibility model is developed. This section includes model description, introduction of estimators, and
a comprehensive study of their large- and small-sample properties. Practical performance of our meth-
ods is illustrated in Section 3. Final discussion is provided in Section 4.

1.1 Robustness versus Efficiency
Simultaneous consideration of robustness and efficiency criteria is a relatively old idea in the statistical
literature dating back to the late 1960s. In the actuarial literature, however, it has emerged recently
but has already proven very successful in theory and in applications (see, e.g., Brazauskas 2003; Bra-
zauskas and Serfling 2000, 2003; Marceau and Rioux 2001; Serfling 2002). Conceptually this approach
is very similar to insurance contract: to get some (specific) amount of protection against damages that
may be caused by disastrous events in the future one has to pay a prespecified premium right now. In
statistical terms, the protection is understood as no or little effect on the bias and variance of the
estimator by a fixed amount of contamination (outliers) in the data. At the same time, we have to
accept the fact that such protection does not come free: that is, the estimators designed to resist
outliers will sacrifice efficiency relative to performance when there is no contamination in the data.
Such a sacrifice is the premium we have to pay.

To formalize these ideas and to quantify the ‘‘robustness versus efficiency’’ approach, we will use the
following tools of robust statistics. (They are taken, either directly or with some modifications, from
the references cited at the beginning of this section.) The most crucial tool among these is the influence
function; all other quantitative measures stem from it.

• Influence Function (IF)
For a parameter H(F) estimated by where is an empirical distribution function estimatingˆ ˆH(F ), Fn n

a distribution function F on the basis of a sample of size n, the associated influence function is
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defined as IF(x; H(F)) � �/�s[H((1 � s)F � s �x)] where �x is the distribution placing all mass,�s�0

at the point x. The influence function approximates the contribution to the total estimation error
that is made by an observation located at x. That is, for the sample observations X1, . . . , Xn,

1ˆH(F ) � H(F) � [IF(X ; H(F)) � � � � � IF(X ; H(F))].n 1 nn

Thus, the impact (or ‘‘influence’’) of observation Xi on the estimation error for a sample of size n is
measured, approximately, by n�1IF(Xi; H(F)).

• Gross Error Sensitivity (GES)
The gross error sensitivity (divided by n) measures the worst possible effect on the estimator due to
contamination of the data. Since damaging contamination can be caused by low or high observations,
we have to consider two versions—upper and lower—of the GES:

� �GES � sup �IF(x; H(F))� and GES � sup �IF(x; H(F))�,
� �x�� x��

where �� (��) represents a set of upper (lower) x values. Then the most general definition of GES
is GES � max{GES�, GES�}. Estimators with relatively low GES (GES � 0) are desired. Also, de-
pending on the context, one may focus only on estimators with relatively low GES� � 0 (or only
relatively low GES� � 0).

• Breakdown Point (BP)
The breakdown point provides a guidance up to what distance from the model an approximation
based on the IF can be used. In practice, the finite-sample BP is loosely characterized as the largest
proportion of corrupted sample observations that the estimator can cope with. Similarly to GES, we
have to allow the possibility that data corruption may occur because of low or high observations, and
thus define two versions of BP:

The upper (lower) breakdown point, denoted by BP� (BP�), is the largest proportion of upper (lower)
sample observations that may be taken to an upper (lower) limit without taking the estimator to an
uninformative limit not depending on the parameter being estimated.

The general definition of BP then is BP � min{BP�, BP�}. For asymptotic comparisons, the limit (as
the sample size tends to �) of BP will be used. Interestingly, as we will see later, the asymptotic BP
is a function of the underlying IF. Estimators with relatively high BP (0 � BP � 0.50) are desired.
Again, depending on the context, estimators with only good 0 � BP� � 1 (or 0 � BP� � 1) properties
may be preferred.

• Relative Efficiency (RE)
Suppose that, for estimation of a parameter H(F), there exist two competing statistical procedures
Un and Vn, where n � 1 is the sample size. Then, to compare their performances at the model F, we
use the ratio of their mean squared errors (MSEs):

2MSE(U ) [E(U ) � H(F)] � Var(U )n n nRE(V , U ) � � ,n n 2MSE(V ) [E(V ) � H(F)] � Var(V )n n n

which is called the relative efficiency of procedure Un relative to procedure Vn. For large-sample
comparisons, the asymptotic relative efficiency may be defined as the limit of RE(Vn, Un) as n → �,
or, equivalently, since all estimators considered in this article are asymptotically unbiased, as

asymptotic Var(U )nARE(V , U ) � .n n asymptotic Var(V )n

As will be seen in Section 2.3.3, the asymptotic variance of an estimator is functionally related to
the IF. Also, for our choice of distribution function F (i.e., for a gamma distribution), the standard
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credibility estimator has optimum asymptotic variance; thus competing (robust) estimators will have
0 � ARE � 1 at F.

1.2 Standard Credibility Model
Let us consider a portfolio of different insureds or risks i, i � 1, . . . , I, where each risk i is characterized
by an unobservable risk parameter �i. For i � l, . . . , I, we have a vector of observations (Xi1, . . . ,

where Xit represents the observed claim amount (or loss ratio) of risk i during time period t,X ),i�i

t � 1, . . . , �i. The mathematical assumptions of the Bühlmann-Straub model are the following:

• The hidden risk parameters �1, . . . , �I are independent and identically distributed
• For t � 1, . . . , �i, the random variables Xit, given �i, are conditionally independent
• The random variables Xi1, . . . , have finite variancesXi�i

• For i � 1, . . . , I and t � 1, . . . , �i: E(Xit��i) � 	(�i) and Var(Xit/�i) � v(�i)/wit, where wit are known
volume measures.

Additionally, to simplify theoretical derivations of Section 2, we will slightly modify the last assumption
by considering the case that volume measures of risk i do not change over time:

• For i � 1, . . . , I: wi1 � � � � � � wi.wi�i

Of course, this somewhat reduces the generality of the model. From a practical point of view, however,
it is not too restrictive of an assumption because, as one referee aptly commented, ‘‘volumes are often
equal enough across periods for a single risk to be considered constant in time. Indeed, volumes vary
usually way more between than within risks.’’

The risk premium 	(�i) is the true premium for an insured i if its risk parameter �i were known.
Since in practice �i is mostly unknown, the true premium is estimated by the credibility estimator

It follows from the Bühlmann-Straub model that the best (in the MSE sense) linear Bayesian	(� ).ˆ i

credibility estimator is given by

¯	(� ) � (1 � 
 )	 � 
 X , (1.1)ˆ i i i i

where 	 � E(	(�i)) � E(Xit) is the overall mean or collective premium charged for the whole portfolio,
� wit Xit � Xit is the weighted mean of the individual experience of risk i,�1 � �1 �i iX̄ w � � �i i• t�1 i t�1


i � (1 � v/(wi•�
2))�1 � (1 � v/(�iwi�

2))�1 is the credibility factor of risk i, and wi• � wit � �iwi
�i�t�1

is the total volume of risk i. Also, v � E(v(�i)) and �2 � Var(	(�i)). Here parameters 	, v, and �2 are
called the structural parameters that are generally unknown and must be estimated from the data.
(Estimators for these parameters are presented in Section 3.1.)

2. ROBUST CREDIBILITY MODEL

In this section we develop our robust credibility model. First, in Section 2.1 we present motivation for,
and description of, the model. Then in Section 2.2 we introduce a class of robust-efficient estimators
for summarizing the individual experience of an insured. Large-sample properties of these estimators
are studied in Section 2.3. Finally, since in typical insurance portfolios the number of observation
periods for a risk is not large, the estimators have to be corrected for (approximate) unbiasedness in
small samples. In Section 2.4 we derive the necessary small-sample adjustments for the estimators,
thus making the robust model more realistic.

2.1 Model Description
Let us continue with the same setup as in Section 1.2. The main idea of the robust credibility approach
is to divide the true risk premium 	(�i) in the Bühlmann-Straub model into two parts—a risk premium
for the ordinary claims, 	ordinary(�i), and a risk premium for the extraordinary claims, 	extra(�i)—and to
estimate each component separately. The extraordinary premium represents the expected claims load
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generated mainly by extraordinary events (e.g., big fires or hurricanes), whose occurrence is rare but
usually leads to outlier observations of the affected loss ratios. Further, as Gisler and Reinhard (1993)
argue, ‘‘the bulk of the data contains very little information with respect to ‘outlier-events’’’ and there-
fore ‘‘all risks in the portfolio can be considered as equally exposed to outlier events.’’ Thus, it is
reasonable to assume that

	 (� ) � 	 , for i � 1, . . . , I.extra i extra

In this setting the ordinary premium 	ordinary(�i) is estimated using a robust procedure (say, Ti), which
automatically identifies what the ordinary observation (say, Tit) is, and estimation of the extraordinary
premium 	extra is based on the overshot of the excess claims t � 1, . . . , �i, i � 1, . . . , I. Then,T*,it

similar to formula (1.1), the robust credibility estimator is given by

	(� ) � 	 (� ) � 	 � [(1 � � )	 � � T ] � 	 , (2.1)˜ ˆi ordinary i extra i robust i i extra

where the robust structural parameters 	robust � E(Ti), 	extra � E vrobust � E(witVar(Tit��i)) �(T*),it

E(wiVar(Tit��i)), and � Var(E(Ti��i)), and the robust credibility factor �i � (1 � vrobust/2�robust

(wi• ))�1 � (1 � vrobust/(�iwi ))�1 must be estimated from the data. (Estimators for these2 2� �robust robust

parameters and definitions of the ordinary observation Tit and the overshot of the excess claims areT*it
presented in Section 3.1.)

2.2 Estimators
To select a class of robust estimators and study its properties, we have to make certain distributional
assumptions about the claim data Xit (given �i). Using the motivation provided in examples of Gisler
and Reinhard (1993), we assume the following:

For i � 1, . . . , I, conditional variables Xi1��i, . . . , ��i are distributed according to the gamma distributionXi�i

with parameters wi and �i/wi, denoted GAMMA (wi, �i/wi) and having the pdf
w i(w /� )i i w �1 �xw /�i i if(x�� ) � x e , for x � 0, (2.2)i �(w )i

where the shape parameter  � 0 and volume measures wi are known.

Note that the above statement is equivalent to assuming that all claims are ordinary, which is necessary
for the introduction and development of robust procedures. Once those robust estimators are properly
defined, they will remain valid under the less stringent assumption of ‘‘the bulk of claims are ordinary’’
because of the way they are designed. Also, the justification for using the scale parameter �i as the risk
parameter rather than the shape parameter  is that, from one risk period to another, the probability
of having ‘‘small’’ or ‘‘large’’ claims is the same; what differs is how ‘‘small’’ and ‘‘large’’ claims will
be distributed between ‘‘good’’ and ‘‘bad’’ risks.

As discussed in Section 2.1, the role of a robust procedure is to estimate the ordinary premium
	ordinary(�i), that is, the mean of ordinary claims, which, in view of (2.2), is equal to E(Ti��i) � E( ��i) �X̄i

E(Xit��i) � �i. Thus, practically, our aim is to design a robust estimator for the scale parameter �i

(because  is known). Following the general guidelines of Huber (1981, Chapter 5) and, in part, some
specific suggestions of Künsch (1992) and Gisler and Reinhard (1993), we consider a class of M-
estimators for scale parameters and choose estimator Ti as a solution of the following equation:

�i Xit� ; c � 0, (2.3)� � ��iTt�1 i
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where

max{� a , min{t � c , b }}, for t � 0;i � ii�(t; c ) � ��i 0, for t � 0.

Here constants 0 � ai � 1 and bi � �ai control the level of lower and upper trimming, respectively,
and � (wi, ai, bi) denotes the so-called Fisher consistency factor (see Hampel et al. 1986, p. 83).c c� �i i

The case ai � 1 implies that there is no trimming of lowest sample observations and is quite typical
for insurance applications, where lower outliers are of no concern. (In this article we will present
theoretical results for arbitrary ai, but quantitative illustrations will be given only for ai � 1.) To find
an asymptotic approximation of denoted c� � c�(wi, ai, bi), one works with the correspondingc ,�i

integral equation:

x	 � ; c f(x�� ) dx � 0. (2.4)� �� iE(T �� )i i

The estimator Ti, given by equation (2.3), is very similar to the estimators of Künsch (1992, equation
(2.7)), and Gisler and Reinhard (1993, equation (33)), yet it is different from both, mostly in the
degree of how much heuristics is involved in its definition. For example, the first paper uses the function
�(t; 1), instead of �(t; ), and recommends to (always) select constant bi between 1 and 2 by providingc�i

intuitive, rather than mathematical (theoretical or empirical), arguments for it. The second paper
defines �(t, wit) � wit min{t � 1, c/ }, where constant c is either or
w 
w /(I�)it ••

and � � �1 � � � � � �I. Here the upper trimming level is a function of the risk
median (w )t�1,...,�,i�1,...,I it

volume, which presents challenges in studying estimators’ asymptotic behavior. Our approach incor-
porates volume wi into the estimator Ti through (wi, ai, bi). We make recommendations about thec�i

choice of bi after a full picture of robustness efficiency trade-offs is available. Also, and very importantly,
it is relatively easy to study asymptotics of our estimator.

Finally, we note that the choice of ai � 1 and bi → � will imply (wi, ai � 1, bi → �) → 1 which,c�i

in turn, will lead to Ti → the standard estimator of individual experience. Thus, similar to theX̄ ,i
procedures introduced by the above authors, the proposed class of estimators also includes the standard
estimator as a limiting case.

2.3 Large-Sample Properties
Since estimator Ti belongs to the class of M-estimators, its large-sample properties (e.g., consistency,
asymptotic normality) and large-sample measures (e.g., breakdown point, gross-error sensitivity, a-
symptotic relative efficiency) can be directly derived from general theory for M-estimators, which is
available in Huber (1981) or Hampel et al. (1986), for example. Thus, in Sections 2.3.1–2.3.3 we will
closely follow these references.

2.3.1 Fisher Consistency Factors
To find asymptotic Fisher consistency factors c�, we have to solve equation (2.4). First, by noting that
procedure Ti is designed to estimate the average experience of risk i, that is, E(Ti��i) � E( ��i) � �i,X̄i

we introduce the substitution of variables z � x/(�i), and hence rewrite equation (2.4) as

	 �(z; c )f(� z�� ) dz � 0. (2.5)� i i

Next, it is easy to show that �(z; c�) � �1(z)1{�bi � c� � ai} � �2(z)1{c� � ai}, where 1{�} denotes
the indicator function, �1(z) � z � c�, for 0 � z � c� � bi, and �1(z) � bi, for z � c� � bi, and
�2(z) � �ai, for 0 � z � c� � ai, �2(z) � z � c�, for c� � ai � z � c� � bi, and �2(z) � bi, for
z � c� � bi. Taking all this together, straightforward integration of equation (2.5) yields that factors
c� can be found by solving (numerically) the following equation:
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Table 1
Values of c�, for ai � 1 and Selected wi� � 0 and bi � 0

bi

wi

1 2 3 4 5 6 7 8 9 10

0.1 0.383 0.551 0.644 0.704 0.746 0.777 0.801 0.821 0.837 0.851
0.2 0.507 0.673 0.757 0.808 0.842 0.867 0.886 0.901 0.912 0.922
0.3 0.589 0.748 0.823 0.867 0.895 0.915 0.929 0.940 0.949 0.956
0.4 0.650 0.801 0.867 0.904 0.928 0.944 0.955 0.963 0.970 0.975
0.5 0.698 0.839 0.899 0.930 0.950 0.962 0.971 0.977 0.982 0.985
0.6 0.738 0.869 0.922 0.949 0.964 0.974 0.981 0.986 0.989 0.992
0.7 0.770 0.893 0.939 0.962 0.975 0.983 0.988 0.991 0.994 0.995
0.8 0.798 0.912 0.953 0.972 0.982 0.988 0.992 0.995 0.996 0.997
0.9 0.821 0.927 0.963 0.979 0.987 0.992 0.995 0.997 0.998 0.999
1.0 0.841 0.939 0.971 0.984 0.991 0.995 0.997 0.998 0.999 0.999
1.1 0.859 0.949 0.977 0.988 0.994 0.997 0.998 0.999 0.999 1.000
1.2 0.874 0.958 0.982 0.991 0.996 0.998 0.999 0.999 1.000 1.000
1.3 0.888 0.965 0.986 0.994 0.997 0.999 0.999 1.000 1.000 1.000
1.4 0.900 0.971 0.989 0.995 0.998 0.999 1.000 1.000 1.000 1.000
1.5 0.910 0.975 0.991 0.997 0.999 0.999 1.000 1.000 1.000 1.000
1.6 0.920 0.979 0.993 0.997 0.999 1.000 1.000 1.000 1.000 1.000
1.7 0.928 0.983 0.995 0.998 0.999 1.000 1.000 1.000 1.000 1.000
1.8 0.935 0.986 0.996 0.999 1.000 1.000 1.000 1.000 1.000 1.000
1.9 0.942 0.988 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
2.0 0.948 0.990 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000
3.0 0.981 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5.0 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
� 1 1 1 1 1 1 1 1 1 1

1{c � �b }[b � �*(w (c � b ); w  � 1) � (c � b )�*(w (c � b ); w )]� i i i � i i � i i � i i

� 1{c � a }[(c � a )�*(w (c � a ); w ) � �*(w (c � a ); w  � 1)] � 0, (2.6)� i � i i � i i i � i i

where �* denotes the incomplete gamma function, defined as �*(y; m) � (1/�(m)) xm�1e�x dx, fory	0

y � 0, and �*(y; m) � 0, for y � 0. Using standard techniques of calculus, it can be shown that the
left-hand side of (2.6) is 0, for c� � �bi, has a jump (of size bi) at c� � �bi, and is a continuous and
monotonically decreasing function of c� on the interval (�bi, �), which approaches �ai (� 0) as c�

tends to �. This implies that, on the interval (�bi, �), equation (2.6) has no solution, if bi � 0, and a
unique solution, if bi � 0. (The case bi → 0 yields c� → 0.) Hence, from now on we will focus on the
most interesting case of bi � 0.

REMARK 1 Important Special Cases

For ai � 1 and bi � 0, similar arguments to those above imply that equation (2.6) has a unique solution
on the interval (0, 1). Here c� → 1 for bi → �, which corresponds to Ti → �X̄ .i

Table 1 presents numerical solutions of equation (2.6) for various choices of model parameters.

2.3.2 Robustness Measures
As discussed in Section 1.1, the key tool for studying robustness and efficiency properties of an esti-
mator is its influence function. We do not have to compute it by definition because some general
results are already known. That is, the influence function of an M-estimator of scale parameter (in our
case, E(Ti��i)) is given by

�(x/E(T �� ); c )E(T �� )i i � i iIF(x; E(T �� )) �i i 	 ��(y/E(T �� ); c )(y/E(T �� ))f(y�� ) dyi i � i i i

(see Huber 1981, Section 5.2). Thus, our main task here is to evaluate the integral in the denominator.
As we did for the derivations of Section 2.3.1, we express function � in terms of �1 and �2, then
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differentiate it and perform straightforward integration. (Recall that now we are focusing on the case
bi � 0, which implies that c� � (�bi, �).) Hence, we arrive at the following: for the parameter
E(Ti��i) � �i estimated by Ti, which is defined by (2.3), the influence function is given by

� (x/(� ))1{�b � c �a } � � (x/(� ))1{c � a }1 i i � i 2 i � iIF (x; � ) � � , (2.7)T i ii �*(w (c � b ); w  � 1) � 1{c � a }�*(w (c � a ); w  � 1)i � i i � i i � i i

where functions �1, �2, and �* are defined as in Section 2.3.1.
Now we are in the position of deriving formulas for the robustness measures. By definition, the gross

error sensitivity of estimator Ti is the supremum of � (x; �i)� with respect to x. This is equivalent toIFTi

finding maximum of the numerator of (2.7). Thus, we have

max{c 1{�b � c � a } � a 1{c � a }, b }� i � i i � i iGES � � . (2.8)T ii �*(w (c � b ); w  � 1) � 1{c � a }�*(w (c � a ); w  � 1)i � i i � i i � i i

REMARK 2 Important Special Cases

a. No lower trimming (ai � 1). As follows from Remark 1, for ai � 1 and finite bi � 0, c� � (0, 1).
Therefore, (2.8) can be rewritten as � �i max{c�, bi}/�*(wi(c� � bi); wi � 1). In the caseGESTi

of no lower trimming, we are only concerned about having protection against large positive outliers
(i.e., x → �); so, instead of considering GES, we focus on the upper gross error sensitivity GES�.
To this end, max{c�, bi} is replaced by bi, and, consequently, we have

bi�GES � � .T ii �*(w (c � b ); w  � 1)i � i i

b. Standard estimator (ai � 1, bi → �). Clearly, letting ai � 1 and bi → � in (2.8), implies thatX̄i

� �; thus, the standard estimator is nonrobust with respect to the GES criterion. �¯GES XX̄ ii

The general expression for the asymptotic breakdown point of an M-estimator of scale is available in
Huber (1981, Section 5.2), that is,

��(0; c ) �(�; c )� �� �BP � min{BP , BP } � min , ,� ��(�; c ) � �(0; c ) �(�; c ) � �(0; c )� � � �

where function � is defined by (2.3). Direct evaluation of these expressions yields

a ci ��BP � 1{c � a } � 1{�b � c � a }, (2.9)T � i i � ii a � b c � bi i � i

b bi i�BP � 1{c � a } � 1{�b � c � a }. (2.10)T � i i � ii a � b c � bi i � i

REMARK 3 Important Special Cases

If there is no lower trimming (i.e., ai � 1 and, consequently, c� � (0, 1)), we focus on the BP� version,
and from (2.9) we get

c��BP � .Ti c � b� i

In addition, it is easily seen that the standard estimator (i.e., Ti with ai � 1, bi → �) is nonrobustX̄i

with respect to the BP criterion because � 0. �BPX̄i

2.3.3 Asymptotic Relative Efficiency
To find asymptotic relative efficiency of Ti with respect to we have to evaluate asymptotic variancesX̄ ,i
of these two estimators. Let us start with estimator Ti. It follows from Huber (1981, Section 3.2) that,
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under certain regularity conditions (which are satisfied for our choice of the underlying distribution f
and function �), estimator Ti is asymptotically normal with mean �i and variance V(Ti, f )/�i, where �i

is the sample size (number of observation periods for a risk i) and

2V(T , f ) � 	 IF (x; � )f(x�� ) dxi T i ii

with function defined in (2.7). Next, straightforward (but lengthy) integration leads toIFTi

2
�iV(T , f ) � � �i �*(w (c � b ); w  � 1) � 1{c � a }�*(w (c � a ); w  � 1)i � i i � i i � i i

w  � 1i2
 b � �*(w (c � b ); w  � 2) � 2c �*(w (c � b ); w  � 1)� i i � i i � i � i iw i

w  � 1i2 2� (c � b )�*(w (c � b ); w ) � 1{c � a } �*(w (c � a ); w  � 2)�� i i � i i � i i � i iw i

2 2� 2c �*(w (c � a ); w  � 1) � (c � a )�*(w (c � a ); w ) ,�� i � i i � i i � i i (2.11)

where function �* is defined as in Section 2.3.1.

REMARK 4 Important Special Cases

a. No lower trimming (ai � 1). For ai � 1 and finite bi � 0, c� � (0, 1). Thus, expression (2.11) can
be significantly simplified:

2
� w  � 1i i2V(T , f ) � b � �*(w (c � b ); w  � 2)� � �i i i � i i�*(w (c � b ); w  � 1) w i � i i i

2 2� 2c �*(w (c � b ); w  � 1) � (c � b )�*(w (c � b ); w ) .� i � i i � i i � i i

b. Standard estimator (ai � l, bi → �). It follows from the central limit theorem that estimator¯ ¯X Xi i

is asymptotically normal with mean �i and variance V( f )/�i � /wi)/�i. Thus it is no surprise2X̄ , (�i i

that we get V(Ti, f) → V f), by letting ai � 1 and bi → � in (2.11). �¯(X ,i

Finally, we have all the necessary components for computation of asymptotic relative efficiency of

estimator Ti with respect to that is, ARE(Ti, � � �
2¯ ¯V(X , f)/� V(X , f) � /wi i i i i¯ ¯X , X ) .i i V(T , f)/� V(T , f) w /V(T , f)i i i i i

2.3.4 Summary
In Table 2 we provide numerical illustrations of (asymptotic) robustness and efficiency properties of
estimator Ti for various choices of model parameters.

2.4 Small-Sample Properties
So far we have studied the asymptotic behavior of our robust estimators and have a pretty good idea
of how each estimator performs under specified scenarios (i.e., for specific (known) values of wi).
These properties, however, are valid for large number of observation periods, for instance, �i � 30 or
50 years, and have some bias for �i � 10 (a realistic span of individual experience for a risk). Since for
insurance applications unbiasedness is indispensable, small-sample corrections for the asymptotic prop-
erties of the estimators are necessary.
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Table 2
Values of GES* � /(��i), ARE(Ti, ), for ai � 1 and Selected wi� � 0 and bi � 0� � ¯BP , GES XT T ii i

bi BP� GES* ARE BP� GES* ARE BP� GES* ARE

wi � 1 wi � 2 wi � 3

0.2 0.717 0.063 0.420 0.771 0.102 0.523 0.791 0.130 0.589
0.4 0.619 0.226 0.560 0.667 0.345 0.684 0.684 0.422 0.755
0.6 0.551 0.464 0.652 0.592 0.676 0.780 0.606 0.802 0.847
0.8 0.499 0.759 0.720 0.533 1.064 0.844 0.544 1.231 0.903
1.0 0.457 1.098 0.772 0.484 1.487 0.889 0.493 1.682 0.938
1.2 0.422 1.473 0.814 0.444 1.931 0.920 0.450 2.139 0.961
1.4 0.391 1.873 0.847 0.409 2.385 0.943 0.414 2.594 0.976
1.6 0.365 2.293 0.874 0.380 2.842 0.959 0.383 3.043 0.985
1.8 0.342 2.728 0.896 0.354 3.297 0.971 0.356 3.483 0.991
2.0 0.322 3.172 0.914 0.331 3.749 0.979 0.333 3.915 0.994
5.0 0.167 9.826 0.995 0.167 9.995 0.999 0.167 9.999 1.000

wi � 4 wi � 5 wi � 6

0.2 0.802 0.151 0.636 0.808 0.169 0.673 0.813 0.183 0.703
0.4 0.693 0.478 0.803 0.698 0.521 0.837 0.702 0.555 0.863
0.6 0.613 0.888 0.888 0.617 0.950 0.915 0.619 0.997 0.935
0.8 0.549 1.336 0.936 0.551 1.406 0.956 0.553 1.455 0.969
1.0 0.496 1.794 0.964 0.498 1.862 0.977 0.498 1.907 0.986
1.2 0.452 2.248 0.980 0.454 2.309 0.989 0.454 2.344 0.994
1.4 0.416 2.693 0.988 0.416 2.743 0.995 0.416 2.768 0.997
1.6 0.384 3.127 0.994 0.384 3.166 0.997 0.385 3.183 0.998
1.8 0.357 3.552 0.997 0.357 3.580 0.999 0.357 3.592 0.999
2.0 0.333 3.970 0.998 0.333 3.989 0.999 0.333 3.996 1.000
5.0 0.167 10.000 1.000 0.167 10.000 1.000 0.167 10.000 1.000

wi � 7 wi � 8 wi � 9

0.2 0.816 0.196 0.727 0.818 0.207 0.748 0.820 0.217 0.766
0.4 0.705 0.584 0.883 0.707 0.608 0.899 0.708 0.628 0.912
0.6 0.621 1.033 0.949 0.622 1.062 0.959 0.622 1.085 0.967
0.8 0.554 1.491 0.978 0.554 1.517 0.984 0.555 1.536 0.988
1.0 0.499 1.936 0.991 0.500 1.956 0.994 0.500 1.969 0.996
1.2 0.454 2.366 0.996 0.454 2.379 0.998 0.454 2.387 0.999
1.4 0.416 2.783 0.999 0.417 2.790 0.999 0.416 2.795 1.000
1.6 0.385 3.192 1.000 0.385 3.196 1.000 0.385 3.198 1.000
1.8 0.357 3.596 1.000 0.357 3.598 1.000 0.357 3.599 1.000
2.0 0.333 3.998 1.000 0.333 3.999 1.000 0.333 4.000 1.000
5.0 0.167 10.000 1.000 0.167 10.000 1.000 0.167 10.000 1.000

� 0 � 1 0 � 1 0 � 1

In this context the most important (and perhaps the most difficult) problem is to find Fisher con-
sistency factors (wi, ai � 1, bi). It is infeasible to determine these factors analytically. However,c�i

using Monte Carlo simulations, regression fitting, and numerous attempts of trial and error, we were
able to find a simple (yet remarkably accurate) approximation:

1 1
c (w , a � 1, b ) � � 1 � c (w , a � 1, b ), (2.12)� �� i i i � i i ii � �i i

where c�(wi, ai � 1, bi) is tabulated in Table 1. Note that approximation (2.12) satisfies all known
(or, at least easily verifiable) limiting and special cases, for example: (wi, ai � 1, bi) � 1, (wi,c c� �1 �i i

ai � 1, bi) → (wi, ai � 1, �) � 1 as bi → �, and (wi, ai � 1, bi) → c�(wi, ai � 1, bi) as �i → �.c c� �i i

To get some idea on how accurate the approximation is, in Table 3 we present (an estimate of) the
standardized bias of the estimators that are defined by (2.3) with (wi, ai � 1, bi) given by (2.12).c�i

The bias is estimated using simulations, and the standardized bias is computed by taking the estimated
bias and dividing it by the target parameter �i. As one can see from the table, the standardized bias
is small (though not negligible), for 2 � �i � 5, and virtually vanishes, for �i � 10. This behavior is
even more evident for larger values of bi and wi. Also, note that, while some rows and columns of
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Table 3
Values of � ��i]/(��i), for ai � 1 and Selected �i, wi� � 0, and bi � 0

�

[E(T )i

bi

�i

2 3 4 5 7 10

�i

2 3 4 5 7 10

0.2 �0.160 �0.163 �0.099 �0.098 �0.074 �0.054 �0.088 �0.079 �0.052 �0.043 �0.031 �0.025
0.4 �0.099 �0.011 �0.038 �0.027 �0.023 �0.019 �0.036 �0.008 �0.013 �0.009 �0.008 �0.006
0.6 �0.028 �0.004 �0.002 �0.001 �0.002 �0.001 0.007 0.002 0.003 0.002 0.002 0.001
0.8 0.051 0.007 0.017 0.010 0.009 0.006 0.031 0.009 0.009 0.006 0.006 0.004
1.0 0.084 0.020 0.022 0.019 0.013 0.008 0.031 0.016 0.012 0.010 0.007 0.006
1.2 0.070 0.039 0.025 0.022 0.015 0.011 0.024 0.019 0.014 0.011 0.008 0.006
1.4 0.055 0.042 0.025 0.023 0.015 0.013 0.017 0.016 0.013 0.009 0.008 0.005
1.6 0.039 0.046 0.029 0.021 0.016 0.010 0.011 0.013 0.010 0.008 0.005 0.004
1.8 0.035 0.044 0.029 0.021 0.014 0.011 0.006 0.008 0.008 0.006 0.006 0.004
2.0 0.027 0.036 0.028 0.021 0.014 0.009 0.006 0.008 0.006 0.004 0.006 0.004
5.0 0.005 0.000 0.002 0.002 0.000 0.003 �0.001 0.001 0.000 0.000 �0.001 0.001

wi � 3 wi � 5

0.2 �0.055 �0.045 �0.028 �0.024 �0.018 �0.013 �0.035 �0.023 �0.014 �0.012 �0.010 �0.006
0.4 �0.015 �0.003 �0.005 �0.004 �0.004 �0.002 0.001 0.002 0.002 0.001 0.001 0.000
0.6 0.014 0.004 0.005 0.004 0.004 0.002 0.013 0.006 0.004 0.003 0.003 0.002
0.8 0.023 0.009 0.007 0.008 0.006 0.003 0.008 0.005 0.004 0.004 0.003 0.003
1.0 0.014 0.012 0.008 0.008 0.004 0.004 0.005 0.005 0.004 0.003 0.002 0.001
1.2 0.008 0.009 0.008 0.006 0.004 0.003 0.003 0.004 0.003 0.003 0.002 0.000
1.4 0.005 0.006 0.005 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001
1.6 0.003 0.005 0.005 0.004 0.002 0.002 �0.001 �0.001 0.000 0.000 0.001 0.000
1.8 0.003 0.003 0.004 0.003 0.001 0.002 0.002 0.001 0.001 0.000 0.001 0.001
2.0 0.001 0.002 0.002 0.002 0.002 0.000 0.000 �0.001 0.000 0.000 0.000 0.001
5.0 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Note: For each �i, simulations are based on 10,000 samples of the specified size. Standard errors for all entries are between 0.0007 and 0.0085;
their estimates are based on 10 simulation runs.

Table 3 show monotonic behavior, the other ones do not. This is due to the nature of approximation
(2.12), which does not uniformly underestimate or overestimate the true factor (wi, ai � 1, bi) withc�i

respect to all its variables, but rather tries to capture the overall pattern.
Next, we use the same simulation study to estimate finite-sample relative efficiencies (for definition

see Section 1.1). In Table 4 we present REs of estimator Ti (with (wi, ai � 1, bi) given by (2.12))c�i

with respect to for the number of observation periods �i ranging from 2 to 10. We notice that, forX̄i

a fixed sample size �i and varying bi and wi, REs of estimator Ti follow similar patterns as in the
asymptotic case �i � �, that is, they increase as bi and wi become larger. Also, for fixed bi and wi,
REs approach corresponding AREs from above, which means that in small samples robust estimators
Ti perform even better than asymptotically with respect to the efficiency criterion.

Further, we need to evaluate the finite-sample upper breakdown point BP�. These BPs will tell us
how much protection a particular estimator Ti can provide. We start by recalling that estimator Ti is
very similar to the estimator of Künsch (1992, equation (2.7)). Therefore, an equivalent result (with
necessary modifications) to Künsch’s Lemma 3.2 holds. Specifically we have

c�i� �1BP � � max m (integer): m � � , (2.13)� �T i ii c � b0�m��i � ii

where is given by (2.12). Note that m satisfying (2.13) represents the number of outliers in a samplec�i

of size �i that estimator Ti can tolerate without breaking down. In Table 5 we provide numerical values
of finite-sample BP�, given by (2.13), for various choices of model parameters.

Finally, having all this information about finite-sample REs and BPs, we need to know how to select
an estimator for a particular risk in the portfolio with specified parameters. The strategy is simple.
First, an expert opinion has to be obtained regarding a portfolio’s exposure to extremes (i.e., the
probability that any of the risks can produce an outlier claim). Second, we look for estimators that
provide that much protection against extremes (i.e., those that have sufficiently high BP�). Third,
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Table 4
Values of Finite-Sample (Estimated) RE, for ai � 1 and Selected �i, wi� � 0, and bi � 0

bi

�i

2 3 4 5 6 7 8 9 10

�i

2 3 4 5 6 7 8 9 10

wi � 1 wi � 2

0.2 0.74 0.62 0.59 0.55 0.52 0.51 0.50 0.49 0.48 0.74 0.64 0.62 0.61 0.59 0.58 0.57 0.57 0.56
0.4 0.77 0.71 0.67 0.65 0.63 0.62 0.61 0.61 0.60 0.80 0.78 0.74 0.74 0.73 0.72 0.72 0.71 0.71
0.6 0.79 0.75 0.72 0.71 0.70 0.69 0.69 0.68 0.68 0.86 0.84 0.82 0.81 0.81 0.81 0.80 0.80 0.80
0.8 0.81 0.79 0.78 0.76 0.76 0.75 0.75 0.74 0.74 0.91 0.88 0.87 0.87 0.86 0.86 0.86 0.86 0.86
1.0 0.84 0.82 0.80 0.80 0.80 0.80 0.79 0.79 0.79 0.94 0.91 0.91 0.90 0.90 0.90 0.89 0.89 0.89
1.2 0.87 0.84 0.83 0.83 0.83 0.83 0.82 0.82 0.82 0.96 0.94 0.93 0.93 0.93 0.93 0.92 0.92 0.92
1.4 0.90 0.87 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.97 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95
1.6 0.92 0.89 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96
1.8 0.93 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97
2.0 0.95 0.93 0.92 0.92 0.92 0.91 0.92 0.91 0.91 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98
5.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

wi � 3 wi � 5

0.2 0.75 0.68 0.67 0.65 0.64 0.63 0.63 0.62 0.62 0.78 0.74 0.73 0.72 0.71 0.71 0.71 0.70 0.70
0.4 0.84 0.83 0.80 0.80 0.79 0.78 0.78 0.77 0.77 0.89 0.88 0.87 0.86 0.86 0.85 0.85 0.85 0.85
0.6 0.90 0.88 0.88 0.87 0.87 0.86 0.86 0.86 0.86 0.95 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92
0.8 0.95 0.93 0.92 0.92 0.91 0.91 0.91 0.91 0.91 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96
1.0 0.97 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98
1.2 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
1.4 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.6 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.8 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: For each �i, simulations are based on 10,000 samples of the specified size. Standard errors for all entries are between 0.0001 and
0.0125; their estimates are based on 10 simulation runs.

Table 5
Values of Finite-Sample , for ai � 1 and Selected �i,wi� � 0, and bi � 0�BPTi

bi

�i

2 3 4 5 6 7 8 9 10

�i

2 3 4 5 6 7 8 9 10

wi � 1 wi � 2

0.2 1/2 2/3 3/4 3/5 4/6 5/7 5/8 6/9 7/10 1/2 2/3 3/4 3/5 4/6 5/7 6/8 7/9 7/10
0.4 1/2 1/3 2/4 3/5 3/6 4/7 5/8 5/9 6/10 1/2 2/3 2/4 3/5 4/6 4/7 5/8 6/9 6/10
0.6 1/2 1/3 2/4 2/5 3/6 3/7 4/8 5/9 5/10 1/2 1/3 2/4 2/5 3/6 4/7 4/8 5/9 5/10
0.8 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 5/10 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 5/10
1.0 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10
1.2 0 1/3 1/4 2/5 2/6 2/7 3/8 3/9 4/10 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10
1.4 0 1/3 1/4 1/5 2/6 2/7 3/8 3/9 3/10 0 1/3 1/4 2/5 2/6 2/7 3/8 3/9 4/10
1.6 0 1/3 1/4 1/5 2/6 2/7 2/8 3/9 3/10 0 1/3 1/4 1/5 2/6 2/7 3/8 3/9 3/10
1.8 0 1/3 1/4 1/5 2/6 2/7 2/8 3/9 3/10 0 1/3 1/4 1/5 2/6 2/7 2/8 3/9 3/10
2.0 0 0 1/4 1/5 1/6 2/7 2/8 2/9 3/10 0 0 1/4 1/5 1/6 2/7 2/8 2/9 3/10
5.0 0 0 0 0 0 1/7 1/8 1/9 1/10 0 0 0 0 0 1/7 1/8 1/9 1/10

wi � 3 wi � 5

0.2 1/2 2/3 3/4 4/5 4/6 5/7 6/8 7/9 7/10 1/2 2/3 3/4 4/5 4/6 5/7 6/8 7/9 8/10
0.4 1/2 2/3 2/4 3/5 4/6 4/7 5/8 6/9 6/10 1/2 2/3 2/4 3/5 4/6 4/7 5/8 6/9 7/10
0.6 1/2 1/3 2/4 3/5 3/6 4/7 4/8 5/9 6/10 1/2 1/3 2/4 3/5 3/6 4/7 4/8 5/9 6/10
0.8 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 5/10 1/2 1/3 2/4 2/5 3/6 3/7 4/8 4/9 5/10
1.0 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10
1.2 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10 0 1/3 1/4 2/5 2/6 3/7 3/8 4/9 4/10
1.4 0 1/3 1/4 2/5 2/6 2/7 3/8 3/9 4/10 0 1/3 1/4 2/5 2/6 2/7 3/8 3/9 4/10
1.6 0 1/3 1/4 1/5 2/6 2/7 3/8 3/9 3/10 0 1/3 1/4 1/5 2/6 2/7 3/8 3/9 3/10
1.8 0 1/3 1/4 1/5 2/6 2/7 2/8 3/9 3/10 0 1/3 1/4 1/5 2/6 2/7 2/8 3/9 3/10
2.0 0 0 1/4 1/5 1/6 2/7 2/8 2/9 3/10 0 1/3 1/4 1/5 2/6 2/7 2/8 3/9 3/10
5.0 0 0 0 0 1/6 1/7 1/8 1/9 1/10 0 0 0 0 1/6 1/7 1/8 1/9 1/10
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among these sufficiently robust estimators, we choose the one with the highest efficiency. To get a
better picture of how this strategy works, let us take a look at a specific example.

EXAMPLE 1 Selection of an Appropriate Robust Estimator

Suppose we have a portfolio of risks with claims following GAMMA(wi, �i/wi) distribution, where
parameter  � 1. Our objective is to estimate the credibility premium for a risk i that has volumes
wi � 1 and has been observed for five years. (This implies that wi � 1 and �i � 5.) An expert evaluates
that portfolio’s exposure to extremes is 0.10. How many claims of this risk during the five years of
experience can (potentially) be outliers? Although this question cannot be answered with 100% cer-
tainty, we can answer it statistically by employing a binomial model and by setting a very high standard
for error. That is, we have five trials with the probability of success 0.10; therefore, as follows from the
binomial model with parameters 5 and 0.10, the probability that there are at most two outliers is
0.991. (The chances that protection against two outliers in a sample of five observations will not be
sufficient are only 0.009.) From Tables 5 and 4, we see that estimators Ti with bi � 1.2 possess BP� �
2/5 and that the most efficient among these is Ti with bi � 1.2, which has RE � 0.83. Hence, our
choice is estimator Ti with bi � 1.2. �

3. PRACTICAL ISSUES AND EXAMPLES

In this section we first fill in the necessary details for the standard and robust credibility models to be
applied in practice, that is, we present estimators of the structural parameters. Then we introduce a
contamination model that will allow us to generate claims that are approximately gamma-distributed.
Finally, we study practical performance of our methods under several data-generating scenarios.

3.1 Estimation of Structural Parameters
To apply the credibility models of Sections 1.2 and 2.1 in practice, one needs to estimate the structural
parameters. In the standard credibility model, the following (nonparametric) estimators of 	, v, and
�2 are typically used:

I ¯� 
 Xˆi�1 i i	 � , (3.1)ˆ I� 
̂i�1 i

I � 2 I � 2i i¯ ¯� � w (X � X ) � w � (X � X )i�1 t�1 it it i i�1 i t�1 it iv � � , (3.2)ˆ I I� (� � 1) � (� � 1)i�1 i i�1 i

Iw••2 2¯ ¯� � w (X � X) � v(I � 1)�ˆ ˆ� �i• i2 I 2w � � w i�1•• i�1 i•

II� � wi�1 i i 2¯ ¯� � w (X � X) � v(I � 1) , (3.3)� ˆ� �i i iI 2 I 2(� � w ) � � (� w ) i�1i�1 i i i�1 i i

where � (1 � /(wi• ))�1 � (1 � /(�iwi ))�1, � wi• � wi Xit, wi• �2 2 �1 I �1 I �i¯ ¯
 v � v � X w � X w � �ˆ ˆ ˆ ˆ ˆi •• i�1 i •• i�1 t�1

wit � �iwi, w•• � wit � �iwi. Due to the subtraction in (3.3), it is possible that� I � I 2i i� � � � �̂t�1 i�1 t�1 i�1

could be negative. In such a case, it is customary to set � 0, which also implies � 0. (If �2� 
 
ˆ ˆ ˆi i

� � � � � 0, then � I�1 ) For derivation of formulas (3.1)–(3.3) and further discussion, seeI ¯
 	 � X .ˆ ˆI i�1 i

Klugman, Panjer, and Willmot (2004, Section 16.5) and Goulet (1998).
To derive estimators for the robust structural parameters, we first have to understand how the pro-

cedure Ti defines the ordinary claim Tit. This is transparent from the definition of function � and its
decomposition in terms of �1 and �2 (see Section 2.3.1); the ordinary claim is

(1) (2)T � T 1{�b � c � a } � T 1{c � a }, (3.4)it it i � i it � ii i
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where � Xit, for 0 � Xit � Ti( � bi), and � Ti( � bi), for Xit � Ti( � bi); and �(1) (1) (2)T c T c c Tit � it � � iti i i

Ti( � ai), for 0 � Xit � Ti( � ai), � Xit, for Ti( � ai) � Xit � Ti( � bi), and � Ti( �(2) (2)c c T c c T c� � it � � it �i i i i i

bi), for Xit � Ti( � bi).c�i

REMARK 5 Important Special Cases

a. No lower trimming (ai � 1). For ai � 1 and finite bi � 0, we have � (0, 1). Consequently expressionc�i

(3.4) for the ordinary claim reduces to

X , 0 � X � T (c � b );(1) it it i � iiT � T � �it it T (c � b ), X � T (c � b ).i � i it i � ii i

b. Standard estimator (ai � 1, bi → �). In this case Tit is simply Xit for 0 � Xit � �. �X̄i

Next, to get additional clues, let us see what the robust structural parameters represent at the
assumed GAMMA model. Robust estimators Ti are designed to be unbiased in the following sense:
E(Ti��i) � E( ��i) � E(Xit��i) � 	(�i), which then impliesX̄i

2 2	 � E(T ) � E(E(T �� )) � E(	(� )) � 	 and � � Var(E(T �� )) � Var(	(� )) � � .robust i i i i robust i i i

These observations suggest that for estimation of parameters 	robust and we just have to mimic2�robust

formulas (3.1) and (3.3), replacing there with Ti and other quantities with their robust counterparts.X̄i

Further, for estimation of parameter vrobust additional care has to be taken because, at this moment,
it is not obvious how to estimate Var(Tit��i). Following the steps of Gisler and Reinhard (1993, Section
4.2) we first evaluate 	 (x; Ti) (x), where is the empirical distribution function. This (with2 ˆ ˆIF dF FT i ii

some necessary modifications relevant to our situation) yields
�iwi(i) (1) 2 (2) 2 (1) 2v � [(T � c T ) � 1{c � a }[(T � c T ) � (T � c T ) ]], (3.5)�ˆrobust it � i � i it � i it � ii i i i2C (� � 1) t�1i i

where Ci � � (( � bi)/�i) 1{Xit � Ti( � bi)} � 1{ � ai} � ai)/�i) 1{0 � Xit �� �i ic c � c c ((c �� � t�1 � � � t�1i i i i i

Ti( � ai)}. Then, for estimation of vrobust we take the weighted average � mi withI (i)c v � vˆ ˆ� robust i�1 robusti

the weights mi � (�i � 1)/ (�j � 1). Asymptotically, is an unbiased estimator of vrobust.2 I 2C � C v̂i j�1 j robust

Due to small-sample corrections of Ti, this estimator is approximately unbiased in small samples too.

REMARK 6 Important Special Cases

a. No lower trimming (ai � 1). For ai � 1 and finite bi � 0, we have � (0, 1). Thus, formula (3.5)c�i

becomes much simpler:

wi � (1) 2i� (T � c T )� t�1 it � ii iw � � 1i i(i) (1) 2v � (T � c T ) � .�ˆrobust it � i 2i2C (� � 1) t�1 c � bi i � ii �ic � � 1{X � T (c � b )}� � t�1 it i � ii i�i

b. Standard estimator (ai � 1, bi → �). In this case, → 1, Tit → Xit, Ti → and Ci → 1. Thus,¯ ¯X c X ,i � ii

we have → � (wi/(�i � 1)) (Xit � ��(i) (i) i 2¯v v X ) .�ˆ ˆrobust t�1 i

Furthermore, focusing only on large outliers, it seems natural to construct an estimator of 	extra

using the overshot of excess claims, Xit � However, at the assumed GAMMA model, we expect (on(1)T .it

average) these overshots to be equal to 0, which is not possible unless all � Xit (see Remark 5a).(1)Tit

Therefore, we have to evaluate and subtract the bias (from Xit � ):(1)Tit
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(1)E(X � T �� ) � E[1{X � T (c � b )}[X � T (c � b )]�� ]it it i it i � i it i � i ii i

for � largei

� E[1{X � � (c � b )}[X � � (c � b )]�� ]it i � i it i � i i

� � K (c � b ) � 0,i w  � ii

where (c� � bi) � with the assumption that wi � 1 is an
�w (c �b ) ki � ie [w (c � b )]i � iw �1 jiK � � ,w  j�0 k�0i w  k!i

integer. In view of this, we replace �i with Ti, c� with and define the (approximately unbiased)c�i

overshot of excess claims as � Xit � � Ti ( � bi).(1)T* T K cit it w  �i i

To summarize all this, we will use the following estimators of the robust structural parameters 	extra,
vrobust, 	robust, and (for the case of no lower trimming, i.e., ai � 1):2�robust

I �i
�1	 � w w T*,� �ˆextra •• i it

i�1 t�1

I ˆ� � Ti�1 i i	 � , (3.6)ˆrobust I ˆ� �i�1 i

I � 2i� w � (T � c T )i�1 i t�1 it � iiv � , (3.7)ˆrobust I 2� C (� � 1)i�1 i i

Iw••2 2¯� � w (T � T) � v (I � 1) , (3.8)�ˆ ˆ� �robust i• i robust2 I 2w � � w i�1•• i�1 i•

where � Xit � � Ti ( � bi) with ( � bi) � /wi [wi( � bi)]k/(1) �w (c w �1 ji � �b ) ii iT* T K c K c e � � cit it w  � w  � j�0 k�0 �i i i i i

k!, � (1 � /(wi• ))�1 � (1 � /(�iwi ))�1, Ci � � � bi/�i 1{Xit �2 2 �i�̂ v � v � c c �ˆ ˆ ˆ ˆi robust robust robust robust � � t�1i i

Ti( � bi)}, and � wi•Ti. Note that, as bi → �, we have → 0, → →�1 I¯c T w � 	 	 	, vˆ ˆ ˆ ˆ� •• i�1 extra robust robusti

→ Also note that could be estimated with � (I � 1)�1 (Ti � )2,2 2 2 2 I ˆv, � � . � � � � 	ˆ ˆ ˆ ˜ ˆrobust robust robust i�1 i robust

which is a robust version of the Bichsel-Straub estimator (see Goulet 1998, p. 36). The latter estimator,
however, is an iterative estimator (via the credibility factors ) and perhaps computationally intensive.�̂i

At this point we prefer to use an estimator of that is given by an explicit formula. Finally, when2�robust

applying the estimators (3.6)–(3.8) in practice, one should bear in mind that they will inherit the
robustness properties of the ‘‘weakest’’ (least robust) estimator among T1, . . . , TI.

3.2 Contamination Model
To study the performance of our methods via simulations, we need a model that would allow us to
generate claims (or loss ratios) from an approximate gamma distribution. This can be accomplished
by employing an ε-contamination model:

G � (1 � ε)F � εF , (3.9)F ε i cntm,ii,

where Fi is the assumed model, that is, GAMMA(wi, �i/wi), Fcntm,i is a ‘‘contaminating’’ distribution
(or a mixture of distributions) that generates outliers, and ε represents the probability that a sample
observation comes from the distribution Fcntm,i instead of Fi. For ε � 0, family generates exactGF ,εi

GAMMA data and, for ε � 0, it generates approximate (or ‘‘contaminated’’) GAMMA data.
For the contaminating distribution Fcntm,i in equation (3.9), we choose the uniform distribution on

interval (ai, bi), denoted U(ai, bi), with the probability density function given by fcntm,i(x) � 1/(bi � ai),
for ai � x � bi, and � 0, elsewhere. Parameters ai and bi are selected as follows:

a � 3E(X �� ) � 3� and b � 7E(X �� ) � 7� . (3.10)i it i i i it i i

There are countless possibilities to contaminate the central model in equation (3.9). The choice of
U(ai, bi) is simple and reflects what one would encounter in practice. For example, insurance portfolios
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typically generate claims, most of which are relatively small and a few are very large; hence, the chosen
uniform distribution ensures that a small fraction of large claims consistently appear in generated data
sets of our study. However, data from the U(ai, bi) distribution are not necessarily just the largest
observations in a sample, they blend in with the genuine GAMMA observations, which makes it impos-
sible to (consistently) distinguish outliers from the representative data. The rationale for choosing ai

and bi according to (3.9) is the following: Parameter ai represents a threshold that can be exceeded
by the assumed GAMMA(wi, �i/wi) variable with the probability 0.0498 (for wi � 1), 0.0062 (for
wi � 3), 0.0009 (for wi � 5); and parameter bi ensures that the expected value of Fcntm,i is 5 times
E(Xit��i), which is a reasonable factor. This explains why U(ai, bi) data are quite likely to appear as
generated by GAMMA(wi, �i/wi).

3.3 Numerical Illustrations
In this section we illustrate how the proposed new methods work in practice and how they compare
with the existing methodology of Gisler and Reinhard (1993). For a fixed individual risk, an estimate
of the credibility premium is used for estimation of the true underlying premium. Then, having esti-
mates of the true premium for each risk in the portfolio, we evaluate the performance of the method
used to estimate the credibility premium by measuring the mean squared error (MSE) of estimates for
the entire portfolio. Such performance studies are done under several data-generating scenarios and
by employing expert judgment. In this context, the so-called experts are intended to symbolize the
level of the actuary’s prior knowledge and/or skill. Thus, our overall goal is to identify the best per-
forming procedure/expert under several scenarios. (Here ‘‘best’’ means ‘‘best in the long run, on av-
erage.’’) Below are the specific settings of the study.

• Portfolio Structure
We generate a portfolio of I � 45 risks. It contains 15 risks with the observation period of �1 �
� � � � �15 � 2 years of experience, 15 risks with �16 � � � � � �30 � 5 years of experience, and 15
risks with �31 � � � � � �45 � 10 years of experience. In each group of 15 risks, there are five risks
with volumes � � � � � � 1 (small volumes), five risks with volumes � � � � � � 3w w w wi i i i1 5 6 10

(medium volumes), and five risks with volumes � � � � � � 5 (large volumes), where 1 �w wi i11 15

i1 � i2 � � � � � i15 � 45.
• Underlying Scenarios

The hidden risk parameters �1, . . . , �45 are a random sample generated by GAMMA(5, 1/2) distri-
bution. The loss ratios Xit, given �i, are generated according to the ε-contamination model (3.9) with
 � 1 and three levels of contamination: ε � 0 (Scenario 1), ε � 0.05 (Scenario 2), and ε � 0.10
(Scenario 3).

• Experts
We introduce three experts in the study: E1 (‘‘careless’’), E2 (‘‘careful’’), and E3 (‘‘oracle’’). The
first expert is a gambler who always believes that a portfolio has no exposure to extremes, that is,
ε � 0, and therefore always recommends summarizing risk’s individual experience with the standard
estimator (equivalently, Ti with ai � 1 and bi → �). The second expert is a cautious conservativeX̄i

whose philosophy is ‘‘better be safe than sorry.’’ He or she always recommends using the most robust
estimator available in a particular situation; if there are several such estimators, then he or she
chooses the most efficient among those. For example, for a risk with volumes wi � 3 (i.e., wi � 3)
and �i � 2 years of experience, this expert would recommend estimator Ti with ai � 1 and bi �
0.8. The third expert has a ‘‘special talent’’ that allows him or her to figure out the true value of ε
with 100% accuracy. Having such information, he or she then follows the strategy described in Ex-
ample 1 to select an appropriate estimator. For instance, for a risk with volumes wi � 5 (i.e., wi �
5) and �i � 10 years of experience, this expert would recommend estimator Ti with ai � 1 and bi →
� (for Scenario 1), bi � 2.0 (for Scenario 2), and bi � 1.4 (for Scenario 3). (In all these cases, the
probability that protection against the recommended number of outliers is insufficient is � .01.)
Table 6 presents values of bi recommended by the three experts for the described portfolio structure
and underlying scenarios.
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Table 6
Values of bi Recommended by Experts E1, E2, E3 for Various Portfolio Structures

and Underlying Scenarios

�i wi

Scenario 1

E1 E2 E3

Scenario 2

E1 E2 E3

Scenario 3

E1 E2 E3

2 1 � 0.8 � � 0.8 0.8 � 0.8 0.8
3 � 0.8 � � 0.8 0.8 � 0.8 0.8
5 � 0.8 � � 0.8 0.8 � 0.8 0.8

5 1 � 0.4 � � 0.4 1.2 � 0.4 1.2
3 � 0.2 � � 0.2 1.4 � 0.2 1.4
5 � 0.2 � � 0.2 1.4 � 0.2 1.4

10 1 � 0.2 � � 0.2 2.0 � 0.2 1.2
3 � 0.2 � � 0.2 2.0 � 0.2 1.4
5 � 0.2 � � 0.2 2.0 � 0.2 1.4

Table 7
Quantities of Interest in the Estimation Process, Based on Recommendations of Experts E1, E2, E3,

E4, under Scenario 2

Expert Structural Parameters Credibility Weights MSE

E1 � 2.966	̂ � 0	̂extra � 0.04
̂1 � 0.12
̂6 � 0.18
̂11 1.300
� 27.409v̂ � 0.10
̂16 � 0.25
̂21 � 0.35
̂26

� 0.5992�̂ � 0.18
̂31 � 0.40
̂36 � 0.52
̂41

E2 � 2.483	̂robust � 0.415	̂extra � 0.24�̂1 � 0.49�̂6 � 0.61�̂11 0.705
� 10.794v̂ robust � 0.44�̂16 � 0.70�̂21 � 0.80�̂26

� 1.6982�̂robust � 0.61�̂31 � 0.83�̂36 � 0.89�̂41

E3 � 2.792	̂robust � 0.146	̂extra � 0.09�̂1 � 0.23�̂6 � 0.34�̂11 0.982
� 17.228v̂ robust � 0.20�̂16 � 0.43�̂21 � 0.56�̂26

� 0.8802�̂robust � 0.34�̂31 � 0.60�̂36 � 0.72�̂41

E4 � 2.562	̂robust � 0.380	̂extra � 0.17
̂1 � 0.37
̂6 � 0.50
̂11 0.760
� 11.733v̂ robust � 0.33
̂16 � 0.60
̂21 � 0.71
̂26

� 1.1632�̂robust � 0.50
̂31 � 0.75
̂36 � 0.83
̂41

a Expert E4 estimators are robust, but their formulas are different from those of E2 and E3.

Of course, one does not have to rely on the choice of estimators presented in the previous sections
and could pursue further refinements of bi, which would slightly modify the recommendations of
experts E2 and E3. For illustrative purposes, however, this level of accuracy should be sufficient. Also,
to compare our procedures/experts with the approach of Gisler and Reinhard (1993), we will include
their approach as expert E4.

To get a feel for how things work, we generate a portfolio of 45 risks according to the above described
specifications. In Table 7 we provide estimates of structural parameters, credibility weights, and MSEs
based on recommendations of experts E1, E2, E3, E4, under Scenario 2. Complete information on the
estimation process is available in Appendix, Table 10. There we present the generated portfolio (loss
ratios), true underlying premiums (true 	(�i)), and estimates of individual experience (estimate Ti) and
credibility premiums (estimate )) for each risk i, based on recommendations of experts E1, E2, E3,	(�˜ i

E4, under Scenario 2. The interested reader can easily replicate our computations.

DISCUSSION OF TABLE 7

Scenario 2 represents a 5% contamination of the portfolio; therefore it is not surprising that the robust
experts E2, E3, and E4 perform significantly better than the nonrobust E1. For instance, MSE of E1 is
84%, 71%, and 32% larger than that of E2, E4, and E3, respectively. Further, notice that the total
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Table 8
Performance of Experts E1(E3), E2, E4, under Scenario 1

Event No.

Expert with Rank

‘‘1’’ ‘‘2’’ ‘‘3’’
Relative Frequency (Average MSE

Increase Relative to ‘‘1’’)

1 E1(E3) E2 E4 0.10 (0, 0.149, 0.219)
2 E1(E3) E4 E2 0.57 (0, 0.070, 0.347)
3 E2 E1(E3) E4 0.05 (0, 0.032, 0.184)
4 E2 E4 E1(E3) 0.02 (0, 0.063, 0.082)
5 E4 E1(E3) E2 0.23 (0, 0.046, 0.279)
6 E4 E2 E1(E3) 0.03 (0, 0.195, 0.244)

estimated premium is very similar for all experts: 2.966 � 0 � 2.966 (E1), 2.483 � 0.415 � 2.898
(E2), 2.792 � 0.146 � 2.938 (E3), 2.562 � 0.380 � 2.942 (E4). Thus, the main reason for the
differences in the accuracy of estimation lies in the estimation procedure of the structural parameters
v and �2, mostly v. While the robust estimators of v remain stable in the presence of outliers, the
nonrobust estimator of v (i.e., for E1) gets inflated, distorts estimates of the credibility weights, and,
consequently, the whole procedure performs poorly (i.e., has high MSE). Among the robust estimators,
we notice that the most robust E2 gives more credibility to individual experience (i.e., has the largest
estimates of credibility weights) and yields a higher extraordinary premium than the other two robust
estimators. �

To see that this was not an accidental ‘‘success story’’ of robust procedures and to establish a pattern
showing that some method/expert performs better than others in the long run, we generate 100 port-
folios according to the above described specifications and evaluate MSEs of experts E1, E2, E3, E4
under all three scenarios.

Let us start with Scenario 1. Under this scenario, experts E1 and E3 give identical recommendations,
thus we have only three different experts, E1(E3), E2, E4. For a fixed portfolio, when we rank expert
performances according to MSE, we can observe only 3! � 6 different orderings (we shall call them
‘‘events’’) of experts E1(E3), E2, E4. For example, the first event occurs when E1(E3) has the smallest
MSE (rank ‘‘1’’), E2 has the second smallest MSE (rank ‘‘2’’), and E4 has the largest MSE (rank ‘‘3’’)
among the three experts. Thus, for each of 100 generated portfolios, we record which event occurred
and what was the MSE increase of experts with the ranks ‘‘2’’ and ‘‘3’’ compared to that of expert
ranked ‘‘1.’’ In Table 8 we summarize the study by reporting the relative frequency of each event (with
the corresponding average MSE increase in parentheses), for estimation of true premium.

DISCUSSION OF TABLE 8

As theory predicts, under Scenario 1, expert E1(E3) is optimal, which implies that most of the time
(not necessarily always) this expert should have the smallest MSE. Our simulation study supports this
fact. Indeed, E1(E3) gets rank ‘‘1’’ 67% of the time, whereas respective percentages for the other two
experts are 7% (for E2) and 26% (for E4). One can also make pairwise comparisons. For example,
E1(E3) ‘‘beats’’ E2 90% of the time (with the average MSE increase of E2 ranging from 0.149 to 0.347)
and E4 72% of the time (with the average MSE increase of E4 ranging from 0.070 to 0.219). �

Next, for the other two scenarios the simulation study is summarized in a similar fashion, except
that now we have four different experts, and thus we can observe 4! � 24 different orderings/events.
The summary is presented in Table 9.

DISCUSSION OF TABLE 9

Under contamination of Scenario 2, expert E1 is not a top performer anymore, yielding the leader’s
position to the most robust E2. Indeed, E1 is ranked ‘‘1’’ only 14% of the time, whereas E2 43%, E3
22%, and E4 21%. We also arrive at similar conclusions by making pairwise comparisons: that is, we
observe the following scores of ‘‘winning’’ proportions between the experts: 64�36 (E2 vs. E1), 54�46
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Table 9
Performance of Experts E1, E2, E3, E4, under Scenarios 2 and 3

Event No.

Expert with Rank

‘‘1’’ ‘‘2’’ ‘‘3’’ ‘‘4’’

Scenario 2
Relative Frequency

(Average MSE Increase Relative to ‘‘1’’)

Scenario 3
Relative Frequency

(Average MSE Increase Relative to ‘‘1’’)

1 E1 E2 E3 E4 0.02 (0, 0.010, 0.046, 0.567) 0.04 (0, 0.110, 0.122, 0.398)
2 E1 E2 E4 E3 0 (0,0,0,0) 0 (0,0,0,0)
3 E1 E3 E2 E4 0.06 (0, 0.042, 0.137, 0.635) 0.05 (0, 0.093, 0.150, 0.523)
4 E1 E3 E4 E2 0.03 (0, 0.267, 0.349, 0.504) 0.05 (0, 0.072, 0.148, 0.272)
5 E1 E4 E2 E3 0 (0,0,0,0) 0 (0,0,0,0)
6 E1 E4 E3 E2 0.03 (0, 0.033, 0.092, 0.255) 0.02 (0, 0.081, 0.176, 0.589)
7 E2 E1 E3 E4 0.03 (0, 0.122, 0.156, 0.195) 0.15 (0,0.105, 0.147, 0.583)
8 E2 E1 E4 E3 0.02 (0, 0.156, 0.184, 0.223) 0.03 (0, 0.048, 0.078, 0.109)
9 E2 E3 E1 E4 0.14 (0, 0.157, 0.218, 0.733) 0.19 (0, 0.121, 0.186, 0.481)

10 E2 E3 E4 E1 0.04 (0, 0.080, 0.136, 0.240) 0.06 (0, 0.113, 0.181, 0.245)
11 E2 E4 E1 E3 0.04 (0, 0.187, 0.231, 0.349) 0.04 (0, 0.060, 0.139, 0.168)
12 E2 E4 E3 E1 0.16 (0, 0.128, 0.269, 0.359) 0.10 (0, 0.184, 0.296, 0.396)
13 E3 E1 E2 E4 0.08 (0, 0.055, 0.124, 0.425) 0.05 (0, 0.077, 0.100, 0.426)
14 E3 E1 E4 E2 0.02 (0, 0.075, 0.172, 0.341) 0.01 (0, 0.040, 0.174, 0.287)
15 E3 E2 E1 E4 0.07 (0, 0.059, 0.107, 0.639) 0.07 (0, 0.050, 0.094, 0.820)
16 E3 E2 E4 E1 0 (0,0,0,0) 0.01 (0, 0.054, 0.140, 0.181)
17 E3 E4 E1 E2 0.03 (0, 0.083, 0.104, 0.306) 0 (0,0,0,0)
18 E3 E4 E2 E1 0.02 (0, 0.051, 0.062, 0.291) 0.01 (0, 0.027, 0.040, 0.045)
19 E4 E1 E2 E3 0 (0,0,0,0) 0 (0,0,0,0)
20 E4 E1 E3 E2 0.04 (0, 0.093, 0.110, 0.347) 0 (0,0,0,0)
21 E4 E2 E1 E3 0.03 (0, 0.036, 0.365, 0.446) 0.01 (0, 0.033, 0.047, 0.092)
22 E4 E2 E3 E1 0.06 (0, 0.057, 0.148, 0.196) 0.04 (0, 0.129, 0.239, 0.262)
23 E4 E3 E1 E2 0.05 (0, 0.061, 0.128, 0.279) 0.03 (0, 0.065, 0.154, 0.177)
24 E4 E3 E2 E1 0.03 (0, 0.065, 0.092, 0.118) 0.04 (0, 0.021, 0.064, 0.095)

(E2 vs. E3), 66�34 (E2 vs. E4), 70�30 (E3 vs. E1), 55�45 (E3 vs. E4), 50�50 (E4 vs. E1). Finally, higher
level of contamination under Scenario 3 just reinforces the conclusions and highlights the patterns
that we found under Scenario 2, that is, expert E2 is even more dominant. The following percentages
of rank ‘‘1’’ were observed: E1 16%, E2 57%, E3 15%, E4 22%. The scores based on pairwise comparisons
are: 75�25 (E2 vs. E1), 66�34 (E2 vs. E3), 79�21 (E2 vs. E4), 61�39 (E3 vs. E1), 69�31 (E3 vs. E4),
34�66 (E4 vs. E1). �

Taking all the scenarios together, it may seem a bit surprising that the ‘‘best’’ expert under a par-
ticular scenario does not ‘‘beat’’ each competitor as frequently as one would hope. For example, the
proportion of E1 outperforming E4 is 72�28 (under Scenario 1) and that of E2 outperforming E1 is
64�36 (under Scenario 2) and 75�25 (under Scenario 3). To verify these numbers analytically is hope-
less, so we have to rely on simulations. One explanation suggesting that the simulation study is correct
is that although performed for substantially different scenarios, all these proportions seem to be in the
same range, that is, the ‘‘winner’’ is right about twice as often. Another explanation for seemingly low-
winning proportions is that the size of each portfolio is fairly small (I � 45 risks).

4. DISCUSSION

In this article, we fully developed a class of robust-efficient estimators for the credibility premium when
claims (loss ratios) are approximately gamma-distributed. Large- and small-sample properties of these
estimators were studied and then used to select a modeling strategy for insurance portfolio. Practical
performance of such procedures was illustrated under several simulated scenarios and by employing
expert judgment. We found that although the expert’s opinion is important, it is not crucial, as long
as the expert is first safety oriented and recommends conservatively: that is, except for the ‘‘clean’’
data scenario (which in reality is possible but not very likely), one will have the most accurate estimates
of true premiums for the whole portfolio by choosing the most efficient method among the most robust
available for estimation of the individual experience of each risk in the portfolio.
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A natural next step in this line of research would be to develop similar robust procedures for other
distributions or, more ambitiously, for any arbitrary distribution F. Some ideas for the general case are
already available in Künsch (1992) and Gisler and Reinhard (1993). However, it seems to us that, to
have as comprehensive and systematic a study of robust credibility models as the one presented here,
one needs to commit to a specific distribution (like we did to the gamma) because all the quantitative
performance measures depend on F (see Table 2). Therefore, we conjecture that further extensions of
the ideas presented in this article will be approached on a case-by-case basis.

APPENDIX

Table 10
Loss Ratios, True Premiums �(�i), and Estimates Based on Recommendations of Experts E1, E2, E3,

E4, under Scenario 2

Risk
i Loss Ratios

Estimate Ti

E1 E2 E3 E4

Estimate 	(� )˜ i

E1 E2 E3 E4
True
	(�i)

1 1.26, 0.44 0.85 0.95 0.95 0.85 2.88 2.53 2.77 2.66 2.61
2 3.57, 3.60 3.58 3.98 3.98 3.58 2.99 3.26 3.05 3.11 3.57
3 0.24, 0.82 0.53 0.59 0.59 0.53 2.86 2.44 2.73 2.61 2.56
4 0.38, 0.89 0.64 0.71 0.71 0.64 2.87 2.47 2.74 2.62 1.96
5 4.99, 0.45 2.72 3.02 3.02 2.72 2.96 3.03 2.96 2.97 4.26
6 4.57, 0.88 2.73 2.79 2.79 2.73 2.94 3.05 2.94 3.00 1.79
7 1.41, 1.91 1.66 1.70 1.70 1.66 2.81 2.52 2.68 2.61 4.84
8 1.69, 0.90 1.30 1.33 1.33 1.30 2.77 2.34 2.60 2.47 3.48
9 0.43, 0.49 0.46 0.47 0.47 0.46 2.68 1.92 2.39 2.16 2.75

10 4.26, 2.78 3.52 3.61 3.61 3.52 3.03 3.44 3.13 3.30 4.89
11 2.12, 0.89 1.51 1.52 1.52 1.51 2.70 2.31 2.51 2.42 1.59
12 3.99, 6.63 5.31 5.36 5.36 5.31 3.39 4.65 3.80 4.31 5.25
13 1.14, 0.55 0.84 0.85 0.85 0.84 2.58 1.90 2.28 2.09 1.49
14 1.34, 7.79 4.56 4.60 4.60 4.56 3.25 4.19 3.55 3.94 4.52
15 2.67, 2.66 2.66 2.69 2.69 2.66 2.91 3.02 2.90 2.99 4.40
16 0.93, 0.52, 0.01, 0.51, 0.24 0.44 0.52 0.49 0.44 2.72 2.03 2.47 2.24 0.77
17 1.54, 2.06, 5.92, 6.18, 0.39 3.22 2.93 3.58 3.22 2.99 3.10 3.10 3.16 2.36
18 4.21, 0.78, 0.27, 7.40, 0.71 2.67 1.30 2.49 2.63 2.94 2.37 2.88 2.97 2.81
19 2.61, 0.92, 2.01, 0.02, 0.29 1.17 0.91 1.30 1.17 2.79 2.20 2.63 2.48 1.63
20 0.84, 0.64, 0.11, 0.30, 1.03 0.58 0.76 0.65 0.58 2.73 2.14 2.50 2.29 1.50
21 0.53, 0.47, 0.77, 0.66, 0.91 0.67 0.80 1.67 0.67 2.40 1.72 2.02 1.81 1.04
22 1.58, 1.25, 1.74, 1.17, 2.24 1.59 1.90 1.61 1.59 2.63 2.49 2.42 2.36 2.50
23 1.25, 8.39, 1.44, 1.44, 1.48 2.80 1.86 2.19 1.87 2.93 2.46 2.68 2.53 2.04
24 5.53, 9.36, 8.39, 8.15, 6.53 7.59 9.43 7.66 7.59 4.11 7.78 5.05 5.95 6.87
25 1.77, 1.11, 0.61, 0.94, 1.75 1.24 1.32 1.25 1.24 2.54 2.08 2.27 2.15 1.51
26 2.74, 2.80, 1.32, 2.42, 2.84 2.42 2.77 2.43 2.42 2.77 3.13 2.73 2.84 3.19
27 2.38, 1.26, 0.97, 2.87, 2.22 1.94 1.94 1.94 1.94 2.60 2.47 2.46 2.50 2.80
28 0.79, 1.13, 2.48, 0.89, 6.96 2.45 1.26 2.04 1.64 2.78 1.93 2.52 2.29 1.30
29 3.74, 2.32, 1.99, 1.01, 5.24 2.86 2.40 2.86 2.81 2.93 2.83 2.98 3.12 3.35
30 4.87, 6.76, 2.53, 6.08, 3.13 4.67 4.74 4.68 4.67 3.57 4.70 4.00 4.45 4.98
31 2.24, 2.10, 0.16, 1.86, 3.45, 2.53, 1.82, 2.44, 1.18, 0.42 1.82 2.97 1.91 1.82 2.76 3.20 2.64 2.57 2.27
32 4.09, 0.92, 1.80, 0.28, 6.54, 0.22, 0.34, 2.22, 1.05, 3.26 2.07 1.58 2.16 1.95 2.81 2.35 2.72 2.64 1.76
33 2.83, 4.45, 2.58, 2.39, 0.12, 0.29, 2.30, 0.33, 2.73, 2.56 2.06 2.75 2.16 2.06 2.80 3.06 2.72 2.69 2.08
34 14.97, 3.96, 0.57, 5.72, 14.39, 1.61, 10.03, 0.71, 0.04, 1.28 5.33 2.36 5.59 5.27 3.39 2.82 3.88 4.29 2.81
35 0.08, 0.17, 0.58, 3.81, 4.53, 2.54, 2.31, 1.10, 4.61, 0.62 2.04 1.42 2.14 2.04 2.80 2.25 2.72 2.68 3.23
36 4.54, 1.56, 1.76, 1.37, 0.75, 7.61, 1.65, 3.68, 1.84, 0.86 2.56 2.01 2.57 2.24 2.81 2.51 2.80 2.70 2.52
37 8.27, 1.00, 1.05, 1.77, 1.01, 1.68, 1.76, 1.69, 2.01, 6.85 2.71 2.05 2.70 2.00 2.86 2.54 2.88 2.52 1.50
38 4.67, 2.60, 1.37, 8.29, 3.60, 0.94, 1.84, 2.99, 0.96, 1.45 2.87 2.25 2.88 2.55 2.93 2.71 2.99 2.93 3.08
39 1.93, 2.52, 1.35, 3.62, 0.86, 0.97, 9.10, 0.81, 1.75, 2.41 2.53 1.97 2.32 2.03 2.79 2.48 2.66 2.54 2.36
40 2.88, 0.93, 1.30, 1.93, 3.14, 2.59, 0.88, 1.40, 8.23, 2.05 2.53 2.18 2.45 2.14 2.79 2.65 2.73 2.62 2.88
41 1.70, 2.22, 2.61, 1.79, 4.01, 0.66, 3.73, 3.43, 1.11, 1.31 2.26 2.00 2.26 2.26 2.60 2.47 2.55 2.69 3.36
42 5.12, 1.66, 7.69, 1.29, 1.20, 23.32, 0.98, 4.09, 3.22, 2.00 5.06 2.17 3.89 3.03 4.06 2.62 3.73 3.33 4.12
43 3.26, 2.13, 1.98, 0.84, 5.99, 6.09, 2.97, 2.67, 2.42, 2.39 3.07 2.85 3.07 2.89 3.02 3.22 3.14 3.22 3.43
44 3.43, 5.55, 5.76, 9.05, 4.60, 6.33, 6.50, 1.57, 6.31, 2.04 5.11 5.22 5.11 5.11 4.09 5.33 4.61 5.07 6.92
45 4.75, 3.50, 2.11, 1.65, 3.63, 3.62, 3.43, 1.63, 20.88, 2.46 4.77 3.40 3.83 3.26 3.91 3.72 3.68 3.52 3.61
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BÜHLMANN, H., AND E. STRAUB. 1970. Glaubgewürdigkeit für Schadensätze (Credibility for Loss Ratios). Bulletin of the Swiss Association

of Actuaries 70: 111–33. (English translation by C. E. Brooks.)
GISLER, A., AND P. REINHARD. 1993. Robust Credibility. ASTIN Bulletin 23(1): 118–43.
GOULET, V. 1998. Principles and Application of Credibility Theory. Journal of Actuarial Practice 6(1–2): 5–62.
HAMPEL, F. R., E. M. RONCHETTI, P. J. ROUSSEEUW, AND W. A. STAHEL. 1986. Robust Statistics: The Approach Based on Influence

Functions. New York: Wiley.
HUBER, P. J. 1981. Robust Statistics. New York: Wiley.
KEFFER, R. 1929. An Experience Rating Formula. Transactions of the Actuarial Society of America 30: 130–39.
KLUGMAN, S. A., H. H. PANJER, AND G. E. WILLMOT. 2004. Loss Models: From Data to Decisions. 2nd edition. New York: Wiley.
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