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Robustification and performance evaluation
of empirical risk measures and other

vector-valued estimators

Summary - Actuarial axioms lead to risk measures that for loss distributions assign
weighted integrals of the corresponding value-at-risk functions. Hence, constructing
robust and efficient estimators for the integrals using observed losses becomes a task
of practical interest. Furthermore, a number of risk measures are functionals of
several such weighted integrals. Hence, in order to cover many cases of practical
interest, in the present paper we consider robust estimators of vector-valued risk
measures as well as other population parameters, and we also study their large-sample
efficiency properties. In addition, we discuss robust estimators for location, scale,
and location-scale parameters for several parametric families of interest in actuarial
science, econometrics, and beyond.
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1. Introduction

Risk measures are, in general, functionals from the set of loss distributions
to the extended real line. Depending on the adopted system of axioms (see,
e.g., Young, 2004, for a discussion and references), researchers have arrived
at various representations of risk measures, such as integrals of loss distribu-
tions (see, e.g., Wang, 1998, and references therein). This topic is extensively
researched in numerous journal articles and monographs in the actuarial and
financial areas.

Jones and Zitikis (2003) observed and put into good use the fact that a large
class of risk measures can be expressed as weighted integrals

∫ 1
0 J (u)F−1(u)du

of the quantile function F−1 or, in other words, value-at-risk function corre-
sponding to the underlying loss distribution F , as illustrated by the following
example.
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Example 1.1. Among numerous risk measures that appear in the actuarial
literature, three very frequent ones are proportional hazards transform (PHT) risk
measure, Wang’s transform (WT) risk measure, and conditional tail expectation
(CTE). The three risk measures can be written as the integral

R[X ] =
∫ 1

0
J (u)F−1(u)du

with the weight function J (u) defined – depending on the risk measure – as
follows:

PHT : J (u) = 1 − ρ

(1 − u)ρ
with 0 ≤ ρ < 1,

WT : J (u) = exp
{

λ�−1(u) − 1

2
λ2

}
with 0 ≤ λ < ∞,

CTE : J (u) = I[α,1](u)

1 − α
with 0 ≤ α < 1,

where �−1(t) is the standard normal quantile function, and I[α,1](t) is the
indicator function taking value 1 if t ∈ [α, 1] and 0 otherwise. Note that
setting the parameters ρ, λ, and α to 0 yields J (u) ≡ 1 in all the cases and
thus the equation R[X ] = E[X ]. �

In view of the representation of risk measures as integrals
∫ 1

0 J (u)F−1(u)du,
L-statistics (i.e., linear combinations of order statistics) such as

∑n
i=1 ci,n Xi :n

with ci,n = ∫ i/n
(i−1)/n J (u)du become natural estimators of the risk measures.

Brazauskas and Kaiser (2004), and Kaiser and Brazauskas (2006) investigate
robustness properties of the estimators under the assumption that their asymp-
totic variances are finite, which restricts the set of functionals that can be used
for constructing risk measures. In the present paper we enlarge the class of
risk measures by employing truncated versions of the aforementioned asymp-
totic variances. Furthermore, we establish joint asymptotics of a finite number
of L-statistics, which is important as empirical risk measures can be differ-
ences, ratios, or other functionals of several L-statistics, as illustrated in the
next example.

Example 1.2. The risk measure R[X ] (see Example 1.1) is usually ‘loaded’,
that is, R[X ] is not smaller than the ‘net premium’ E[X ]. To measure how
much larger R[X ] is, it is natural to use either the absolute distance R[X ]−E[X ]
or the relative distance R[X ]/E[X ]−1 (see, e.g., Wang, 1998). Both distances
can be estimated from data by the functionals h(x, y) = x − y and h(x, y) =
x/y −1, respectively, of the bivariate L-statistic (

∑n
i=1 ci,n Xi :n,

∑n
i=1 Xi :n), thus

justifying the need for establishing asymptotic properties such as consistency,
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asymptotic normality, etc. For other examples of actuarial and econometric
uses of multivariate L-statistics, we refer to Brazauskas et al. (2007), Jones et
al. (2006), Zitikis (2002), and references therein. �

Generally, in the present paper we aim at robust estimators for a very broad
spectrum of vector-parameters such as those related to actuarial risk measures
and indices of economic inequality and also parameters that are related to
several parametric classes of distributions (e.g., location-scale families, gamma,
beta, Pareto and Weibull distributions) of particular interest in actuarial science,
econometrics, reliability engineering, and other areas (see, e.g., Kleiber and
Kotz, 2003).

There are numerous methods in the statistical literature for estimating
vector-parameters. They include maximum likelihood, minimum distance, least
squares, moments, to name a few. These methods can usually be found as spe-
cial cases of some general classes of statistics, such as M-, L-, or R-statistics
(see, e.g., Serfling, 1980, Chapters 7–9). If one’s objective is robust estimation
of vector-parameters, which is the case in the present paper, then M-, L-, and
R-statistics offer such estimators, with the class of M-statistics being arguably
the most popular choice, which is mostly due to a close relationship between
the objective function of M-statistic and its influence function. The latter func-
tion is an important tool for studying robustness properties of the estimators.
However, the class of robust M-estimators has not been received too enthusi-
astically in practice because of several reasons: First, in order to define the
estimators in terms of the underlying influence function, the practitioner needs
to have a fairly deep understanding of robust statistics. Second, to compute
the estimators, the practitioner needs to solve a system of nonlinear equations,
which can be a challenging task from the computational point of view.

In view of these and other challenges related to practical implementation
of M-estimators – and our main concern in the present paper is practical imple-
mentation – robust estimators based on L-statistics are particularly attractive:
they are easy to define, typically have explicit expressions, and one can easily
see, understand and thus control the actions of the estimators on data; these
are particularly important features from the practical viewpoint. Moreover, as
already noted above, L-statistics have natural uses and interpretations in actu-
arial and econometric sciences. For these reasons in particular, in the present
paper we look at the performance of L-statistics via simulation studies in both
parametric and non-parametric settings.

In addition to estimating actuarial risk measures and indices of economic
inequality, the other goal of the present paper is to analyze asymptotically ro-
bust estimators of location, scale, and location-scale parameters. We shall also
investigate efficiency properties of these estimators for a number of parametric
families: Cauchy, Student’s t , normal, and Laplace. In addition, we shall com-
pute asymptotic relative efficiency of robust estimators with respect to a) the
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sample mean for estimation of location, b) modified sample standard deviation
for estimation of scale, and c) sample mean and modified sample standard de-
viation for joint estimation of location and scale. Readers familiar with robust
estimation problems in location-scale families will recognize these estimators,
which are thoroughly studied and widely scattered across the literature. To
achieve these goals, in Section 3 we present a theoretical basis concerning
asymptotic results for multivariate trimmed L-statistics in various scenarios of
interest. In Sections 4 and 5 we provide examples of asymptotically robust
estimators of location, scale, and location-scale parameters with their efficiency
properties for various symmetric location-scale families. A numerical illustra-
tion of the theoretical results is given in Section 5. A summary and concluding
notes are given in Section 6.

2. Background and (un)trimmed risk measure values

Given K populations with distribution functions F1, . . . , FK , we are inter-
ested in estimating the vector-parameter µ0 = (µ0(1), . . . , µ0(K )), where the
coordinates are the (untrimmed) ‘risk measure values’

µ0(k) =
∫ 1

0
Jk(u) hk ◦ F−1

k (u) du

with Jk : (0, 1) → [0, ∞) and hk : (−∞, ∞) → (−∞, ∞) specified by the
researcher and with the symbol ‘◦’ denoting the composition of two functions,
that is, hk ◦ F−1

k (u) = hk(F−1
k (u)).

Assumption 2.1. For every 1 ≤ k ≤ K , the function hk can be expressed as the
sum

∑mk
j=1 hk, j of non-decreasing and left-continuous functions hk,1, . . . , hk,mk .

Considering just one coordinate µ0(k) is already of interest in many ap-
plications, let alone the vector-parameter µ0 and its functionals. As a simple
example, consider the functions Jk(u) = 1 and hk(u) = 1 for all u; then
µ0(k) is the mean of Fk . Take hk(u) = 1 for all u; then µ0(k) is one of the
most popular actuarial risk measures

∫ 1
0 Jk(u) F−1

k (u) du. The latter integral
also includes a number of well known indices of economic/income inequality.
Furthermore, take Jk(u) = 1 for all u and let hk(u) be a generic function;
then µ0(k) defines yet another well known class of actuarial risk measures∫ 1

0 hk ◦ F−1
k (u) du, which distorts the quantile function F−1

k in a ‘non-linear’
fashion, unlike the earlier noted integral

∫ 1
0 Jk(u) F−1

k (u) du, which is a linear
functional of F−1

k .
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Since the K population distributions F1, . . . , FK are generally unknown,
we collect data:

X1(1), . . . , Xn(1)(1) ∼ F1

. . .
...

X1(k), . . . , Xn(k)(k) ∼ Fk

. . .
...

X1(K ), . . . , Xn(K )(K ) ∼ FK

Assumption 2.2. For every k, the random variables X1(k), . . . , Xn(k)(k) are in-
dependent and identically distributed, and no additional information is assumed
(unless explicitly stated otherwise) about the dependence structure between the
vectors (X1(k), . . . , Xn(k)(k)), k = 1, . . . , K .

Various dependence structures are of interest in practice. For example, we
encounter situations where the vectors (X1(k), . . . , Xn(k)(k)), 1 ≤ k ≤ K , are
independent; this is the so-called case of K independent populations. In other
situations, we have coordinate-wise equalities, that is, X j (1) = · · · = X j (K ) for
every 1 ≤ j ≤ n with n = n(1) = · · · = n(K ) and F1 = · · · = FK . This case
occurs when dealing with combinations of several statistics based on the same
sample; examples include the aforementioned relative risk measures (see, e.g.,
Wang, 1998) and indices of economic inequality (see, e.g., Tarsitano, 2004).

Returning to the general vector-parameter µ0, we estimate it using the mul-
tivariate L-statistic Ln(1),... ,n(K ) = (Ln(1)(1), . . . , Ln(K )(K )) with the coordinates
defined by

Ln(k)(k) = 1

n(k)

n(k)−m∗
n(k)∑

i=mn(k)+1

ci,n(k)(k) hk(Xi :n(k)(k)),

where the following notation has been used: The random variables X1:n(k)(k)≤
X2:n(k)(k)≤· · ·≤ Xn(k):n(k)(k) are the order statistics of X1(k), X2(k),. . .,Xn(k)(k).
The integers mn(k) and m∗

n(k) are such that 0 ≤ mn(k) < n(k)−m∗
n(k) ≤ n(k).

The coefficients ci,n(k)(k) are generated by a function Jk – which we assume
to be non-negative and continuous on (0, 1) – in such a way that, for every
1 ≤ i ≤ n(k),

ci,n(k)(k) = n(k)

∫ i/n(k)

(i−1)/n(k)

Jk(u) du.

To give a flavour of the L-statistics that we utilize later, an example follows.

Example 2.1. When estimating the location and scale parameters in Section
4, we use the following bivariate L-statistic (Ln(1)(1), Ln(2)(2)) = (µ̂a1, S2

a2
),
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where

µ̂a1 =
n−mn(1)∑

i=mn(1)+1

[
1

n − 2mn(1)

]
Xi :n (1)

and

S2
a2

=
n−mn(2)∑

i=mn(2)+1

[
1

n

]
(Xi :n − µ)2. (2)

The equation µ̂a1 = Ln(1)(1) holds with n(1) = n and mn(1) = m∗
n(1) such that

mn(1)/n → a1 when n → ∞, and the functions h1(x) = x and J1(u) ≡ 1/(1−
2a1). Furthermore, S2

a2
= Ln(2)(2) holds with n(2) = n and mn(2) = m∗

n(2)

with mn(2)/n → a2, and the functions h2(x) = (x − µ)2 and J2(u) ≡ 1. �

Our next task is to specify the centering vector

µn(1),... ,n(K ) = (µn(1)(1), . . . , µn(K )(K ))

and the normalizing vector bn(1),... ,n(K ) = (bn(1)(1), . . . , bn(K )(K )) such that the
asymptotic result

Sn(1),... ,n(K ) = (
Ln(1),... ,n(K ) − µn(1),... ,n(K )

)
D

(
bn(1),... ,n(K )

) −→d N (0, �) (3)

holds with the K × K -dimensional matrix D(bn(1),... ,n(K )) whose diagonal en-
tries are bn(1)(1), . . . , bn(K )(K ) and the off-diagonal entries are 0. The N (0, �)

denotes a Gaussian vector with the mean 0 = (0, . . . , 0) and the covariance-
variance matrix � whose entries will be specified later, depending on the trim-
ming considered.

For the validity of statement (3), it is necessary (but not sufficient) to have
the asymptotic normality of

Sn(1),... ,n(K )e(k)T = bn(k)(k)
(
Ln(k)(k) − µn(k)(k)

)
, (4)

where e(k) = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the kth place. A detailed inves-
tigation of such one-dimensional theoretical results and references have been
provided by Mason and Shorack (1990). Multivariate untrimmed L-statistics
have been investigated by Zitikis (1993) but those results are not applicable in
the context of the present paper as we now need truncation due to reasons noted
above. To gain further intuition on the topic and to also introduce additional
notation, we note (see, e.g., Serfling, 1980) that when the quantity

σ 2
0 (k) =

∫∫
[0,1)

(u ∧ v − uv) Jk(u)Jk(v) dhk ◦ F−1
k (u) dhk ◦ F−1

k (v) (5)
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is finite (with the notation
∫∫

A ≡ ∫
A

∫
A), then after centering the untrimmed

L-statistic (i.e., when mn(k) = 0 and m∗
n(k) = 0) with the earlier intro-

duced ‘asymptotic mean’ µ0(k), the right-hand side of equation (4) is equal to
n(k)−1/2 ∑n(k)

i=1 Yi(k) + oP(1), where Y1(k), . . . , Yn(k)(k) are i.i.d. random vari-
ables with zero means and variances σ 2

0 (k). We know (see, e.g., Serfling, 1980)
that the latter random variables can be expressed by

Yi(k) = −
∫ 1

0

(
1{Ui (k)≤t} − t

)
Jk(u) dhk ◦ F−1

k (u), (6)

where the random variables U1(k), . . . , Un(k)(k) are independent and uniformly
distributed on (0, 1). In various uses of L-statistics, the variance σ 2

0 (k) is finite.
However, there are situations where it is of interest to go beyond finite σ 2

0 (k).
For this reason, the normalizing constant∫∫

[an(k),1−bn(k))

(u ∧ v − uv) Jk(u)Jk(v) dhk ◦ F−1
k (u) dhk ◦ F−1

k (v) (7)

with 0 < an(k) < 1 − bn(k) < 1 becomes natural as truncation assures the
finiteness of the integral for larger classes of functions Fk and Jk . This is the
reason why in this paper we introduce the ‘trimmed risk measure value’

µn(k)(k) =
∫ 1−m∗

n(k)/n(k)

mn(k)/n(k)

Jk(u) hk ◦ F−1
k (u) du.

Naturally, the estimator of µn(k)(k) is Ln(k)(k) and the length of confidence
intervals for µn(k)(k) depends on variance-type quantities like that in (7).

3. Estimating trimmed risk measure values

The asymptotic results for untrimmed L-statistics discussed in the previous
section can easily be extended to the case in which we trim only a fixed number
of smallest and largest order statistics:

mn(k) = m(k) and m∗
n(k) = m∗(k) with fixed m(k), m∗(k) ≥ 1. (8)

With the normalizing vector b0
n(1),... ,n(K ) = (b0

n(1)(1), . . . , b0
n(K )(K )) whose coor-

dinates are b0
n(k)(k)=√

n(k)/σ0(k), we introduce a particular form of Sn(1),... ,n(K ),
defined as follows:

S0
n(1),... ,n(K ) = (

Ln(1),... ,n(K ) − µn(1),... ,n(K )

)
D

(
b0

n(1),... ,n(K )

)
.
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Assumption 3.1. Let the weight functions Jk(t) be of the form Jk(t) = tαk (1−
t)βk . (If desired, the class of possible Jk’s can be somewhat enlarged; see
Condition J in Mason and Shorack, 1990, p. 114.)

Theorem 3.1. Under the trimming scheme in (8) and Assumption 3.1, in addition
to Assumptions 2.1 and 2.2, we have that

S0
n(1),... ,n(K ) −→d N (0, �

F I X ), (9)

where the entries of the covariance-variance matrix �F I X = [ρF I X (k, l)]K
k,l=1 are

given by

ρF I X (k, l) = 1

σ0(k)σ0(l)
×

×
∫∫

[0,1)

(
P [U (k) ≤ u, U (l) ≤ v] − uv

)
Jk(u)Jl(v) dhk ◦ F−1

k (u) dhl ◦ F−1
l (v)

(10)
with σ 2

0 (k) defined by equation (5). [We assume that σ 2
0 (k) and ρF I X (k, l) are well

defined and finite.]

The formula for ρF I X (k, l) contains ‘unobservable’ random variables U (k)

and U (l); both of them have uniform distributions on (0, 1). However, we need
to know their joint distribution in order to calculate (or estimate) the right-hand
side of equation (10). For this reason we first note that the joint distribution
of X (k) and X (l) is equal to that of F−1

k (U (k)) and F−1
l (U (l)). This is useful

as we shall see in the next two paragraphs.
Suppose that the random variables X (k) and X (l) are independent when

k �= l; this happens when the vectors (X1(k), . . . , Xn(k)(k)), k = 1, . . . , K , are
independent. In this case U (k) and U (l) are independent, and thus P[U (k) ≤
u, U (l) ≤ v] = uv. This gives the equation ρF I X (k, l) = 0 whenever k �= l.
Since ρF I X (k, k) = 1, the matrix �F I X is unit.

Next we deal with the situation in which X j (1) = · · · = X j (K ) for every
1 ≤ j ≤ n, where n = n(1) = · · · = n(K ). This situation can be reformulated
as just one set of independent and identically distributed random variables
X1, . . . , Xn ∼ F . Hence, U (k) ≡ U (l) and thus P[U (k) ≤ u, U (l) ≤ v] = u∧v.
This in turn gives the equation

ρF I X (k, l)

= 1

σ0(k)σ0(l)

∫∫
[0,1)

(u ∧ v − uv) Jk(u)Jl(v) dhk ◦ F−1(u) dhl ◦ F−1(v)

(11)
with

σ 2
0 (k) =

∫∫
[0,1)

(u ∧ v − uv) Jk(u)Jk(v) dhk ◦ F−1(u) dhk ◦ F−1(v).
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In a simulation study later in this paper, we use the following two-dimensional
(i.e., K = 2) version of the above theorem: The vector (Ln(1), Ln(2)) is
AN (µn, n−1�F I X ) with µn = (µn(1), µn(2)) and

�
F I X =

(
σ 2

0 (1) σ0(1)σ0(2)ρF I X (1, 2)

σ0(1)σ0(2)ρF I X (1, 2) σ 2
0 (2)

)
,

where

Ln(k) =
n−m∗

n(k)∑
i=mn(k)+1

[∫ i/n

(i−1)/n
Jk(u) du

]
hk(Xi :n), (12)

µn(k) =
∫ 1−m∗

n(k)/n

mn(k)/n
Jk(u)hk ◦ F−1(u) du. (13)

We next consider statistical inference under vanishing-fraction trimming. Here
we trim a vanishing fraction of smallest and largest order statistics, that is, we
assume that

mn(k), m∗
n(k) → ∞ but

mn(k)

n(k)
,

m∗
n(k)

n(k)
→ 0, (14)

when n → ∞.

Assumption 3.2. Let the weight functions Jk(t) be such that the random
variable Hk(U ) (see notation below) is in the domain of attraction of a stable
law with index α ∈ (0, 2], where the random variable U is uniformly distributed
on (0, 1) and

Hk(t) =



∫
[c,t)

Jk(u) dhk ◦ F−1
k (u) when t > c,

0 when t = c,

−
∫

[t,c)
Jk(u) dhk ◦ F−1

k (u) when t < c,

with a fixed continuity point c ∈ (0, 1) of the function hk ◦ F−1
k . (If desired, the

class of weight functions Jk can be somewhat increased; see condition (1.37)
in Mason and Shorack, 1990, p. 117.)

Theorem 3.2. Under the trimming scheme in (14) and Assumption 3.2, in addition
to Assumptions 2.1 and 2.2, we have that

Sn(1),... ,n(K ) −→d N (0, �
V AN I SH ), (15)
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where �V AN I SH = [ρV AN I SH (k, l)]K
k, l=1 with the entries defined by

ρV AN I SH (k,l)= lim
n→∞

1

σn(k)(k)σn(k)(l)

∫
[mn(k)/n(k),1−m∗

n(k)/n(k))

∫
[mn(l)/n(l),1−m∗

n(l)/n(l))

×
(

P [U (k) ≤ u, U (l) ≤ v] − uv
)

Jk(u)Jl(v) dhk ◦ F−1
k (u) dhl ◦ F−1

l (v)

(16)
with

σ 2
n(k)(k)

=
∫∫

[mn(k)/n(k),1−m∗
n(k)/n(k))

(u ∧ v − uv) Jk(u)Jk(v) dhk ◦ F−1
k (u) dhk ◦ F−1

k (v).

[We assume that the limit ρV AN I SH (k, l) exists and is finite.]

When X1, . . .,Xn ∼ F and K =2, statement (15) implies the following one
to be used in later sections: The vector (Ln(1), Ln(2)) is AN (µn, n−1�V AN I SH

n )

with µn = (µn(1), µn(2)) and

�
V AN I SH
n =

( σ 2
n (1) σn(1)σn(2)ρV AN I SH

n (1, 2)

σn(1)σn(2)ρV AN I SH
n (1, 2) σ 2

n (2)

)
.

We next consider statistical inference under fixed-fraction trimming. Here we
trim a fixed fraction of smallest and largest order statistics, that is, we assume
that, for some 0 < ak < 1 − bk < 1,

mn(k)

n(k)
→ ak + o

(
1√
n(k)

)
and

m∗
n(k)

n(k)
→ bk + o

(
1√
n(k)

)
. (17)

Assumption 3.3. Let the weight functions Jk(t) satisfy the Lipschitz condition
on an open interval containing [ak, bk], and let both ak and bk be continuity
points of the function hk ◦ F−1

k . (If desired, the class of possible functions Jk

and hk ◦ F−1
k can be somewhat enlarged; see condition (1.33) in Mason and

Shorack, 1990, p. 117.)

Theorem 3.3. Under the trimming scheme in (17) and Assumption 3.3, in addition
to Assumptions 2.1 and 2.2, we have that

Sn(1),... ,n(K ) −→d N (0, �
F R AC), (18)

where the entries of the covariance-variance matrix �F R AC = [ρF R AC(k, l)]K
k, l=1

are

ρF R AC(k, l) = 1

σak ,bk (k)σak ,bk (l)

∫
[ak ,1−bk)

∫
[al ,1−bl)

×
(

P [U (k) ≤ u, U (l) ≤ v] − uv
)

Jk(u)Jl(v) dhk ◦ F−1
k (u) dhl ◦ F−1

l (v)

(19)
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with

σ 2
ak ,bk

(k) =
∫∫

[ak ,bk)
(u ∧ v − uv) Jk(u)Jk(v) dhk ◦ F−1

k (u) dhk ◦ F−1
k (v).

[We assume that σ 2
ak ,bk

(k) and ρF R AC(k, l) are well defined and finite.]

In the special case in which X1, . . . , Xn ∼ F and K = 2, statement
(18) implies that the vector (Ln(1), Ln(2)) is AN (µn, n−1�F R AC) with µn =
(µn(1), µn(2)) and

�
F R AC =

(
σ 2

a1,b1
(1) σa1,b1(1)σa2,b2(2)ρF R AC(1, 2)

σa1,b1(1)σa2,b2(2)ρF R AC(1, 2) σ 2
a2,b2

(2)

)
.

4. Estimating the location and scale parameters

Let X1, . . . , Xn be i.i.d. random variables with a distribution function Fµ,σ

which belongs to a location-scale family; denote the corresponding pdf by fµ,σ ,
and assume it is symmetric. At least one of the parameters µ ∈ (−∞, ∞) and
σ > 0 is unknown, and we shall use trimmed L-statistics to estimate them.
In particular, we shall study the asymptotic relative efficiency (ARE) of the
estimators:

ARE(E1, E0) = asymptotic variance of reference estimator E0

asymptotic variance of competing estimator E1
.

In the multivariate version of the ARE, the variance is replaced by the general-
ized variance, which is defined as the determinant of the asymptotic covariance-
variance matrix, and then the ratio is raised to the power 1/K , where K is the
dimension of the vector-parameter. For further details on the topic, we refer,
for example, to Serfling (1980, Section 4.1).

Estimating the location parameter when scale is known

Let an L-statistic Ln(1) be (see Example 2.1)

µ̂a1 =
n−mn(1)∑

i=mn(1)+1

[
1

n − 2mn(1)

]
Xi :n,

which is achieved by choosing mn(1) = m∗
n(1), which in turn implies mn(1)/n =

m∗
n(1)/n and mn(1)/n → a1 = b1 when n → ∞, and h1(x) = x and J1(u) =
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1/(1−2a1) for 0 < u < 1. We next justify the use of the symmetric trimming,
a1 = b1. Elementary calculations show that

µn(1) =
∫ 1−a1

a1

[
1

1 − 2a1

]
F−1

µ,σ (u) du

= 1

1 − 2a1

[
σ

∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

z dF0,1(z)

]
+ µ = µ.

(20)

It is clear from the second line in (20) that in order to eliminate the dependence
of µn(1) on σ we have to choose a1 = b1. (The elimination of σ is not
necessary when it is known but desirable when σ is unknown.) We next
compute the asymptotic variance of µ̂a1 , which is (see Appendix B)

σ 2
a1,a1

(1) = σ 2

(1 − 2a1)2

{
2a1

[
F−1

0,1 (a1)
]2 + δ2(F0,1, a1)

}
(21)

with

δ2(F0,1, a1) = 2
∫ F−1

0,1 (1−a1)

0
s2 dF0,1(s). (22)

We call δ2(F0,1, a1) the ‘trimmed second moment’ of F0,1 as it converges to
the (finite or infinite) second moment of F0,1 when a1 ↓ 0. We summarize the
above discussion by saying that µ̂a1 is AN (µ, n−1σ 2�µ), where

�µ ≡ �µ(F0,1, a1) = 1

(1 − 2a1)2

[
2a1

[
F−1

0,1 (a1)
]2 + δ2(F0,1, a1)

]
.

Estimating the scale parameter when location is known

Consider an L-statistic Ln(2) with such parameters (see Example 2.1) that
it becomes

S2
a2

=
n−mn(2)∑

i=mn(2)+1

[
1

n

]
(Xi :n − µ)2.

Namely, mn(2) = m∗
n(2) or, equivalently, mn(2)/n = m∗

n(2)/n and mn(2)/n →
a2 = b2. Furthermore, h2(x) = (x − µ)2 and J2(u) = 1, for 0 < u < 1; the
choices of functions h2 and J2 will become clear when we derive asymptotic
properties of S2

a2
.

Unlike in the case of the location estimator µ̂a1 , symmetric trimming in
the current situation is not necessary. However, when we consider the joint
estimation of µ and σ , the estimator of σ will look similar to S2

a2
and in

its formula µ will be replaced with µ̂a1 . Since robustness properties, e.g.,
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the breakdown point, of a vector-estimator are defined by those of its weakest
(i.e., least robust) coordinate-estimator, it makes sense to use similar trimming
schemes for all coordinates of a vector-estimator.

Straightforward calculations give (see Appendix B) the equations

µn(2) = σ 2 δ2(F0,1, a2), (23)

and

σ 2
a2,a2

(2)

=σ 4
{
δ4(F0,1,a2)−4a2

[
F−1

0,1 (a2)
]2

δ2(F0,1,a2)−δ2
2(F0,1,a2)+2a2(1−2a2)

[
F−1

0,1 (a2)
]4
}

(24)
with

δ4(F0,1, a2) = 2
∫ F−1

0,1 (1−a2)

0
s4 dF0,1(s). (25)

We call δ4(F0,1, a2) the ‘trimmed fourth moment’ of F0,1 as it converges to the
(finite or infinite) fourth moment of F0,1 when a2 ↓ 0. We see from equation
(23) that Ln(2) is not a consistent estimator of σ . However, the following
modification

σ̂a2 =
√

Ln(2)/δ2(F0,1, a2)

estimates σ consistently, which can easily be shown using the delta method
(see, e.g., Serfling, 1980, p. 118). The asymptotic mean of σ̂a2 is µ∗

n(2) =√
µn(2) /δ2 (F0,1, a2) = σ and its asymptotic variance is σ ∗2

a2, a2
(2) =

σ 2
a2,a2

(2)
[
4σ 2δ2(F0,1, a2)

]−1. To summarize the discussion, we have that σ̂a2 is
AN (σ, n−1σ 2�σ), where

�σ ≡�σ(F0,1, a2)=0.25δ−2
2

[
δ4−δ2

2+2a2(1−2a2)
[
F−1

0,1 (a2)
]4

]
−a2

[
F−1

0,1 (a2)
]2

δ−1
2 .

Joint estimation of location and scale parameters

The problem of joint estimation of µ and σ has essentially been solved
in the previous two sections. Indeed, we estimate µ with µ̂a1 and σ with
σ̂a2 , where the now unknown parameter µ in the definition of Ln(2) (which is
needed for σ̂a2) is replaced by its estimator µ̂a1 . Note that the latter estimator
of σ , which we denote σ̂ ∗

a2
, has the same asymptotic distribution as σ̂a2 as seen

from the decomposition

σ̂ ∗2
a2

=
n−mn(2)∑

i=mn(2)+1

[
1

nδ2

]
(Xi :n − µ̂a1)

2 = σ̂ 2
a2

+ rem
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and Slutsky’s theorem, where the remainder term

rem = −2
1 − 2a2

δ2

(
µ̂a1 − µ

)(
µ̂a2 − µ

) + 1 − 2a2

δ2

(
µ̂a1 − µ

)2

is of the order OP(n−1) in view of mn(1) ∼ a1n and mn(2) ∼ a2n (see Example
2.1). Therefore, for asymptotic considerations, we can still rely on the results
established for σ̂a2 above. This implies that for joint estimation of µ and σ

we only need to evaluate the covariance between µ̂a1 and σ̂a2 . Note that (see
Appendix B)

σa1,a1(1) σa2,a2(2) ρF R AC(1, 2) = 0. (26)

In summary, the vector

(
µ̂a1, σ̂

∗
a2

)=
 n−mn(1)∑

i=mn(1)+1

[
1

n − 2mn(1)

]
Xi :n,

 n−mn(2)∑
i=mn(2)+1

[
1

nδ2

]
(Xi :n − µ̂a1)

2

1/2


is

AN

(
(µ, σ ),

σ 2

n

(�µ 0
0 �σ

))
.

5. Numerical illustration

Here we study the ARE of the estimators µ̂a1 , σ̂a2 , and (µ̂a1, σ̂
∗
a2

) for the
parameters µ ∈ R, σ > 0, and (µ, σ ) of the following symmetric location-scale
families: Student’s tν with (integer) ν ≥ 1 degrees of freedom, normal, and
Laplace; in Table 1 (see Appendix A) we also report results for the Cauchy
distribution, which is a special case of the Student’s distribution when ν = 1.
When verifying numerical computations, it is also helpful to keep in mind that
the normal distribution is, loosely speaking, the Student’s distribution when
ν = ∞.

The ARE of the robust estimators is computed with respect to 1) the sam-
ple mean for estimating the location, 2) the modified sample standard deviation
for estimating the scale, and 3) the sample mean and modified sample stan-
dard deviation for the joint estimation of location and scale. The asymptotic
distributions of these reference estimators are well-known in the statistical lit-
erature (see, e.g., Serfling, 1980, Chapter 3). We list them next for convenient
reference. Namely, for estimating the location when the scale is known, the
sample mean

X = 1

n

n∑
i=1

Xi is AN

(
µ,

σ 2

n
�◦

µ

)
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where �◦
µ ≡ �◦

µ(F0,1) = lima1→0 �µ(F0,1, a1). For estimating the scale when
the location is known, the distribution-adjusted sample standard deviation

S∗ =
√√√√ 1

nδ◦
2

n∑
i=1

(Xi − µ)2 is AN

(
σ,

σ 2

n
�◦

σ

)
,

where

δ◦
2 ≡ δ◦

2(F0,1) = lim
a2→0

δ2(F0,1, a2) and �◦
σ ≡ �◦

σ (F0,1)= lim
a2→0

�σ(F0,1, a2).

For the joint estimation of the location and scale, the vector-estimator

(X , S∗∗) =
1

n

n∑
i=1

Xi ,

√√√√ 1

nδ◦
2

n∑
i=1

(Xi − X)2


is

AN

(
(µ, σ ),

σ 2

n

(�◦
µ 0

0 �◦
σ

))
.

(Note that the numerical values of the efficiency-related constants of the ref-
erence estimators can be easily found from the corresponding constants of the
robust estimators by letting a1 ↓ 0 and a2 ↓ 0.) These results combined with
our findings in earlier sections imply that

ARE(µ̂a1, X) = �◦
µ

�µ

, ARE(σ̂a2, S∗) = �◦
σ

�σ

,

and

ARE
(
(µ̂a1, σ̂

∗
a2

), (X , S∗∗)
) =

√
�◦

µ�◦
σ

�µ�σ

.

Hence, to calculate the ARE’s, we need to evaluate �◦
µ, �µ, �◦

σ , �σ , and
thus, in turn, δ◦

2, δ2, δ◦
4, δ4. We accomplish this next, using equations (22)

and (25), and calculating their right-hand sides for the aforementioned three
distributions.

• Student’s tν distribution:

δ2(F0,1, a1) =



2 log


√

1 +
[
F−1

0,1 (a1)
]2

2
− F−1

0,1 (a1)√
2

 − 2 (1 − 2a1) , ν = 2.

ν

ν − 2
(1 − 2a1)

+ 2
ν

ν−2
F−1

0,1 (a1) f0,1(F−1
0,1 (a1))

(
1 +

[
F−1

0,1 (a1)
]2

ν

)
, ν �= 2.
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δ4(F0,1, a2) =



4(1−2a2)−4F−1
0,1 (a2) f0,1(F−1

0,1 (a2))

(
1+

[
F−1

0,1 (a2)
]2

2

)2

−6 log

√
1 +

[
F−1

0,1 (a2)
]2

2
− F−1

0,1 (a2)√
2

, ν = 2.

−32(1 − 2a2)

−32F−1
0,1 (a2) f0,1(F−1

0,1 (a2))

(
1 +

[
F−1

0,1 (a2)
]2

4

)

+24 log

√
1 +

[
F−1

0,1 (a2)
]2

4
− F−1

0,1 (a2)

2

 , ν = 4.

3ν2

(ν − 2)(ν − 4)
(1 − 2a2)

+ 2ν

ν − 4
F−1

0,1 (a2) f0,1

(
F−1

0,1 (a2)
)(

1 +
[
F−1

0,1 (a2)
]2

ν

)

×
(

3ν

ν − 2
+

[
F−1

0,1 (a2)
]2

)
, ν �= 2, 4.

Also, δ◦
2 = ν/(ν − 2) for ν > 2, and = ∞ for ν ≤ 2; δ◦

4 = 3ν2/((ν − 4)(ν − 2))

for ν > 4, and = ∞ for ν ≤ 4. Consequently, �◦
µ = ν/(ν − 2) for ν > 2, and

= ∞ for ν ≤ 2; �◦
σ = (ν − 1)/(2ν − 8) for ν > 4, and = ∞ for ν ≤ 4.

• Normal distribution:

δ2(F0,1, a1) = (
1 − 2a1

) + 2F−1
0,1 (a1) f0,1

(
F−1

0,1 (a1)
)
,

δ4(F0,1, a2) = 2
[
F−1

0,1 (a2)
]3 f0,1

(
F−1

0,1 (a2)
) + 3δ2(F0,1, a2).

Also, δ◦
2 = 1, δ◦

4 = 3 and �◦
µ = 1, �◦

σ = 1/2.

• Laplace distribution:

δ2(F0,1, a1) = 2
(
1 − 2a1

) − 2a1

[
log2 (2a1) − 2 log (2a1)

]
,

δ4(F0,1, a2) = −2a2 log4 (2a2) + 8a2 log3 (2a2) + 12δ2(F0,1, a2).

Also, δ◦
2 = 2, δ◦

4 = 24 and �◦
µ = 2, �◦

σ = 5/4.

The formulas above provide all the necessary components for the devel-
opment of computer code. Numerical illustrations are provided in Table 1 for
asymptotic variances and in Figure 1 for ARE’s, in the case a1 = a2. In the
table and figure, the reference estimators correspond to the estimators with no
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trimming, that is, when a1 = 0, a2 = 0, and a1 = a2 = 0. Several conclusions
emerge from these illustrations. First, for the Cauchy distribution even the
mildest trimming provides an infinite improvement over the standard empirical
estimators. Second, except for the estimation of location in the Laplace family
(where the median estimator is optimal), the general pattern is that high lev-
els of trimming lead to small efficiencies. Third, favorable efficiencies (often
exceeding 1) are attained in the range of 2%–10% trimming for estimation
of µ, σ , and (µ, σ ), which implies that the breakdown points of favorable
procedures range between 0.02 and 0.10.
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Figure 1. Asymptotic relative efficiency as functions of trimming percentages of robust estimators with
respect to the estimators X , S∗, (X , S∗∗) of the parameters µ, σ , (µ, σ ), respectively.
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6. Summary and concluding remarks

In this paper we have considered the problem of robust estimation of
vector-parameters that originate in actuarial science as risk measure values. We
have investigated the performance of estimators based on vectors of trimmed
L-statistics whose weights are formed by means of weight functions J . Asymp-
totic normality and numerical performance of the statistics have been investi-
gated in the case of trimming vanishing fraction, fixed fraction and fixed num-
ber of observations. Examples of asymptotically robust estimators (i.e, those
based on trimmed L-statistics with fixed fractions of observations removed) of
location, scale, and location-scale parameters have been provided. The asymp-
totic relative efficiency of the estimators has been quantified for the Cauchy,
Student’s t , normal, and Laplace distributions.

Results of the present paper suggest several interesting venues for further
research. To highlight one of them, choose the simplest but prominent and
popular member of the class of univariate trimmed L-statistics: the trimmed
mean, which is well studied in the literature and often used in statistical practice.
First-order asymptotic properties – including asymptotic normality – of the
trimmed mean were established by Stigler (1973), whereas simple and explicit
second-order approximations of Edgeworth-type (correcting for skewness and
bias of a trimmed mean) have recently been derived by Gribkova and Helmers
(2006). Results of the latter paper suggest a possibility for going beyond the
first-order asymptotic properties considered in the present paper and investigate
Edgeworth-type approximations for trimmed (multivariate) L-statistics.
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7. Appendix A: numerical evaluations

Table 1: Asymptotic variances (divided by σ 2/n) for one-dimensional and generalized asymp-
totic variances (divided by σ 4/n2) for two-dimensional empirical and robust estimators of µ, σ , and
(µ, σ ), for selected location-scale families.

Estimator Trimming Symmetric location-scale family
proportions Cauchy t5 t10 t15 t20 t25 t50 t100 Normal Laplace

µ̂a1 0 ∞ 1.67 1.25 1.15 1.11 1.09 1.04 1.02 1.00 2.00
0.02 20.90 1.47 1.20 1.13 1.10 1.08 1.04 1.03 1.01 1.80
0.04 10.79 1.41 1.19 1.13 1.10 1.08 1.05 1.04 1.02 1.70
0.06 7.43 1.38 1.19 1.13 1.11 1.09 1.06 1.05 1.03 1.62
0.08 5.76 1.36 1.19 1.14 1.11 1.10 1.07 1.06 1.05 1.55
0.10 4.77 1.35 1.19 1.15 1.12 1.11 1.08 1.07 1.06 1.49
0.12 4.12 1.34 1.20 1.15 1.13 1.12 1.10 1.09 1.08 1.45
0.14 3.66 1.34 1.21 1.17 1.15 1.14 1.11 1.10 1.09 1.40
0.16 3.32 1.34 1.22 1.18 1.16 1.15 1.13 1.12 1.11 1.36
0.18 3.07 1.35 1.23 1.19 1.18 1.17 1.15 1.14 1.13 1.33
0.20 2.87 1.35 1.24 1.21 1.19 1.18 1.16 1.15 1.14 1.30

σ̂a2 0 ∞ 2.00 0.75 0.64 0.59 0.57 0.53 0.52 0.50 1.25
0.02 9.02 0.84 0.67 0.63 0.61 0.60 0.58 0.57 0.56 1.10
0.04 4.89 0.83 0.71 0.67 0.66 0.65 0.63 0.62 0.61 1.13
0.06 3.54 0.86 0.75 0.72 0.71 0.70 0.68 0.68 0.67 1.18
0.08 2.90 0.90 0.81 0.78 0.77 0.76 0.74 0.74 0.73 1.24
0.10 2.54 0.95 0.87 0.84 0.83 0.82 0.81 0.80 0.80 1.31
0.12 2.32 1.01 0.93 0.91 0.90 0.89 0.88 0.88 0.87 1.39
0.14 2.19 1.08 1.01 0.99 0.98 0.97 0.96 0.96 0.95 1.48
0.16 2.12 1.16 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.58
0.18 2.10 1.25 1.19 1.17 1.17 1.16 1.15 1.15 1.14 1.69
0.20 2.11 1.36 1.30 1.29 1.28 1.28 1.27 1.26 1.26 1.81

(µ̂a1 , σ̂ ∗
a1

) 0 ∞ 3.33 0.94 0.73 0.66 0.62 0.55 0.53 0.50 2.50
0.02 188.44 1.24 0.81 0.71 0.67 0.65 0.60 0.58 0.56 1.99
0.04 52.75 1.18 0.84 0.76 0.72 0.70 0.66 0.64 0.62 1.93
0.06 26.34 1.18 0.89 0.82 0.78 0.76 0.73 0.71 0.69 1.91
0.08 16.71 1.22 0.96 0.89 0.85 0.83 0.80 0.78 0.76 1.93
0.10 12.11 1.28 1.03 0.96 0.93 0.91 0.88 0.86 0.84 1.96
0.12 9.56 1.35 1.12 1.05 1.02 1.00 0.97 0.95 0.93 2.01
0.14 8.03 1.44 1.22 1.15 1.12 1.10 1.07 1.05 1.04 2.07
0.16 7.06 1.55 1.33 1.27 1.24 1.22 1.19 1.17 1.15 2.15
0.18 6.44 1.68 1.47 1.40 1.37 1.35 1.32 1.30 1.29 2.24
0.20 6.06 1.84 1.62 1.56 1.53 1.51 1.47 1.46 1.44 2.35
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8. Appendix B: Proofs

Proof of statement (9)

Under the trimming scheme in (8), for every 1 ≤ k ≤ K , Theorem 1.1 in Mason
and Shorack (1990, pp. 115–116) implies that ‖S0

n(1),... ,n(K ) + SF I X
n(1),... ,n(K )‖ =

oP(1), where the norm ‖ · ‖ can be any (e.g., Euclidean) and SF I X
n(1),... ,n(K ) =

TF I X
n(1),... ,n(K )D(b0

n(1),... ,n(K )) with the vector TF I X
n(1),... ,n(K ) =(T F I X

n(1) (1), . . .,T F I X
n(K ) (K ))

whose coordinates are (see equation (6))

T F I X
n(k) (k) = 1

n(k)

n(k)∑
i=1

∫
[0,1)

(
1{Ui (k)≤u} − u

)
Jk(u) dhk ◦ F−1

k (u).

The multivariate CLT implies that SF I X
n(1),... ,n(K ) −→d N (0, �F I X ) with the matrix

�F I X = [ρF I X (k, l)]K
k,l=1 in the formulation of the theorem. This concludes the

proof. �

Proof of statement (15)

Under the trimming scheme in (14), for every 1 ≤ k ≤ K , Theorem 1.3 in
Mason and Shorack (1990, p. 117) implies that ‖Sn(1),... ,n(K ) + SV AN I SH

n(1),... ,n(K )‖ =
oP(1), where SV AN I SH

n(1),... ,n(K ) = TV AN I SH
n(1),... ,n(K )D(bV AN I SH

n(1),... ,n(K )) with the coordinates of
the vector TV AN I SH

n(1),... ,n(K ) = (T V AN I SH
n(1) (1), . . . , T V AN I SH

n(K ) (K )) defined by

T V AN I SH
n(k) (k)= 1

n(k)

n(k)∑
i=1

∫
[mn(k)/n(k),1−m∗

n(k)/n(k))

(
1{Ui (k)≤t} − t

)
Jk(u) dhk ◦ F−1

k (u).

The coordinates of bV AN I SH
n(1),... ,n(K ) = (bV AN I SH

n(1) (1), . . . , bV AN I SH
n(K ) (K )) are defined

by the equation

bV AN I SH
n(k) (k) = √

n(k)/σn(k)(k),

where σ 2
n(k)(k) is defined in the formulation of the theorem. The multivariate

CLT implies that SV AN I SH
n(1),... ,n(K ) −→d N (0, �V AN I SH ) with the variance-covariance

matrix �V AN I SH = [ρV AN I SH (k, l)]K
k, l=1 whose entries are given in the formu-

lation of the theorem. This concludes the proof. �
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Proof of statement (18)

Under the trimming scheme in (17), for every 1 ≤ k ≤ K , Theorem 1.2 in Ma-
son and Shorack (1990, p. 117) implies that ‖Sn(1),... ,n(K )+SF R AC

n(1),... ,n(K )‖ = oP(1),
where SF R AC

n(1),... ,n(K ) =TF R AC
n(1),... ,n(K )D(bF R AC

n(1),... ,n(K )). The coordinates of TF R AC
n(1),... ,n(K ) =

(T F R AC
n(1) (1), . . . , T F R AC

n(K ) (K )) are

T F R AC
n(k) (k) = 1

n(k)

n(k)∑
i=1

∫
[ak ,1−bk)

(
1{Ui (k)≤t} − t

)
Jk(u) dhk ◦ F−1

k (u).

The coordinates of bF R AC
n(1),... ,n(K ) = (bF R AC

n(1) (1), . . . , bF R AC
n(K ) (K )) are bF R AC

n(k) (k) =√
n(k)/σak ,bk (k) with σ 2

ak ,bk
(k) defined in the formulation of the theorem. The

multivariate CLT implies that SF R AC
n(1),... ,n(K ) −→d N (0, �F R AC) with the variance-

covariance matrix �F R AC = [ρF R AC(k, l)]K
k, l=1 defined in the formulation of the

theorem. This concludes the proof. �

To proceed, we first list several well-known properties of the pdf’s, cdf’s,
and quantile functions of symmetric location-scale families:

• For x ∈ (−∞, ∞): Fµ,σ (x) = F0,1
(
(x − µ)/σ

)
and fµ,σ (x) = f0,1

(
(x −

µ)/σ
)
/σ .

• For t ∈ (0, 1): F−1
µ,σ (t) = σ F−1

0,1 (t) + µ and F−1
0,1 (t) = −F−1

0,1 (1 − t).

• For z ∈ (−∞, ∞): F0,1(−z) = 1 − F0,1(z) and f0,1(−z) = f0,1(z).

Using these properties, it is straightforward to establish the following two
formulas, which we shall find particularly useful in the proofs below. Namely,
for any ε ≥ 0, we have that

∫ ε

−ε

zr dF0,1(z) =
{

2
∫ ε

0 zr dF0,1(z) , if r ≥ 0 is even,

0 , if r ≥ 1 is odd,
(27)

and

∫ ε

−ε

zr F0,1(z) dz =



εr+1

r + 1

[
2F0,1(ε) − 1

]
− 2

r + 1

∫ ε

0
zr+1 dF0,1(z), if r ≥ 1 is odd,

εr+1/(r + 1), if r ≥ 0 is even.

(28)
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Proof of equation (21)

The proof involves two changes of variables, s = F−1
0,1 (u) and t = F−1

0,1 (v),
an application of formula (28) with r = 0 and r = 1, and a number of
simplifications:

σ 2
a1,a1

(1) =
∫ 1−a1

a1

∫ 1−a1

a1

(u ∧ v − uv)

[
1

1 − 2a1

] [
1

1 − 2a1

]
dF−1

µ,σ (u) dF−1
µ,σ (v)

= σ 2

(1−2a1)2

∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

[
F0,1(s)∧F0,1(t)−F0,1(s)F0,1(t)

]
dsdt

= σ 2

(1−2a1)2

{∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

[∫ t

F−1
0,1(a1)

F0,1(s) ds+
∫ F−1

0,1(1−a1)

t
F0,1(t)ds

]
dt

−
[∫ F−1

0,1 (1−a1)

F−1
0,1 (a1)

F0,1(s) ds

]2 }

= σ 2

(1 − 2a1)2

{
2a1

[
F−1

0,1 (a1)
]2 + 2

∫ F−1
0,1 (1−a1)

0
s2 dF0,1(s)

}

= σ 2

(1 − 2a1)2

{
2a1

[
F−1

0,1 (a1)
]2 + δ2(F0,1, a1)

}
,

This completes the proof of equation (21). �

Proof of equation (23)

The proof is based on the changes of variables z = F−1
0,1 (u) and an application

of formula (27) with r = 2:

µn(2) =
∫ 1−a2

a2

[
1
] (

F−1
µ,σ (u) − µ

)2
du

= σ 2
∫ 1−a2

a2

(
F−1

0,1 (u)
)2

du

= σ 2

[
2
∫ F−1

0,1 (1−a2)

0
z2 dF0,1(z)

]
= σ 2 δ2(F0,1, a2).

This completes the proof of equation (23). �
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Proof of equation (24)

The proof involves two changes of variables, s = F−1
0,1 (u) and t = F−1

0,1 (v),
several applications of formula (28) with r = 1 and r = 3, and several simpli-
fications:

σ 2
a2,a2

(2) =
∫ 1−a2

a2

∫ 1−a2

a2

(u ∧ v − uv)
[
1
][

1
]

d
[
F−1

µ,σ (u) − µ
]2

d
[
F−1

µ,σ (v) − µ
]2

= 4σ 4
∫ F−1

0,1 (1−a2)

F−1
0,1 (a2)

∫ F−1
0,1 (1−a2)

F−1
0,1 (a2)

[
F0,1(s) ∧ F0,1(t)−F0,1(s)F0,1(t)

]
s t ds dt

=4σ 4

{∫ F−1
0,1 (1−a2)

F−1
0,1(a2)

[∫ t

F−1
0,1(a2)

s t F0,1(s) ds+
∫ F−1

0,1 (1−a2)

t
s t F0,1(t) ds

]
dt

−
[∫ F−1

0,1 (1−a2)

F−1
0,1 (a2)

s F0,1(s) ds

]2 }

= σ 4

{
2
∫ F−1

0,1 (1−a2)

0
z4 dF0,1(z) − 8a2

[
F−1

0,1 (a2)
]2

∫ F−1
0,1 (1−a2)

0
z2 dF0,1(z)

−
[

2
∫ F−1

0,1 (1−a2)

0
z2 dF0,1(z)

]2

+ 2a2(1 − 2a2)
[
F−1

0,1 (a2)
]4

}

= σ 4
{
δ4(F0,1, a2) − 4a2

[
F−1

0,1 (a2)
]2

δ2(F0,1, a2)

− δ2
2(F0,1, a2) + 2a2(1 − 2a2)

[
F−1

0,1 (a2)
]4

}
.

This completes the proof of equation (24). �
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Proof of equation (26)

The following steps are similar to those already used in earlier proof:

σa1,a1(1) σa2,a2(2) ρF R AC(1, 2)

=
∫ 1−a2

a2

∫ 1−a1

a1

(u ∧ v − uv)

[
1

1 − 2a1

] [
1
]

dF−1
µ,σ (u) d

[
F−1

µ,σ (v) − µ
]2

= 2σ 3

1 − 2a1

∫ F−1
0,1 (1−a2)

F−1
0,1 (a2)

∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

[
F0,1(s) ∧ F0,1(t) − F0,1(s)F0,1(t)

]
t ds dt

= 2σ 3

1 − 2a1

{∫ F−1
0,1 (1−a2)

F−1
0,1 (a2)

∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

t F0,1(s) ∧ F0,1(t) ds dt

−
∫ F−1

0,1 (1−a2)

F−1
0,1 (a2)

∫ F−1
0,1 (1−a1)

F−1
0,1 (a1)

t F0,1(s) F0,1(t) ds dt

}

= 2σ 3

1 − 2a1

{
0.5F−1

0,1 (a1)δ2(F0,1, a2) − 0.5(1 − 2a2)F−1
0,1 (a1)

[
F−1

0,1 (a2)
]2

−
[
0.5F−1

0,1 (a1)δ2(F0,1, a2) − 0.5(1 − 2a2)F−1
0,1 (a1)

[
F−1

0,1 (a2)
]2

] }
= 0.

This completes the proof of equation (26). �
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Zitikis, R. (1993) A Berry-Esséen bound for multivariate L-estimates with explicit dependence
on dimension. In: Stability Problems for Stochastic Models, pp. 197–211, Lecture Notes in
Mathematics, Vol. 1546, Springer, Berlin.

Zitikis, R. (2002) Large sample estimation of a family of economic inequality indices, Pakistan
Journal of Statistics, (Special Issue in Honour of Dr. S. Ejaz Ahmad) 18, 225–248.

VYTARAS BRAZAUSKAS
Department of Mathematical Sciences
University of Wisconsin-Milwaukee
P.O. Box 413, Milwaukee
Wisconsin 53201, U.S.A.
vytaras@uwm.edu

BRUCE L.JONES
Department of Statistical
and Actuarial Sciences
University of Western Ontario
London, Ontario N6A 5B7, Canada
jones@stats.uwo.ca
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