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In this article, estimation of the common parameter θ , when data X1, . . . , Xn are independent
observations where each Xi is normally distributed N(diθ, θ2) and coefficients of variation
1/d1, . . . , 1/dn are known, is treated. Such a setup is motivated by problems arising in medical,
biological, and chemical experiments. We consider maximum likelihood, linear unbiased minimum
variance type, linear minimum mean square, Pitman-type, and Bayes estimators of θ . Our results gener-
alize work of previous authors in several ways. First, consideration of known but different coefficients
of variation allows more flexibility in designing experiments. Secondly, our treatment can be directly
applied to the case of dependent data with known correlation structure. Further, using Monte Carlo
simulations, we supplement asymptotic findings with small-sample results. We also investigate the
sensitivity of the estimators under various model misspecification scenarios.
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1. Introduction

1.1 Motivation

In immunoassay problems, the unknown concentration level of a chemical constituent in

patient’s blood serum is measured indirectly by comparing the absorbance of light through a

suitably prepared patient’s sample with that of the standard solution. In such studies, a typical

relationship between the concentration level and the mean amount of light absorption is devel-

oped. A batch of experiments is run at each known concentration level and the amount of light

absorption is measured. The variability in light absorption changes according to the concentra-

tion level of the chemical. Suppose that at the concentration level li , a batch of ni experiments

is run. Let zi1, . . . , zini
denote the light absorption measurements. In many cases, the mean,

z̄i , and standard deviation, si , calculated from these data exhibit a relationship of the form

z̄i = cisi . If we assume a normal distribution for the data, then it is equivalent to assuming
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Zi1, . . . , Zini

i.i.d.∼ N(ciθ, θ2). Furthermore, coefficients c1, . . . , ck are usually known from the

past experiments. Hence, to estimate the mean amount of light absorption at various levels of

concentration of the chemical, it is enough to estimate the single parameter θ . Once an esti-

mate of θ is available, the estimates of the mean amount of light absorption can be obtained

as µ̂1 = c1θ̂ , . . . , µ̂k = ck θ̂ . To determine the unknown concentration level of chemical in a

patient’s (or a group of patients’) blood serum, light absorption amounts are measured and the

averages from these measurements are compared with µ̂1, . . . , µ̂k .

Problems involving known coefficients of variation are found in other contexts too. For

instance, Gerig and Sen [1] analyzed data from the Canadian migratory bird surveys in the

various provinces of Canada for the years 1969 and 1970. The individual observations are not

available; however, the summary statistics are given in their article. We reproduce the means,

variances, and coefficients of variation for the years 1969 and 1970 in the following table.

Region Mean Variance cv69 cv70

1 0.6649 0.2055 0.68 0.64

2 0.8317 0.1998 0.54 0.51

3 0.8150 0.1873 0.53 0.53

4 0.7903 0.1865 0.55 0.56

5 0.9383 0.2355 0.52 0.51

6 0.8022 0.2203 0.59 0.59

7 0.9653 0.1848 0.45 0.42

8 1.0085 0.1663 0.40 0.38

9 1.0817 0.1889 0.40 0.44

10 0.9299 0.2186 0.50 0.51

These data indicate that while the coefficients of variation from year to year remain more or

less unchanged, they vary between provinces within each year. Hence, for future years, the

coefficient of variation for each province can be assumed to be known, although they can be

unequal for various provinces. In this case, the model presented in this article can be used

to analyze the data for all the provinces simultaneously instead of analyzing data for each

province separately. Further, Gleser and Healy [2], Khan [3], and Searls [4] also considered

estimating the common parameter θ in normal samples with known coefficient of variation.

Azen and Reed [5] considered estimation of the correlation coefficient in bivariate normal

samples with equal coefficient of variation.

1.2 The problem

In this article, estimation of the common parameter θ , when data X1, . . . , Xn are independent

observations where each Xi is normally distributed N(diθ, θ2) and coefficients of variation

1/d1, . . . , 1/dn are known, is treated. As was illustrated in section 1.1, such problems arise

in medical, biological, and chemical experiments. In order to get better understanding of the

issues addressed in this article, we reformulate the problem as follows.

Suppose we observe a realization of n-variate normal random vector (X1, . . . , Xn)
′ with the mean vector

θ(d1, . . . , dn)
′ and the covariance matrix θ2I , where I is the n × n identity matrix and 1/d1, . . . , 1/dn are

known coefficients of variation. The question of interest is how to estimate θ?

Various types of estimators of θ are proposed in the literature on the basis of the assump-

tion that X1, . . . , Xn are independent normal variables with known and equal coefficients of
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variation. These assumptions, however, introduce two potential sources of error: (i) data may

be independent but not exactly normal and (ii) data may be normal but not independent. One

of the main objectives of this article is to investigate the sensitivity of the estimators when

these violations occur. We consider maximum likelihood, linear unbiased minimum variance

type, linear minimum mean square, and Pitman-type and Bayes estimators. The sensitivity of

these estimators to the violation of assumptions is studied through simulations. Departure from

the normality is studied through the use of various non-normal distributions and the departure

from independence is studied by introducing dependence structure among X1, . . . , Xn. (It is

of course possible that the data are not normal and not independent with completely unknown

dependence structure at the same time but, as will be seen later, the presence of a single source

of error is sufficient to substantially affect the estimators; hence, investigation of the worst

case scenario is not considered in this article.) Specific details are discussed later.

The problem formulated above offers more flexibility in designing experiments than that

already solved by previous authors. Subsequently, we mention some situations that are special

cases of (or can be easily transformed to) our problem and thus can be approached using

results of this article.

• Independent measurements with known and equal coefficients of variation. In the special

case of d1 = · · · = dn, the problem reduces to the one treated by Khan [3], Gleser and

Healy [2], and Sinha [6], for example. All types of estimators presented here are also

studied by these authors (for the case d1 = · · · = dn).

• Independent repeated measurements. In immunoassay problems of section 1.1, for

a fixed concentration level li , repeated measurements are obtained and it is

assumed that data were generated by random variables Zi1, . . . , Zini

i.i.d.∼ N(ciθ, θ2),

where ci is known. Then, in order to estimate parameter θ , data for all

concentration levels l1, . . . , lk can be combined and treated as (X1, . . . , Xn)
′ ∼

N(θ(d1, . . . , dn)
′, θ2I ), where X1 = Z11, . . . , Xn1

= Z1n1
, Xn1+1 = Z21, . . . , Xn1+n2

=
Z2n2

, . . . , Xn1+···+nk−1+1 = Zk1, . . . , Xn1+···+nk
= Zknk

and d1 = · · · = dn1
= c1, . . . ,

dn1+···+nk−1+1 = · · · = dn1+···+nk
= ck , with n1 + · · · + nk = n and I is the n × n identity

matrix.

• Measurements with known dependence structure. Formulas (presented in section 2) for

the estimators of θ can also be applied to the case of dependent data with known cor-

relation structure. However, certain data transformations have to be performed first. This

is done as follows. Suppose we observe a realization of n-variate normal random vector

(Y1, . . . , Yn)
′ with the mean vector θ(d1, . . . , dn)

′ and the covariance matrix θ2�∗, where

�∗ is known. Then, as discussed by Rao [7, section 4a.1), the coordinates of the transformed

vector (X1, . . . , Xn)
′ = �

−1/2
∗ (Y1, . . . , Yn)

′ are independent and each Xi is normally dis-

tributed N(d∗
i θ, θ2) with (d∗

1 , . . . , d∗
n)′ = �

−1/2
∗ (d1, . . . , dn)

′. Hence, the setup for variables

X1, . . . , Xn is exactly the one described above with di’s replaced by d∗
i ’s. Finally, note

that this approach would not work with the estimators of previous authors (designed for

d1 = · · · = dn) because, except for some trivial choices of �∗, in general d∗
1 = · · · = d∗

n

does not hold.

The article is organized as follows. In section 2, the estimators under consideration

are introduced and their properties are investigated. Specifically, it is first shown that all the

estimators are asymptotically equivalent. Then, using Monte Carlo simulations, small-sample

performance of these estimators is studied. It is found that they perform quite differently in

small samples, e.g. mean-square errors for some estimators approach the asymptotic variance

from above while for others from below. In section 3, the sensitivity of bias and mean-square

error of these procedures under various model misspecification scenarios are explored. The
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whole study is graphically summarized by applying the premium-protection approach of

Anscombe [8]. A final discussion and practical recommendations are provided in section 4.

2. Estimators and their properties

In section 2.1, we present and/or derive the estimators under consideration. In particular,

we consider maximum likelihood, linear unbiased minimum variance type, linear minimum

mean square, and Pitman-type and Bayes estimators. It is shown in section 2.2 that all these

estimators are consistent, asymptotically normal, asymptotically unbiased, and asymptotically

efficient (i.e. their limiting variances attain the Cramér–Rao lower bound). In section 2.3, we

establish – via Monte Carlo simulations – that not all estimators perform equivalently in small-

(n = 5 and 15) and moderate-size (n = 25 and 50) samples and that their convergence to the

asymptotic equivalence is from different directions. To bridge between ‘moderate’ and ‘large’

sample sizes, we also include the case n = 100 and, for completeness, we report the n → ∞
case which corresponds to the asymptotic result of section 2.2.

2.1 Estimators

Consider a sample X1, . . . , Xn of independent observations, where Xi is normally distributed

with mean diθ and variance θ2, i = 1, . . . , n, θ > 0. Here, constants 1/d1, . . . , 1/dn represent

known coefficients of variation. Note that information about the sign of θ is incorporated into

the prior knowledge of di’s thus, the assumption of θ > 0 is not restrictive at all.

2.1.1 Maximum likelihood estimator. A straightforward maximization of the log-

likelihood function,

log L(θ |X1, . . . , Xn) = −n

2
log(2π) − n log(θ) − 1

2θ2

n∑

i=1

(Xi − diθ)2,

yields

θ̂MLE =
−
∑n

i=1 diXi +
√

(
∑n

i=1 diXi)2 + 4n
∑n

i=1 X2
i

2n
.

2.1.2 Linear unbiased minimum variance type estimator. If unbiasedness is of fore-

most importance, then there are two obvious (and based on sufficient statistics) choices for

estimation of θ , the weighted mean X̄u and bias-corrected sample standard deviation Su

X̄u = b−1
n

n∑

i=1

diXi and Su = αn

√√√√ 1

n − 1

n∑

i=1

(Xi − diX̄u)2,

where bn =
∑n

i=1 d2
i and αn =

√
(n − 1)/2Ŵ((n − 1)/2)/Ŵ(n/2). Here Ŵ(·) denotes the

gamma function.

As (X̄u, Su) is a sufficient statistic (not complete, though) for θ , the Rao–Blackwell theorem

implies that search for best unbiased estimators for θ should be confined to functions of the

sufficient statistic. Consider the class of linear unbiased estimators

U = {U | U = aX̄u + (1 − a)Su, 0 ≤ a ≤ 1}.
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Using the fact that X̄u and S2
u are independent (see Lemma 1 in Appendix A), it is not difficult

to show that the choice of a, an = v2/(v1 + v2), where v1 = b−1
n and v2 = α2

n − 1, yields the

minimum variance estimator

θ̂LU = v2

v1 + v2

X̄u + v1

v1 + v2

Su.

As the factor an = v2/(v1 + v2) is independent of θ , the estimator θ̂LU is uniformly minimum

variance unbiased estimator in the class U .

2.1.3 Linear minimum mean square estimator. Let us consider the class of estimators

of θ which are linear in X̄u and Su, but not necessarily unbiased. That is, we define

V = {V | V = c1X̄u + c2Su},

where we do not assume that c1 + c2 = 1. (Thus, the class U is a subset of V .) Our objective

is to find an estimator in V that minimizes the mean-square error Eθ (V − θ)2 over all values

of θ . It follows from Lemma 2.1 of Gleser and Healy [2] that such an estimator is

θ̂LMMS = v2

v1 + v2 + v1v2

X̄u + v1

v1 + v2 + v1v2

Su = v1 + v2

v1 + v2 + v1v2

θ̂LU,

where v1 and v2 are defined as before (see section 2.1.2).

2.1.4 Pitman-type estimator. It is easy to see that the parameter θ is a scale parameter for

the family of normal distributions N(diθ, θ2). This fact suggests looking at estimators which

are equivariant under changes of scale. That is, for data X1, . . . , Xn, estimators h(X1, . . . , Xn)

satisfy

h(kX1, . . . , kXn) = kh(X1, . . . , Xn)

for all k > 0.

Let T1 =
∑n

i=1 diXi and T2 =
∑n

i=1 X2
i . As T1 and T2 are jointly sufficient for θ , the argu-

ments similar to those used by Gleser and Healy [2] imply that any scale equivariant estimator

of θ must be of the form θ̂P =
√

T2φ(b), where b is defined subsequently. Hence, the minimum

risk scale equivariant estimator with respect to squared-error loss can be obtained by minimiz-

ing Eθ (θ −
√

T2φ(b))2. This gives φ(b) =
[∫∞

0
tne−t2/2+bt dt

] [∫∞
0

tn+1e−t2/2+bt dt
]−1

=
Jb(n)/Jb(n + 1). Combining these, we get the scale equivariant (sometimes it is called

Pitman-type) estimator as

θ̂P = Jb(n)

Jb(n + 1)

√√√√
n∑

i=1

X2
i ,

where function Jb(·) satisfies the following relationships: Jb(n) = bJb(n − 1) +
(n − 1)Jb(n − 2) for n ≥ 2, Jb(1) = bJb(0) + 1, and Jb(0) = �(b)/ϕ(b), with b =
∑n

i=1 diXi/

√∑n
i=1 X2

i . Here, �(·) and ϕ(·) denote the cdf and pdf of the standard normal

distribution, respectively.
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2.1.5 Bayes estimator. In this section, we derive the Bayes estimator with inverse gamma

prior for θ . As θ2 represents the variance of the N(diθ, θ2) distribution and the inverse gamma

distributions have previously been used in estimating variances of normal populations, we

consider the prior (inverse gamma) density given by

π(θ) = wr

Ŵ(r)
θ−r−1e−w/θ , θ > 0,

where parameters r > 0 and w > 0 have to be specified in advance.

For the squared-error loss, the Bayes estimator is the mean of the posterior distribution. A

straight-forward calculation shows that the Bayes estimator can be expressed as

θ̂B = Jb∗(n + r − 2)

Jb∗(n + r − 1)

√√√√
n∑

i=1

X2
i ,

where Jb∗(n + r − 2) =
∫∞

0
tn+r−2e−t2/2+b∗t dt , with b∗ = (

∑n
i=1 diXi − w)/

√∑n
i=1 X2

i .

Obviously, Jb∗(·) satisfies the same recurrent relationships as function Jb(·) of section 2.1.4.

Computation of Jb∗(·), however, is not trivial when both r and w are large. In such situa-

tions, we suggest to directly evaluate the ratio Jb∗(n + r − 2)/Jb∗(n + r − 1) using numerical

integration methods. Note that the ratio can be written as

Jb∗(n + r − 2)

Jb∗(n + r − 1)
=
∫∞

0
e(n+r−2) log t−0.5(t−b∗)2

dt∫∞
0

e(n+r−1) log t−0.5(t−b∗)2
dt

=
∫∞

0
e−M+(n+r−2) log t−0.5(t−b∗)2

dt∫∞
0

e−M+(n+r−1) log t−0.5(t−b∗)2
dt

.

Here, M = b∗/2 +
√

(b∗/2)2 + (n + r − 2) is the value of t where function (n + r − 2)

log t − 0.5(t − b∗)2 attains its maximum. By subtracting M in the exponent, we can reduce

the magnitude of both integrands. (An excellent source of numerical recipes for statistical

problems is Lange [9].)

Remark 1 Estimation using uninformative priors. The inverse gamma prior is not the

only choice to consider and other alternatives may be pursued. For example, for the prob-

lem being considered, the Bayes estimator based on the uninformative (improper) prior,

π(θ) ∝ 1/θ3, θ > 0, coincides with the Pitman estimator of section 2.1.4. Thus, the estimator

θ̂P serves as an example of Bayes estimation using an uninformative prior.

2.2 Asymptotic properties

In the technical derivations of this section (and of Appendix A), the following probabilistic

notation is frequently used: ‘
p→’ denotes ‘convergence in probability’, ‘

D→’ denotes ‘conver-

gence in distribution’, ‘
D

≈’ denotes ‘approximately equal in distribution’, and ‘Op(·)’ denotes

‘stochastic O(·)’.
For definitions, examples, and some standard approximation arguments involving these

concepts in our derivations, see, for example, Serfling (10, chapter 1).

Let L(θ | X1, . . . , Xn) =
∏n

i=1 f (Xi | θ) denote the likelihood function. Then, for Xi ∼
N(diθ, θ2), a straightforward calculation shows that the Fisher information, I (θ), is given by

I (θ) = −E

(
∂2L(θ | X1, . . . , Xn)

∂θ2

)
= 2n + bn

θ2
,

where bn =
∑n

i=1 d2
i . Next, without the loss of generality, we can assume that the constants

di are bounded from above. Then, the limit limn→∞ bn/n exists and let it be denoted by d2.
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The large sample asymptotic properties of the proposed estimators are stated in Theorem 1.

In order to have a continuous flow of presentation, a proof of the theorem is postponed to

Appendix A.

THEOREM 1 Let θ̂MLE, θ̂LU, θ̂LMMS, θ̂P, θ̂B be defined as in section 2.1. These estimators have

the following asymptotic properties:

(a) limn→∞ n[E(θ̂MLE − θ)] = −θ(2 + 3d2)(2 + d2)−3,

(b) limn→∞ (2n + bn)[E(θ̂MLE − θ)2] = θ2,

(c)
√

n(θ̂MLE − θ)
D→ N(0, θ2(2 + d2)−1),

(d)
√

2n + bn(θ̂MLE − θ)
D→ N(0, θ2),

(e)
√

2n + bn(θ̂LU − θ)
D→ N(0, θ2),

(f) limn→∞
√

2n + bn[E(θ̂LMMS − θ)] = −θ ,

(g)
√

2n + bn(θ̂LMMS − θ)
D→ N(0, θ2),

(h) As n → ∞, θ̂MLE

D

≈ θ̂B

D

≈ θ̂P.

Remark 2 Asymptotic equivalence of the estimators. The results stated by Theorem 1 indicate

that the estimators θ̂MLE, θ̂LU, θ̂LMMS, θ̂P, and θ̂B have the same asymptotic distribution. That

is, they are asymptotically normal with mean θ and variance θ2/(2n + bn). Moreover, the

limiting variance is exactly 1/I (θ), which means that it attains the Cramér–Rao lower bound.

2.3 Small-sample performance

As was seen in the previous section, all the estimators are asymptotically equivalent and, thus,

it is of interest to investigate their small-sample performance. Here, we performed simulations

of θ̂MLE, θ̂LU, θ̂LMMS, θ̂P, and three Bayes estimators θ̂B1, θ̂B2, θ̂B3. The Bayes estimators are

indexed by different prior distribution parameters and are expected to provide additional insight

regarding the sensitivity of these estimators to the choice of prior parameters. Parameters r > 0

and w > 0 (of the inverse gamma distribution) are selected using the following arguments. If θ0

is the true value of θ used in simulations, then different combinations of r and w lead to different

levels of the probability mass concentration around θ0. Of course, because the inverse gamma

family is not symmetric, declaration of ‘center’ is subjective. One way to define θ0 as center

is to let θ0 be the average of the α/2-quantile and (1 − (α/2))-quantile of the inverse gamma

distribution with parameters r and w, i.e. the middle point of the middle (1 − α) · 100% of

probability mass. Straightforward simplifications of this condition yield the following relation

between w and r

w

θ0

= 2
G−1

r,1 (α/2)G−1
r,1 (1 − (α/2))

G−1
r,1 (α/2) + G−1

r,1 (1 − (α/2))
(1)

where G−1
r,1 (α) denotes the α-quantile of the gamma distribution with parameters r and 1.

Further, we add one more condition to control the width of the interval where the middle

(1 − α) · 100% of probability mass resides. This is done by deciding on the level of the

relative error between the (1 − (α/2))-quantile and θ0, which can be expressed as

qr,w(1 − (α/2)) − θ0

θ0

=
G−1

r,1 (1 − (α/2)) − G−1
r,1 (α/2)

G−1
r,1 (1 − (α/2)) + G−1

r,1 (α/2)
, (2)

where qr,w(α) denotes the α-quantile of the inverse gamma distribution with parame-

ters r and w. Finally, for α = 0.10 and [qr,w(1 − (α/2)) − θ0]/θ0 ≈ 0.70, 0.40, and 0.20,

equations (1) and (2) lead to prior information, that is,
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• significantly off target (estimator θ̂BI): r = 4, w/θ0 = 2.3232, qr,w(0.05)/θ0 = 0.2996,

qr,w(0.95)/θ0 = 1.7004; moder,w/θ0 = 0.4646, medianr,w/θ0 = 0.6327, meanr,w/θ0 =
0.7744.

• slightly off target (estimator θ̂B2): r = 15, w/θ0 = 13.0004, qr,w(0.05)/θ0 = 0.5940,

qr,w(0.95)/θ0 = 1.4060; moder,w/θ0 = 0.8125, medianr,w/θ0 = 0.8863, meanr,w/θ0 =
0.9286.

• almost on target (estimator θ̂B3): r = 66, w/θ0 = 63.8953, qr,w(0.05)/θ0 = 0.7996,

qr,w(0.95)/θ0 = 1.2004; moder,w/θ0 = 0.9537, medianr,w/θ0 = 0.9730, meanr,w/θ0

= 0.9830.

Figure 1 illustrates how on/off target prior densities are for θ0 = 1.

We used the following design for the Monte Carlo simulation study.

1. A total of 25,000 samples of size n were generated from a normal distribution N(diθ, θ2),

i = 1, . . . , n, for a fixed choice of θ , d1, . . . , dn. (As our first choice of parameters, we used

θ = 1 and di = i log 5/ log 100, i = 1, . . . , n. (Rationale: the formula for di yields d1 = 1 and

d100 = 5.)

2. For each estimator in the study, these samples were used to compute estimates

θ̂1, . . . , θ̂25,000. Then, the mean (denoted m̂(θ̂)) and MSE (denoted m̂se(θ̂)) of these

θ̂1, . . . , θ̂25,000 were evaluated.

3. Without changing θ, d1, . . . , dn, steps 1 and 2 were repeated 10 times and statis-

tics m̂j (θ̂), m̂sej (θ̂), j = 1, . . . , 10, were obtained for each estimator. Then, the mean

and standard deviation of the standardized quantities, m̂1(θ̂)/θ, . . . , m̂10(θ̂)/θ and

m̂se1(θ̂)/C, . . . , m̂se10(θ̂)/C, where C = θ2/
∑n

i=1(d
2
i + 2), were calculated.

Figure 1. Inverse gamma priors around the target value θ0 = 1.
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Table 1. Values of mean (×θ−1) and mse (×θ−2
∑n

i=1(d
2
i + 2)) for selected n.

n

Statistic Estimator 5 15 25 50 100 ∞

Mean θ̂MLE 0.95(0.001) 0.98(0.001) 0.99(0.001) 1.00(0.001) 1.00(0.001) 1

θ̂LU 1.00(0.002) 1.00(0.001) 1.00(0.001) 1.00(0.001) 1.00(0.001) 1

θ̂LMMS 0.91(0.002) 0.97(0.001) 0.98(0.001) 0.99(0.001) 1.00(0.001) 1

θ̂P 0.92(0.001) 0.97(0.001) 0.98(0.001) 0.99(0.001) 1.00(0.001) 1

θ̂B1 0.95(0.001) 0.98(0.001) 0.99(0.001) 0.99(0.001) 1.00(0.001) 1

θ̂B2 0.96(0.001) 0.98(0.001) 0.98(0.001) 0.99(0.001) 1.00(0.001) 1

θ̂B3 0.98(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 1.00(0.001) 1

MSE θ̂MLE 0.97(0.006) 0.99(0.011) 0.99(0.009) 0.99(0.012) 1.00(0.007) 1

θ̂LU 1.23(0.009) 1.08(0.009) 1.05(0.009) 1.02(0.012) 1.01(0.007) 1

θ̂LMMS 1.04(0.008) 1.02(0.009) 1.01(0.008) 1.00(0.012) 1.00(0.007) 1

θ̂P 0.92(0.006) 0.97(0.010) 0.98(0.009) 0.99(0.012) 0.99(0.007) 1

θ̂B1 0.68(0.004) 0.86(0.009) 0.91(0.008) 0.95(0.012) 0.97(0.007) 1

θ̂B2 0.23(0.001) 0.52(0.005) 0.65(0.006) 0.79(0.011) 0.88(0.007) 1

θ̂B3 0.03(0.001) 0.12(0.001) 0.21(0.002) 0.39(0.005) 0.59(0.005) 1

Note: The given entries are mean values (and standard deviations in parentheses) based on 10 replications.

The results of step 3 are reported in table 1. We also performed additional simulation studies,

for other choices of θ , d1, . . . , dn (in step 1), and found the outcomes to be identical to those

of table 1.

The mean of all estimators converges to θ quite fast, underestimating it by no more than

2% for n ≥ 25. As expected, the unbiased estimator LU beats the competition with respect

to this criterion. The MSE of the MLE also converges fast to the asymptotic counterpart,

being a bit more favorable in small samples (3% improvement for n = 5 and 1% for n = 15,

25, 50). Performances of LU and LMMS estimators are inferior to that of MLE in small

samples and become comparable only in samples of at least 50 observations. The P estimator is

slightly outperforming MLE for n ≤ 25 and exhibits equivalent performance in larger samples

(n ≥ 50). The Bayes estimator equipped with varying quality prior information can provide

from moderate to substantial improvements over MLE in small samples, which decrease as

n becomes larger. For example, if prior information is ‘significantly off’ target, the MSE of

the Bayes estimator θ̂B1 is almost 30% better than that of MLE for n = 5 and 13% better for

n = 15; if prior information is ‘slightly off’ target (for θ̂B2), the improvement is even greater:

76% for n = 5, 47% for n = 15, and 34% for n = 25; if prior information is ‘almost on’

target (for θ̂B3), the Bayes estimator performs spectacularly: 97% improvement over MLE for

n = 5, 79% for n = 25, and 41% for n = 100. Finally, note that the bias contribution to the

MSE is negligible when compared with that of variance. Thus, MSE is essentially measuring

variability.

3. Sensitivity study

Findings of the previous section demonstrate that the Bayes estimator is sensitive to the choice

of the prior distribution parameters. Here, we go further and investigate the sensitivity of all the

estimators under various model misspecification scenarios. In section 3.1, we study the case

where, instead of a normal distribution, data are generated by other symmetric distributions

(but with the same location parameters and the same coefficients of variation). In section 3.2,
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we treat the problem of undetected dependence, i.e. when the assumption of independence

is violated, and in section 3.3, we summarize the sensitivity study by applying the premium-

protection approach of Anscombe [8].

3.1 Scenario 1: misspecified distribution

We fix the coefficients of variation 1/d1, . . . , 1/dn to match those used in the study of

section 2.3 and, instead of a normal distribution, consider six other similar shape distribu-

tions (with the same locations: d1θ, . . . , dnθ ). Specifically, we generate data X1, . . . , Xn from

the following families:

• Logistic with the cdf of Xi given by

F
(Logistic)

Xi
(x) = 1

1 + e−(x−diθ)/(θ
√

3/π)
, −∞ < x < ∞,

• Laplace with the cdf of Xi given by

F
(Laplace)

Xi
(x) =





1

2
e−(diθ−x)/(θ/

√
2), −∞ < x ≤ diθ,

1 − 1

2
e−(x−diθ)/(θ/

√
2), diθ < x < ∞,

• Contaminated normal with the cdf of Xi given by

F
(contam)
Xi

(x) = (1 − ε)�

(
x − diθ

θ

)
+ εG(x), −∞ < x < ∞,

where �(·) is the cdf of the standard normal distribution and G(·) denotes the cdf of

a contaminating distribution. We consider four combinations of ε and G : ε = 0.20, G =
F

(Logistic)

Xi
(denoted ‘logistic’ contamination, 20%), ε = 0.20, G = F

(Laplace)

Xi
(denoted

‘Laplace’ contamination, 20%), ε = 0.50, G = F
(Logistic)

Xi
(denoted ‘logistic’ contamination,

50%), ε = 0.50, G = F
(Laplace)

Xi
(denoted ‘Laplace’contamination, 50%). Note that by choos-

ing ε = 1, we get F
(contaim)
Xi

= G. Therefore, in figure 2 and table 2, the logistic and Laplace

families will be, respectively, denoted as ‘logistic’ contamination, 100%, and ‘Laplace’

contamination, 100%.

In figure 2, plots of the assumed normal distribution pdf versus various contaminated

normal pdf’s are presented for di = 10 and θ = 1. One can see that differences between

the curves are small and, thus, the distributional misspecifications are realistic, likely, and

dangerous.

Simulations are performed by following the procedure of section 2.3. In this section,

however, 25,000 samples are generated from the six non-normal distributions, but param-

eter θ is estimated using formulas of section 2.1, which are designed for strictly normal data.

In table 2, we report the standardized mean’s and MSE’s of the estimators (with their standard

errors in parentheses) under various distributional scenarios, for sample size n = 5, 15, 25.

Patterns for other choices of n are similar and are graphically summarized in section 3.3. The

‘ideal case’ where data follow the assumed normal distribution is included as a reference.

The mean of all estimators is virtually unchanged from that in the ideal case, under both

types and for all levels of contamination, and for all n. (Thus, similar to table 1, the bias is

negligible, and MSE is essentially measuring variability.) However, the MSE’s are inflated

by contamination for all estimators and that inflation gets larger as sample size increases;
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Figure 2. The pdf of N(diθ, θ2) with di = 10, θ = 1 (dashed line – – – ) versus contaminated normal pdf’s (solid
line ——) for selected levels of Laplace and logistic contaminations.

and, for a fixed level of contamination and a fixed n, ‘Laplace’ type is more severe than

‘logistic’. For example, for n = 5, the MSE of the estimators increases by 4–8% (9–19%),

9–19% (24–46%), and 20–40% (49–88%) for the ‘logistic’ (‘Laplace’) 20%, 50%, and 100%

contamination, respectively; for n = 15, the MSE of the estimators increases by 7–8% (18–

21%), 19–22% (46–54%), and 39–45% (96–107%) for the ‘logistic’(‘Laplace’) 20%, 50%, and

100% contamination, respectively; for n = 25, the MSE of the estimators increases by 8–9%

(21–24%), 21–24% (53–57%), 44–48% (110–116%) for the ‘logistic’ (‘Laplace’) 20%, 50%,

and 100% contamination, respectively. Although not reported in the table, the corresponding

percentage ranges for n = 100 are 11% (27%), 27–28% (67–68%), and 54% (134–136%) for

the ‘logistic’ (‘Laplace’) 20%, 50%, and 100% contamination, respectively. Finally, note that

computation of these ranges was based on the values of MSE’s accurate within four decimal

places, and thus for some entries (e.g. for n = 5 and θ̂B3), there are numerical inconsistencies

between the table and this discussion.

3.2 Scenario 2: undetected dependence

In this section, we investigate the behavior of the estimators θ̂MLE, θ̂LU, θ̂LMMS, θ̂P, θB1, θ̂B2, θ̂B3

when the covariance structure of vector (X1, . . . , Xn)
′ is altered. The alterations are introduced

by replacing the identity matrix I with �, where σij = ρ|i−j | for i, j = 1, . . . , n, i �= j , and

σii = 1 for i = 1, . . . , n. As ρ = 0 corresponds to the independent case, we choose three
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Table 2. Values of mean (×θ−1) and MSE (×θ−2
∑n

i=1(d
2
i + 2)) for n = 5, 15, 25.

Logistic contamination Ideal case Laplace contamination

Statistic Estimator 100% 50% 20% Normal 20% 50% 100%

Sample size: n = 5

Mean θ̂MLE 0.94(0.002) 0.95(0.001) 0.95(0.001) 0.95(0.001) 0.95(0.001) 0.94(0.001) 0.93(0.002)

θ̂LU 0.99(0.002) 0.99(0.002) 1.00(0.001) 1.00(0.002) 0.99(0.001) 0.98(0.001) 0.97(0.002)

θ̂LMMS 0.90(0.002) 0.91(0.002) 0.91(0.001) 0.91(0.002) 0.91(0.001) 0.90(0.001) 0.88(0.002)

θ̂P 0.91(0.002) 0.92(0.001) 0.92(0.001) 0.92(0.001) 0.92(0.001) 0.91(0.001) 0.90(0.002)

θ̂B1 0.94(0.002) 0.95(0.001) 0.95(0.001) 0.95(0.001) 0.95(0.001) 0.94(0.001) 0.93(0.002)

θ̂B2 0.95(0.001) 0.96(0.001) 0.96(0.001) 0.96(0.001) 0.95(0.001) 0.95(0.001) 0.95(0.001)

θ̂B3 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001)

MSE θ̂MLE 1.25(0.013) 1.11(0.012) 1.02(0.014) 0.97(0.006) 1.10(0.015) 1.31(0.014) 1.63(0.020)

θ̂LU 1.48(0.018) 1.35(0.016) 1.28(0.017) 1.23(0.009) 1.35(0.018) 1.53(0.019) 1.84(0.024)

θ̂LMMS 1.24(0.015) 1.13(0.013) 1.07(0.014) 1.04(0.008) 1.13(0.015) 1.28(0.015) 1.55(0.020)

θ̂P 1.17(0.012) 1.04(0.011) 0.96(0.013) 0.92(0.006) 1.03(0.014) 1.22(0.013) 1.51(0.018)

θ̂B1 0.87(0.009) 0.78(0.008) 0.72(0.010) 0.68(0.004) 0.77(0.011) 0.91(0.010) 1.13(0.014)

θ̂B2 0.30(0.003) 0.26(0.003) 0.24(0.003) 0.23(0.001) 0.26(0.004) 0.31(0.004) 0.39(0.005)

θ̂B3 0.04(0.001) 0.03(0.001) 0.03(0.001) 0.03(0.001) 0.03(0.001) 0.04(0.001) 0.05(0.001)

Sample size: n = 15

Mean θ̂MLE 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.002) 0.97(0.001)

θ̂LU 0.99(0.001) 1.00(0.002) 1.00(0.001) 1.00(0.001) 1.00(0.001) 0.99(0.002) 0.98(0.001)

θ̂LMMS 0.96(0.001) 0.97(0.002) 0.97(0.001) 0.97(0.001) 0.97(0.001) 0.96(0.002) 0.95(0.001)

θ̂P 0.97(0.001) 0.97(0.001) 0.97(0.001) 0.97(0.001) 0.97(0.001) 0.97(0.002) 0.96(0.001)

θ̂B1 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.002) 0.97(0.001)

θ̂B2 0.97(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.97(0.001) 0.97(0.001)

θ̂B3 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.98(0.001)

MSE θ̂MLE 1.41(0.018) 1.20(0.009) 1.07(0.013) 0.99(0.011) 1.19(0.008) 1.49(0.010) 2.01(0.025)

θ̂LU 1.50(0.017) 1.28(0.009) 1.15(0.013) 1.08(0.009) 1.27(0.010) 1.57(0.013) 2.11(0.024)

θ̂LMMS 1.41(0.016) 1.21(0.009) 1.09(0.012) 1.02(0.009) 1.20(0.009) 1.48(0.012) 1.99(0.023)

θ̂P 1.37(0.018) 1.17(0.009) 1.04(0.013) 0.97(0.010) 1.16(0.008) 1.45(0.010) 1.96(0.024)

θ̂B1 1.23(0.016) 1.04(0.008) 0.93(0.011) 0.86(0.009) 1.04(0.007) 1.30(0.009) 1.75(0.022)

θ̂B2 0.73(0.009) 0.62(0.004) 0.56(0.007) 0.52(0.005) 0.62(0.005) 0.78(0.005) 1.05(0.013)

θ̂B3 0.17(0.002) 0.15(0.001) 0.13(0.002) 0.12(0.001) 0.15(0.001) 0.19(0.002) 0.25(0.003)

Sample size: n = 25

Mean θ̂MLE 0.99(0.002) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.98(0.002)

θ̂LU 1.00(0.002) 1.00(0.001) 1.00(0.001) 1.00(0.001) 1.00(0.001) 0.99(0.001) 0.99(0.002)

θ̂LMMS 0.98(0.002) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.97(0.002)

θ̂P 0.98(0.002) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.97(0.002)

θ̂B1 0.98(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.98(0.001) 0.98(0.002)

θ̂B2 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.001) 0.98(0.002)

θ̂B3 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001) 0.99(0.001)

MSE θ̂MLE 1.46(0.025) 1.22(0.011) 1.08(0.007) 0.99(0.009) 1.22(0.013) 1.55(0.018) 2.13(0.037)

θ̂LU 1.51(0.026) 1.27(0.012) 1.13(0.008) 1.05(0.009) 1.27(0.015) 1.60(0.019) 2.19(0.040)

θ̂LMMS 1.45(0.025) 1.22(0.011) 1.09(0.007) 1.01(0.008) 1.22(0.014) 1.54(0.018) 2.11(0.038)

θ̂P 1.43(0.024) 1.20(0.010) 1.06(0.007) 0.98(0.009) 1.20(0.013) 1.52(0.018) 2.09(0.037)

θ̂B1 1.33(0.023) 1.12(0.010) 0.99(0.006) 0.91(0.008) 1.12(0.012) 1.42(0.017) 1.95(0.034)

θ̂B2 0.95(0.016) 0.79(0.007) 0.70(0.004) 0.65(0.006) 0.79(0.009) 1.01(0.012) 1.39(0.024)

θ̂B3 0.32(0.006) 0.26(0.002) 0.23(0.002) 0.21(0.002) 0.26(0.003) 0.34(0.004) 0.46(0.009)

Note: The given entries are mean values (and standard deviations in parentheses) based on 10 replications.

levels of correlation ρ = 0.75, 0.95, and 0.999. These respective choices yield positively

weakly, positively moderately, and positively strongly correlated data. Such a characterization

is motivated by the consideration of the correlation coefficient between two least dependent

coordinates, which is given by ρn−1 and some of its numerical values are presented in table 3.
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Table 3. Values of ρn−1 for selected n.

n

Data dependence 5 15 25 50 100

Weak (ρ = 0.75) 0.3164 0.0178 0.0010 ∼10−6 ∼10−12

Moderate (ρ = 0.95) 0.8145 0.4877 0.2920 0.0810 0.0062

Strong (ρ = 0.999) 0.9960 0.9861 0.9763 0.9522 0.9057

The case of moderate-mixed correlation, which corresponds to ρ = −0.75, is also included in

the study. Here, the term ‘mixed correlation’ is used because some pairs of the X’s coordinates

are positively correlated (when |i − j | is even), whereas the remaining ones are negatively

correlated (when |i − j | is odd).

Similar to Scenario 1, the simulation study is performed by following the procedure of

section 2.3. For each type of dependence, 25,000 samples were generated using � but param-

eter θ was estimated using formulas of section 2.1 which are designed for the independent data.

In table 4, the standardized mean’s and MSE’s are reported for the four types of dependence

and for sample size n = 5, 15, 25. Results for other choices of n are graphically summarized

in section 3.3. The ‘zero’ correlation case is included as a reference.

In table 4, notation (+) and (±) is used to denote scenarios when ρ > 0 and ρ < 0,

respectively. One can see that the presence of correlation in the data has damaging effect

on the mean and MSE of the estimators which are designed for the independent data. Indeed,

as the level of positive correlation increases, all estimators have increasing negative bias which

is even larger for ρ < 0. The bias becomes smaller as n increases but it does not vanish (even

for sample sizes as large as n = 100). The linear estimators, LU and LMMS, are the worst

performers with respect to bias. Further examination of the table shows that the effect of corre-

lation on MSE’s is catastrophic (measured in hundreds of percentage points!), it becomes even

larger as ρ > 0 increases and is further magnified by increasing n. Comparisons of moderate

(+) versus moderate (±) correlations show that the positive scenario has a more severe effect.

Interestingly, the linear estimators, LU and LMMS, are least affected by correlation and are

even the best performers for ρ < 0, with respect to MSE. This fact becomes even more evident

when we summarize simulation results in figure 3. Finally, the inconsistencies between the

table and this discussion for n = 5 disappear when n reaches 15.

3.3 Premium–protection plots

We shall summarize the sensitivity study via the premium–protection (PP) approach of

Anscombe [8], which was effectively employed by Brazauskas and Serfling [11] to investigate

efficiency-robustness trade-offs of robust estimators. In the latter paper, the performance of

estimators was summarized using this approach and estimators were displayed as points on

so-called premium versus protection plots (PP-plots).

The approach works as follows. For each estimator T under consideration, corresponding

‘premium’ and ‘protection’ values are defined:

Premium: The relative change, (typically increase) in MSE due to use of T instead of the

MLE in the null case V0 (no violation), i.e.

Premium(T , V0) = MSE(T , V0) − MSE(MLE, V0)

MSE(MLE, V0)
.
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Table 4. Values of mean (×θ−1) and MSE (×θ−2
∑n

i=1(d
2
i + 2)) for n = 5, 15, 25.

Correlation

Sample size Statistic Estimator Strong (+) Moderate (+) Weak (+) Zero Moderate (±)

n = 5 Mean θ̂MLE 0.70(0.004) 0.91(0.004) 0.97(0.003) 0.95(0.001) 0.43(0.002)

θ̂LU 0.32(0.002) 0.87(0.005) 0.86(0.003) 1.00(0.002) 0.25(0.001)

θ̂LMMS 0.32(0.002) 0.78(0.004) 0.77(0.003) 0.91(0.002) 0.25(0.001)

θ̂P 0.68(0.004) 0.88(0.004) 0.94(0.003) 0.92(0.001) 0.43(0.002)

θ̂B1 0.73(0.004) 0.92(0.004) 0.97(0.003) 0.95(0.001) 0.45(0.002)

θ̂B2 0.85(0.002) 0.96(0.002) 0.98(0.002) 0.96(0.001) 0.56(0.002)

θ̂B3 0.96(0.001) 0.99(0.001) 1.00(0.001) 0.98(0.001) 0.83(0.001)

MSE θ̂MLE 3.74(0.041) 3.90(0.034) 2.48(0.020) 0.97(0.006) 1.46(0.014)

θ̂LU 1.12(0.005) 4.35(0.043) 2.07(0.022) 1.23(0.009) 0.61(0.001)

θ̂LMMS 1.10(0.005) 3.55(0.034) 1.70(0.017) 1.04(0.008) 0.61(0.001)

θ̂P 3.48(0.035) 3.63(0.031) 2.32(0.018) 0.92(0.006) 1.44(0.013)

θ̂B1 2.74(0.026) 2.64(0.024) 1.70(0.014) 0.68(0.004) 1.34(0.012)

θ̂B2 0.87(0.010) 0.84(0.009) 0.56(0.006) 0.23(0.001) 0.82(0.006)

θ̂B3 0.11(0.002) 0.11(0.002) 0.07(0.001) 0.03(0.001) 0.12(0.001)

n = 15 Mean θ̂MLE 0.78(0.003) 0.95(0.003) 1.02(0.001) 0.98(0.001) 0.51(0.002)

θ̂LU 0.51(0.002) 0.88(0.003) 0.93(0.001) 1.00(0.001) 0.28(0.001)

θ̂LMMS 0.50(0.002) 0.85(0.003) 0.90(0.001) 0.97(0.001) 0.28(0.001)

θ̂P 0.77(0.003) 0.94(0.003) 1.00(0.001) 0.97(0.001) 0.51(0.002)

θ̂B1 0.78(0.003) 0.95(0.003) 1.01(0.001) 0.98(0.001) 0.52(0.002)

θ̂B2 0.84(0.002) 0.96(0.002) 1.00(0.001) 0.98(0.001) 0.57(0.002)

θ̂B3 0.94(0.001) 0.99(0.001) 1.00(0.001) 0.99(0.001) 0.75(0.001)

MSE θ̂MLE 11.39(0.105) 8.58(0.097) 3.55(0.041) 0.99(0.011) 3.89(0.051)

θ̂LU 4.71(0.051) 7.57(0.099) 2.72(0.030) 1.08(0.009) 0.70(0.002)

θ̂LMMS 4.58(0.050) 7.08(0.093) 2.55(0.028) 1.02(0.009) 0.70(0.002)

θ̂P 11.09(0.102) 8.35(0.094) 3.46(0.040) 0.97(0.010) 3.84(0.051)

θ̂B1 10.04(0.092) 7.40(0.084) 3.07(0.036) 0.86(0.009) 3.71(0.048)

θ̂B2 5.81(0.055) 4.25(0.050) 1.80(0.022) 0.52(0.005) 2.92(0.035)

θ̂B3 1.32(0.015) 1.02(0.014) 0.43(0.006) 0.12(0.001) 0.96(0.012)

n = 25 Mean θ̂MLE 0.80(0.003) 0.96(0.002) 1.02(0.001) 0.99(0.001) 0.57(0.002)

θ̂LU 0.60(0.002) 0.90(0.002) 0.96(0.001) 1.00(0.001) 0.31(0.001)

θ̂LMMS 0.59(0.002) 0.88(0.002) 0.94(0.001) 0.98(0.001) 0.31(0.001)

θ̂P 0.80(0.003) 0.96(0.002) 1.01(0.001) 0.98(0.001) 0.57(0.002)

θ̂B1 0.81(0.003) 0.96(0.002) 1.02(0.001) 0.99(0.001) 0.58(0.002)

θ̂B2 0.84(0.002) 0.97(0.001) 1.01(0.001) 0.98(0.001) 0.61(0.002)

θ̂B3 0.93(0.001) 0.99(0.001) 1.01(0.001) 0.99(0.001) 0.74(0.002)

MSE θ̂MLE 18.89(0.229) 11.27(0.143) 3.81(0.033) 0.99(0.009) 5.92(0.068)

θ̂LU 9.89(0.102) 9.70(0.109) 3.02(0.025) 1.05(0.009) 0.83(0.004)

θ̂LMMS 9.66(0.100) 9.32(0.104) 2.90(0.024) 1.01(0.008) 0.83(0.004)

θ̂P 18.57(0.224) 11.07(0.140) 3.75(0.033) 0.98(0.009) 5.87(0.067)

θ̂B1 17.39(0.209) 10.28(0.130) 3.48(0.030) 0.91(0.008) 5.71(0.065)

θ̂B2 12.10(0.146) 7.13(0.093) 2.44(0.022) 0.65(0.006) 4.78(0.052)

θ̂B3 3.76(0.054) 2.33(0.035) 0.81(0.008) 0.21(0.002) 2.12(0.023)

Note: The given entries are mean values (and standard deviations in parentheses) based on 10 replications.

Protection: The relative change (preferably decrease) in MSE due to use of T instead of the

MLE in a non-null case V (violation), i.e.

Protection(T , V ) = MSE(MLE, V ) − MSE(T , V )

MSE(MLE, V )
.
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For ease of comparison, estimators are displayed as points on the PP-plots, with favorable

estimators being located in the upper left corner (or northwest direction) of the PP-plot,

reflecting maximal protection for minimal premium.

In figure 3, the following symbols are used to denote performances of the estimators under

the violation scenarios of sections 3.1 and 3.2.

Figure 3. Performance of estimators under various distributional and independence violations for n = 5, 15, 25,
50, 100. A benchmark procedure is MLE (coordinates (0, 0)).
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Scenario 1: misspecified distribution Scenario 2: undetected dependence

∗ Logistic contamination, 100% ∗ Weak-positive correlation

⊲ Logistic contamination, 50% ⊲ Moderate-positive correlation

⊳ Logistic contamination, 20% ⊳ Strong-positive correlation

∇ Laplace contamination, 20% ◦ Moderate-mixed correlation

◦ Laplace contamination, 50%

⋄ Laplace contamination, 100%

Also, for convenience, the following notation for the estimators is used: θ̂LU is denoted as

U; θ̂LMMS is denoted as L; θ̂P, θ̂B1, θ̂B2, θ̂B3 are, respectively, denoted as P, B1, B2, B3. In each

PP-plot, the estimator’s performance under the violations corresponds to a column of symbols

below the letter denoting the estimator.

From these plots, the following conclusions emerge. With the exception of estimator B3,

premiums for all estimators are very close to 0 (i.e. they are almost equivalent to MLE), for

sample sizes n ≥ 50. Protections also follow a similar pattern with one additional exception

of L and U estimators under the moderate-mixed correlation scenario. There is no effect of

different distributional violations, except for L and U estimators, for n = 5. However, these

two estimators are consistently outperformed by the other estimators (including the MLE)

under Scenario 1. Consideration of Scenario 2 reveals that the effect of different violations is

significant for L and U estimators, for n ≤ 25, and there is almost no effect for other estimators.

Among the violations, the moderate-mixed correlation scenario seems to have the least

damaging effect on L and U estimators, thus making them very competitive. This is most

visible for n ≥ 25. Overall, estimators B3, B2, B1, and P are located in the favorable ‘north-

west’ territory for all sample sizes and for all scenarios; the L and U estimators demonstrate

some strength under Scenario 2, especially in the case of mixed correlation.

4. Final remarks

The estimators considered in this article, θ̂MLE, θ̂LU, θ̂LMMS, θ̂P, θ̂B1, θ̂B2, θ̂B3, are asymptoti-

cally equivalent and their sensitivity to various distributional and independence violations is of

a similar extent. The most visible differences among the estimators surface when we examine

their small- and moderate-sample behavior. The linear estimators θ̂LU, θ̂LMMS are consistently

outperformed by all the other estimators and thus are less competitive, under Scenario 1. How-

ever, they show some strength under Scenario 2. In particular, in the case of moderate-mixed

correlation, they are very competitive. The Pitman-type estimator θ̂P is performing consis-

tently better than θ̂MLE; however, that improvement is so minimal that, having in mind θ̂P’s

computational complexity, it is probably not worthwhile to implement this estimator in prac-

tice. Examination of overall performances of θ̂P, θ̂B1, θ̂B2, θ̂B3 estimators shows a clear pattern

which agrees with the intuition: for a fixed number of sample observations, more accurate

prior knowledge about θ should yield a more accurate estimator. (Recall that the Pitman-type

estimator is a Bayes estimator based on an uninformative prior (Remark 1) and, thus, can be

labeled as ‘totally off’ target.) Thus, the Bayes estimator enhanced with high quality prior

information can provide remarkable improvements over the MLE and should be included in

practical use. In practice, however, formulating the prior information in as precise a manner

as in θB3 may not be an easy task.

In summary, for most practical situations, the MLE offers a reasonable trade-off between

performance (measured in terms of MSE) and computational simplicity. The Bayes estima-

tor based on even uninformative priors can still provide improvements over the MLE but is
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significantly more complex computationally. Finally, we emphasize again that all these esti-

mators are sensitive to model violations and, thus, they are not robust. Development of robust

estimators for θ (e.g. M-estimators) is an open but more complicated problem and, therefore,

is postponed to future projects.
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Appendix A

LEMMA 1 Let X1, . . . , Xn be independent random variables with Xi ∼ N(diθ, θ2) and let X̄u

and Su be defined as in section 2.1.2. Then (a) X̄u ∼ N(θ, b−1
n θ2), (b)(n − 1)S2

u/θ
2 ∼ χ2

n−1,

and (c)X̄u and S2
u are independent.

Proof First, notice that the joint pdf of X1, . . . , Xn is given by

f (x1, x2, . . . , xn | θ, d1, . . . , dn) = (θ
√

2π)−n exp

{
− 1

2θ2

n∑

i=1

(xi − diθ)2

}
.

Next, consider the transformation Y = AX, where X = (X1, . . . , Xn)
′, Y = (Y1, . . . , Yn)

′,
and A is any orthonormal matrix with the first row (d1/

√
bn, . . . , dn/

√
bn). The following facts

are easily verified:
∑n

i=1 Y 2
i =

∑n
i=1 X2

i , Y1 =
√

bnX̄u,
∑n

i=2 Y 2
i =

∑n
i=1 X2

i − Y 2
1 = (n −

1)S2
u/αn, and

∑n
i=1(Xi − diθ)2 = bn(X̄u − θ)2 +

∑n
i=1(Xi − diX̄u)

2 = (Y1 −
√

bnθ)2 +
Y 2

2 + · · · + Y 2
n . As the Jacobian of the transformation is 1, the joint pdf of Y1, . . . , Yn is

given by

f (y1, y2, . . . , yn | θ, d1, . . . , dn) = (θ
√

2π)−n

× exp

{
− 1

2θ2

[(
y1 −

√
bnθ
)2

+ y2
2 + · · · + y2

n

]}
,

which implies that Y1, . . . , Yn are independent normal random variables. The conclusions

(a), (b), (c) now follow. �
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Proof of Theorem 1 The proof is based on the asymptotic expansion of the maximum-

likelihood estimator. DefineT1 =
∑n

i=1 diXi, T2 =
∑n

i=1 X2
i , λ1 = bnθ , andλ2 = (n + bn)θ

2.

The following results are easy to establish: E(T1) = λ1, E(T2) = λ2, E(T1 − λ1)
2k =

(2k)!bk
nθ

2k/k!2k, E(T2 − λ2)
2 = 2(n + 2bn)θ

4, E(T2 − λ2)
2k = O(nk), E(T1 − λ1)(T2 −

λ2) = 2bnθ
3. Note that the MLE can be expressed as θ̂MLE = g(T1, T2) = 1/2n(−T1 +√

T 2
1 + 4nT2). Then, the first- and second-order expansions of the MLE are given by

g(T1, T2) = g(λ1, λ2) + (T1 − λ1)g10 + (T2 − λ2)g01 + Rn1(λ̃1, λ̃2)

and

g(T1, T2) = g(λ1, λ2) + (T1 − λ1)g10 + (T2 − λ2)g01 + 1/2[(T1 − λ1)
2g20

+ 2(T1 − λ1)(T2 − λ2)g11 + (T2 − λ2)
2g02] + Rn2(λ

∗
1, λ

∗
2),

where constants λ̃1, λ
∗
1 are between T1 and λ1 and constants λ̃2, λ

∗
2 are between T2 and λ2, and

gij (λ1, λ2) = ∂ i+jg(u, v)

∂ui∂vj

∣∣∣∣
λ1,λ2

.

Further, as b−1
n T1

p→θ and (n + bn)
−1T2

p→ θ2, it follows that b−1
n λ̃1

p→ θ, b−1
n λ∗

1

p→ θ,

(n + bn)
−1λ̃2

p→ θ2, and (n + bn)
−1λ∗

2

p→ θ2. Using these and the standard conver-

gence arguments, it can be shown that E(|nRn2(λ
∗
1, λ

∗
2)|) = O(n−1/2) and

√
nRn1(λ̃1, λ̃2) =

Op(n−1/2).

Then, as g(λ1, λ2) = θ , part (a) follows from the second-order expansion of g(T1, T2) upon

substituting the values of g20, g11, g02, expected values, and taking limits as n → ∞. Similarly,

part (b) follows from the first-order expansion of g(T1, T2).

In order to show parts (c) and (d), we observe that

√
n(T1 − λ1)g10 +

√
n(T2 − λ2)g01 =

[
θ
√

nbn

2n + bn

]
Zn +

[
θ
√

2n(n − 1)

2n + bn

]
Wn

+
[

θ
√

n

2n + bn

]
Z2

n +
√

nRn −
[

θ
√

n

2n + bn

]
,

where Zn =
√

bn(X̄u − θ)/θ ∼ N(0, 1) and Wn = (
∑n

i=1(Xi − diX̄u)
2 − (n − 1)θ2)/√

2(n − 1)θ4 are independent random variables. Also, as n → ∞, we have the following:

Wn
D→ N(0, 1) (by central limit theorem), the third and fourth terms

p→ 0, and the last term

→ 0. As a consequence of the above arguments,
√

n(T1 − λ1)g10 + √
n(T2 − λ2)g01

D→ [θd/

(2 + d2)]N1 + [θ
√

2/(2 + d2)]N2, where N1 and N2 are independent N(0, 1) random

variables. Hence, the right-hand side is distributed as N(0, θ2(2 + d2)−1).

Further, for part (e), we decompose
√

n(θ̂LU − θ) into

[
θan√
bn/n

]
Zn +

[
(1 − an)

√
2n(n − 1)α2

nθ
2

(n − 1)(Su + θ)

]
Wn +

[
θ2(1 − an)(α

2
n − 1)

√
n

Su + θ

]
,

where Zn and Wn are same as defined above. As n → ∞, the third term is Op(n−1/2) (because

Su

p→ θ ). Hence,
√

n(θ̂LU − θ)
D→ [θd/(2 + d2)]N1 + [θ

√
2/(2 + d2)]N2

D

≈ N(0, θ2(2 +
d2)−1).
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For parts (f ) and (g), we observe that θ̂LMMS − θ̂LU = −v1v2(v1 + v2 + v1v2)
−1θ̂LU.

As v1v2(v1 + v2 + v1v2)
−1 = O((2n + bn)

−1, it follows that limn→∞(2n + bn) E(θ̂LMMS −
θ) = −θ . Also,

√
n(θ̂LMMS − θ̂LU) = √

n(θ̂LMMS − θ) − √
n(θ̂LU − θ) = Op(n−1/2) implies

that
√

n(θ̂LMMS − θ)
D

≈ √
n(θ̂LU − θ)

D→ N(0, θ2(2 + d2)−1).

To show part (h), we use the inequality (4.12) in Gleser and Healy [2]. Applying the

arguments similar to those used to derive (4.12) by these authors, it can be shown that

θ̂−
B ≤ θ̂B ≤ θ̂+

B , where θ̂−
B is given by

θ̂−
B =

√
T2

2


 −b∗

n + r − 1
+

√(
b∗

n + r − 1

)2

+ 4

n + r − 1




and θ̂+
B is obtained from θ̂−

B by replacing r − 1 by r − 2. Then, it is not difficult to show

that θ̂+
B − θ̂−

B = Op(n−1). As θ̂−
B reduces to θ̂MLE when r = 1 and w = 0, the asymptotic

properties of θ̂−
B can be derived in exactly the same way as those of θ̂MLE. Finally, as θ̂P is

a special case of θ̂B, with r = 2 and w = 0, the technique used for θ̂B can be used to show

θ̂P = θ̂MLE + Op(n−1). �


