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INTERVAL ESTIMATION OF ACTUARIAL RISK
MEASURES

Thomas Kaiser* and Vytaras Brazauskas†

ABSTRACT

This article investigates performance of interval estimators of various actuarial risk measures. We
consider the following risk measures: proportional hazards transform (PHT), Wang transform (WT),
value-at-risk (VaR), and conditional tail expectation (CTE). Confidence intervals for these measures
are constructed by applying nonparametric approaches (empirical and bootstrap), the strict par-
ametric approach (based on the maximum likelihood estimators), and robust parametric proce-
dures (based on trimmed means).

Using Monte Carlo simulations, we compare the average lengths and proportions of coverage
(of the true measure) of the intervals under two data-generating scenarios: ‘‘clean’’ data and
‘‘contaminated’’ data. In the ‘‘clean’’ case, data sets are generated by the following (similar shape)
parametric families: exponential, Pareto, and lognormal. Parameters of these distributions are se-
lected so that all three families are equally risky with respect to a fixed risk measure. In the
‘‘contaminated’’ case, the ‘‘clean’’ data sets from these distributions are mixed with a small frac-
tion of unusual observations (outliers). It is found that approximate knowledge of the underlying
distribution combined with a sufficiently robust estimator (designed for that distribution) yields
intervals with satisfactory performance under both scenarios.

1. INTRODUCTION

When determining the price of an insurance risk, the central problem is to quantify the ‘‘riskiness’’ of
the underlying distribution of losses. The loss variables, for which accurate predictions are difficult to
obtain (e.g., those with large variance and/or heavy right-tail), are deemed more risky, and therefore
they necessitate a higher price. Various risk measures have been proposed in the actuarial literature
to solve this problem. These include the �-factor, conditional tail expectation and variants, proportional
hazards transform, ruin probability, value-at-risk and variants, Wang transform, and others (see Al-
brecht 2004; Dowd 2004; Hardy and Wirch 2004; Jones and Zitikis 2003; Wang 1998, 2000, 2002;
Wang, Young, and Panjer 1997; Wirch and Hardy 1999). However, the quality of statistical estimators
of the risk measures is an insufficiently explored—yet very important in practice—issue. In this paper
we construct asymptotic interval estimators for several frequently used risk measures and, using Monte
Carlo simulations, investigate their performance under two data-generating scenarios: ‘‘clean’’ data
and ‘‘contaminated’’ data. (For motivation and how to formalize such scenarios effectively see Section
2.3.)

There is substantial literature devoted to the question what a ‘‘reasonable’’ risk measure is and what
conditions it should satisfy. As discussed by Albrecht (2004), a number of axiomatic systems are avail-
able in the literature for characterization of risk measures (though most of them have some overlap).
A quite influential one was proposed by Artzner and his collaborators (see Artzner 1999 and the ref-
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erences cited therein) who advocate the use of coherent measures. These are defined as follows. For
loss variables X and Y, a coherent risk measure RISK[�] should satisfy the following axioms:

• Translation invariance: RISK[X � a] � RISK[X] � a, for �� � a � ��
• Scale invariance: RISK[bX] � b RISK[X], for b � 0
• Subadditivity: RISK[X � Y] � RISK[X] � RISK[Y]
• Monotonicity: If X � Y (with probability 1), then RISK[X] � RISK[Y].

For the purpose of estimation (which is one of the main objectives of this paper), it is useful to note
that many of risk measures can be defined as the expectation with respect to distorted probabilities.
That is, for a loss variable X � 0 with distribution function F, a risk measure R can be defined as

�

R(F) � � g(1 � F(x)) dx, (1.1)
0

where the distortion function g(�) is an increasing function with g(0) � 0 and g(1) � 1. In addition, if
g is also differentiable, then

1
�1R(F) � � F (s)�(s) ds, (1.2)

0

where �(s) � g�(1 � s) and F�1 is the quantile function (the inverse of F) of variable X.
While expression (1.1) has interpretive advantages, the second representation (1.2) is more con-

venient for developing empirical estimators of the risk measure R. Indeed, if in equation (1.2) we re-
place F by the empirical distribution function then the integral �(s) ds becomes1 �1ˆ ˆF , � F (s)n 0 n

X(i) �(s) ds], where X(1) � � � � � X(n) denote the ordered values of data X1, . . . , Xn. Hence,n i/n� [�i�1 (i�1)/n

the empirical estimator of a risk measure R(F) is given by
n

ˆR(F ) � c X (1.3)�n in (i)
i�1

with cin � �(s) ds. Note that as defined in equation (1.3) is an L-statistic (linear combi-i/n ˆ� R(F )(i�1)/n n

nation of order statistics). Using this fact, Jones and Zitikis (2003) employ asymptotic theory for L-
statistics to prove that, for underlying distributions with a sufficient number of finite moments and
under certain regularity conditions on function �, the empirical estimator of a risk measure R(F)ˆR(F )n

is strongly consistent and asymptotically normal with the mean R(F) and the variance Q(�, �)/n, where
� �

Q(�, �) � � � [F(min(x, y)) � F(x)F(y)] �(F(x))�(F(y)) dx dy. (1.4)
�� ��

To apply these results in practice, one needs to estimate Q(�, �) (this approach was suggested by
Jones and Zitikis 2003). Alternatively, instead of relying on asymptotic normality of the empirical
estimator one can turn to resampling methods and construct bootstrap confidence intervals.ˆR(F ),n

Both approaches are treated in this paper.
We will also consider the case when in equation (1.2) function F is estimated using parametric and

robust parametric approaches. In this case we assume a specific form of F and then estimate its pa-
rameters using either maximum likelihood estimators (this leads to the so-called strict parametric
approach) or trimmed mean–type estimators (this is known as the robust parametric approach). Since
both techniques lead to estimators that have an asymptotically normal distribution, confidence intervals
for the parameters can be easily constructed. Finally, these intervals are transformed according to
equation (1.2) to get asymptotic confidence intervals for R(F).

Section 2 provides some preliminary definitions, motivation, and the study design. In Section 3 we
construct asymptotic confidence intervals for the risk measures by applying (1) nonparametric ap-
proaches (empirical and bootstrap), (2) the strict parametric approach (based on the maximum like-
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lihood estimators), and (3) robust parametric procedures (based on trimmed means). The next section
shows how these intervals are constructed when data are available. The illustration is based on the
Norwegian Fire Claims (for the year 1975) data. In Section 5 we investigate—via simulation—the
performance of interval estimators based on the three methodologies (1)–(3). Finally, conclusions are
drawn, and a final discussion is provided in Section 6.

2. PRELIMINARIES

In this section we first introduce the risk measures under study (Section 2.1), then define general and
specific objectives of interval estimation (Section 2.2), and finally discuss the design of our Monte
Carlo simulation study (Section 2.3).

2.1 Risk Measures
For a loss variable X � 0 having a continuous distribution function F (equivalently, continuous quantile
function F�1), we consider the following risk measures.

2.1.1 Proportional Hazards Transform (PHT)
The PHT measure is defined by the distortion function g(s) � sr or, equivalently, since function g is
differentiable, by function �(s) � r(1 � s)r�1, and thus is given by

�
rPHT(F, r) � � [1 � F(u)] du

0

1
�1 r�1� r � F (t)(1 � t) dt, (2.1)

0

where constant r (0 � r � 1) represents the degree of distortion (small r corresponds to high distor-
tion). Note that PHT(F, r � 1) is the expected value of X, and PHT(F, 1/2) � PHT(F, 1) is the right-
tail deviation of Wang (1998). The name—proportional hazards transform—is motivated by the fact
that the hazard function of the distorted distribution is proportional to the hazard function of F. Also,
the PHT measure is coherent and satisfies the desirable axioms for a risk measure studied by Wang,
Young, and Panjer (1997).

2.1.2 Wang Transform (WT)
For the WT measure the distortion function g(s) � �(��1(s) � �) is also differentiable; therefore, the
measure can be defined by either function g or �(s) � and is given by�1 2�� (s)�� /2e

�
�1WT(F, �) � � �(� (1 � F(u)) � �) du

0

1
�1 2�1 �� (t)�� /2� � F (t)e dt, (2.2)

0

where �(�) and ��1(�), respectively, denote the cdf and the inverse of the standard normal distribution,
and parameter � reflects the level of systematic risk and is called the market price of risk. The distortion
function g(s) � �(��1(s) � �) was introduced by Wang (2000, 2002) as a tool for pricing both
liabilities (insurance losses) and asset-returns (gains) and, therefore, is valid on interval (��, �). Here
we focus on insurance losses; thus the definition of WT(F, �) as in equation (2.2) is sufficient. Further,
the measure based on g(s) � �(��1(s) � �) is coherent, and, for normally distributed asset-returns,
it recovers the Capital Asset Pricing Model and the Black-Scholes formula. Finally, although theoretically
the risk parameter � can be any real number, we will consider the range of � between �1 and 1 that
was used in several examples presented by Wang (2002).
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2.1.3 Value-at-Risk (VaR)
As the Encyclopedia of Actuarial Science defines it (Dowd 2004), the value-at-risk on a portfolio is the
maximum loss we might expect over a given period, at a given level of confidence (e.g., � � 0.05). In
mathematical terms the VaR measure is nothing else but the (1 � �)–level quantile of the distribution
function F:

�1VaR(F, �) � F (1 � �). (2.3)

Although quantiles of the cdf is a well-understood and thoroughly investigated concept in statistics,
the term value-at-risk came into widespread use in finance and insurance literature only in the early
1990s when J. P. Morgan revealed its RiskMetrics model to the public; the VaR was the key component
of this model. There is vast literature devoted to the methods of estimation and usefulness of this
quantity in applications; perhaps equally vast literature is also devoted to criticisms of VaR. For a
general and recent overview about VaR, the reader should consult Dowd (2004) and the references
therein. Interestingly, this measure is not coherent nor is it the distortion measure (though mathe-
matically it can be expressed as equation [1.1] by choosing g(s) � 0, for 0 � s � �, and � 1, for
� � s � 1). We include the VaR measure in this study because of its mathematical simplicity and wide
popularity among practitioners.

2.1.4 Conditional Tail Expectation (CTE)
The CTE measure (also known as Tail-VaR or expected shortfall) is the conditional expectation of a
loss variable X given that X exceeds a specified quantile (e.g., VaR(F, �)). In other words, it measures
the expected maximum loss in the 100�% worst cases, over a given period. Thus, by choosing
the distortion function g(s) � s/�, for 0 � s � �, and � 1, for � � s � 1, or function �(s) � 0, for
0 � s � 1 � �, and � 1/�, for 1 � � � s � 1, we have

VaR(F,�) �1
CTE(F, �) � � 1 du � � [1 � F(u)] du

0 VaR(F,�)�

11 �1� � F (t) dt. (2.4)
1���

The CTE is a coherent and intuitively appealing measure. And because of these properties it has become
a popular risk-measuring tool in insurance and finance industries. For example, use of the CTE for
determining liabilities associated with variable life insurance and annuity products with guarantees is
recommended in the United States (American Academy of Actuaries 2002) and required in Canada
(Canadian Institute of Actuaries 2002).

2.2 Interval Estimation: Motivation and Objectives
In point estimation problems one usually reports the value of an estimator, called the point estimate,
along with its estimated standard deviation (also known as the standard error). Then the interval ‘‘point
estimate � standard error’’ is supposed to give some idea about the variability of the estimator and is
interpreted as the range where the true parameter is potentially located. Although such a procedure
does yield an interval, it fails to provide the rate of success (also known as the confidence level) of how
often the true parameter will be covered. Hence, it makes more sense to focus on the construction of
confidence intervals because these do not possess the above-mentioned deficiency.

In general, the key objective of (confidence) interval estimation is to identify statistical procedures
that yield the shortest interval while maintaining the desired (high) confidence level. However, as is
known from classical statistical inference, for a fixed method of estimation (and a fixed sample size),
the length and the confidence level of the interval are two competing criteria. This fact suggests,
therefore, that simultaneous improvement with respect to both criteria is possible only when one
considers confidence intervals that are constructed using different techniques of estimation.
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In this article confidence intervals for the risk measures of Section 2.1 are constructed by employing
nonparametric (empirical and bootstrap), parametric (based on the maximum likelihood estimators),
and robust parametric (based on trimmed means) methodologies. Performances of the intervals, that
is, the lengths and the coverage probabilities of the true measure, then are compared. As will be seen
in Section 3, most of the intervals are asymptotic, and all of them are based on various underlying
assumptions. Thus in this setting, it is of great interest to investigate the following issues:

a. Convergence rates: How fast do the proposed (asymptotic) intervals attain the intended confidence
level?

b. Performance at the model: Under strict distributional assumptions, how much do we gain or lose
if, instead of nonparametric intervals, parametric or robust parametric confidence intervals are used?

c. Sensitivity to assumptions: How bad are the consequences if the underlying assumptions necessary
for the theoretical statements to hold are ignored or cannot be verified?

The questions in (a) and (b) are answered for the PHT measure by Brazauskas and Kaiser (2004) and
for the CTE measure by Brazauskas et al. (2006), and similar findings could be anticipated for the
other two measures. Thus, (a) and (b) will be less emphasized in the present paper, but the conclusions
from the two references regarding these issues will be included in the discussion of Section 6. Our
main objective here is issue (c), which will be approached using Monte Carlo simulations.

2.3 Simulation Study: Motivation and Design
Performance of the nonparametric, parametric, and robust parametric intervals (all defined precisely
in Section 3) is investigated under two data-generating scenarios: ‘‘clean’’ data and ‘‘contaminated’’
data. Such scenarios are formalized by employing ε-contamination neighborhoods:

G � (1 � ε)F � εH, (2.5)F,ε

where F is the ‘‘central’’ (assumed) model, H is a ‘‘contaminating’’ distribution (or a mixture of dis-
tributions) that generates outliers, and ε represents the probability that a sample observation comes
from the distribution H instead of F. For ε � 0, family GF,ε generates ‘‘clean’’ data, and, for ε � 0, it
generates ‘‘contaminated’’ data.

REMARK 1

An ‘‘outlier’’ should be understood as not necessarily just another large observation, but rather the
observation that violates the distributional assumptions. In the situations when F itself is supposed to
produce large data points with relatively high probability it is impossible to distinguish between outliers
and representative data. �

From a practical standpoint it is of interest to see how accurately we can estimate a risk measure when
the underlying scenarios of data generation are very similar (but not identical). Thus, for the central
model F in equation (2.5), we consider the following (similar shape) parametric families:

• Pareto with the cdf given by F1(x) � 1 � (x0/x)	, for x � x0 and 	 � 0
• Lognormal with the cdf given by F2(x) � �(log(x � x0) � 
), for x � x0 and �� � 
 � �, where

�(�) denotes the cdf of the standard normal distribution
• Exponential with the cdf given by F3(x) � 1 � for x � x0 and � � 0.�(x�x )/�0e ,

Here the parameter x0 can be interpreted as a deductible or a retention level and, thus, assumed to
be known. (Note that, due to x0, distributions F1, F2, and F3 have the same support.) The remaining
parameters 	, 
, and � are unknown, and we must estimate them from the data. To achieve greater
similarity among these distributions and, thus, to generate data under more realistic scenarios, we
select parameters 	, 
, � so that families F1, F2, F3 are equally risky with respect to a fixed risk measure:
that is, they satisfy the following equation:
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R(F ) � R(F ) � R(F ), (2.6)1 2 3

where R(�) represents any of the four risk measures of Section 2.1. Evaluation of integrals (2.1)–(2.4)
for distributions F1, F2, F3 yields the following expressions of equation (2.6):

• For the PHT measure:

x �0 (1) 
x � � x � C e � x � , (2.7)0 0 r 0	r � 1 r

where, for fixed r, the integral
(1) � r zC � � [1 � �(z)] e dzr ��

is found numerically. For example, as reported by Brazauskas and Kaiser (2004), � 3.896,(1)C0.55

� 2.665, � 2.030, � 1.758.(1) (1) (1)C C C0.70 0.85 0.95

• For the WT measure:
(2)x C0 	,� ��
�0.5 (3)x � � x � e � x � �C , (2.8)0 0 0 �	

where, for fixed �, the integrals
(2) 1 �1 (�	�1)/	C � � �[� (z) � �] z dz,	,� 0

with ��1(�) denoting the inverse of the standard normal cdf, and
2(3) � �(z��) /2C � 1/�2� � �(z)/�(z � �) e dz� ��

are found numerically. For example:

� �1
1

�
2

1
�

4
0

1
4

1
2

1

(2)C	�5.5,� 0.3984 0.7151 0.9401 1.2222 1.5739 2.0101 3.2147
(3)C� 0.3593 0.6185 0.7923 1.0000 1.2449 1.5301 2.2318

• For the VaR measure:
�1�1/	 
�� (1��)x � � x � e � x � � log(�). (2.9)0 0 0

• For the CTE measure:

x 	 10 �1/	 
�0.5 �1� � x � e �(1 � � (1 � �))0	 � 1 �

� x � �(log(�) � 1). (2.10)0

To see how similar the shapes of these parametric distributions are, in Figure 1 we plot the density
functions of families F1, F2, F3 that satisfy condition (2.10) for � � 0.05. As one can see, these functions
are virtually identical in the upper tail (right panel) and slightly differ for smaller values of x (left
panel). (Note that the scale of the vertical axis of the right panel is 1,000 times smaller than that of
the left panel.) Of course, after investing more time and creativity, a determined actuary/statistician
may discover the existing differences. Then he or she would have to figure out how to handle those
differences. The point we are trying to make here is that the distributions are indeed very similar,
straightforward diagnostics most likely will not detect those differences, and more sophisticated ap-
proaches are time and energy consuming. Hence, instead of doing this ‘‘micro-analysis,’’ one can adopt
the approach proposed in this paper and achieve reliable results with a reasonable investment of effort.

For the contaminating distribution H in equation (2.5), we choose the uniform distribution on the
interval (10x0, 50x0), denoted U(10x0, 50x0), with the probability density function given by
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Figure 1
Density Functions of Three Equally Risky (According to the CTE Measure) Distributions:

Pareto(x0 � 1, � � 5.5), Lognormal(x0 � 1, � � �2.044, � � 1), Exponential(x0 � 1, � � 0.277),
with CTE(F1, � � 0.05) � CTE(F2, � � 0.05) � CTE(F3, � � 0.05) � 2.107

�1(40x ) , for 10x � x � 50x ,0 0 0h(x) � � 0, elsewhere.

There are countless possibilities to contaminate the central model in equation (2.5). The choice of
U(10x0, 50x0) is simple and reflects what one would encounter in practice. For example, insurance
portfolios typically generate claims, most of which are relatively small and a few are very large; hence,
the chosen uniform distribution ensures that a small fraction of large claims consistently appear in
generated data sets of our study. Further, although the resulting probability distribution GF,ε is func-
tionally different from F, their shapes are so similar that practically no violations can be diagnosed. To
see this, in Figure 2 we plot the density functions of model GF,ε for ε � 0.00 (left panel) and ε � 0.05
with H � U(10, 50) (right panel) and for the same choice of F1, F2, F3 as in Figure 1. Clearly, the
U(10, 50) density is supposed to introduce a ‘‘bump’’ in all curves, for 10 � x � 50; however, the
bump is so small that cannot be visually detected.

We used the following design for the Monte Carlo simulation study. Five thousand samples of size n
were generated from a distribution GF,ε. For each sample and for each risk measure, a (1 � )–level
confidence interval was constructed using the empirical, bootstrap, parametric, and robust parametric
approaches. Then, based on these 5,000 intervals for each approach, the average length of the interval
and the proportion of times the interval covers the true value of the risk measure was evaluated. This
procedure was repeated five times, and the means and standard errors of the average length and of the
proportion of coverage were recorded. The study was performed for the following (specific) choices of
simulation parameters:

• Confidence level: 1 �  � 0.95
• Contamination level: ε � 0.00, 0.05
• Sample size: n � 25, 50, 100, 250
• Number of bootstrap samples: B � 1,000
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Figure 2
Density Functions of Distribution GF,	 for F1 � Pareto(x0 � 1, � � 5.5),

F2 � Lognormal(x0 � 1, � � �2.044, � � 1), and F3 � Exponential(x0 � 1, � � 0.277):
‘‘Clean’’ Case (	 � 0.00) versus ‘‘Contaminated’’ Case (	 � 0.05 and U(10x0, 50x0) � U(10, 50))

• Measure-related parameters:
Distortion level (for PHT): r � 0.85
Systematic risk (for WT): � � 0.25
Threshold level (for VaR and CTE): � � 0.05

• Target quantities (derived from eqs. (2.7)–(2.10)):
• 1.272 � PHT(F1, r � 0.85) � PHT(F2, r � 0.85) � PHT(F3, r � 0.85),

where F1 � Pareto(x0 � 1, 	 � 5.5), F2 � lognormal(x0 � 1, 
 � �2.010, � � 1),
and F3 � exponential(x0 � 1, � � 0.231).

• 1.286 � WT(F1, � � 0.25) � WT(F2, � � 0.25) � WT(F3, � � 0.25),
where F1 � Pareto(x0 � 1, 	 � 5.5), F2 � lognormal(x0 � 1, 
 � �2.001, � � 1),
and F3 � exponential(x0 � 1, � � 0.230).

• 1.724 � VaR(F1, � � 0.05) � VaR(F2, � � 0.05) � VaR(F3, � � 0.05),
where F1 � Pareto(x0 � 1, 	 � 5.5), F2 � lognormal(x0 � 1, 
 � �1.968, � � 1),
and F3 � exponential(x0 � 1, � � 0.242).

• 2.107 � CTE(F1, � � 0.05) � CTE(F2, � � 0.05) � CTE(F3, � � 0.05),
where F1 � Pareto(x0 � 1, 	 � 5.5), F2 � lognormal(x0 � 1, 
 � �2.044, � � 1),
and F3 � exponential(x0 � 1, � � 0.277).

3. INTERVAL ESTIMATORS

In this section we present three major methodologies—nonparametric (empirical and bootstrap), par-
ametric, and robust parametric—for deriving confidence intervals for the PHT, WT, VaR, and CTE risk
measures. The empirical nonparametric intervals are constructed by applying asymptotic theory for L-
statistics, and the bootstrap intervals are a result of (nonparametric) data resampling. Parametric and
robust parametric intervals are derived via the two-step procedure: (1) construct asymptotic confidence
intervals for the parameters of the families F1, F2, F3, and then (2) transform the end-points of these
intervals according to an appropriate formula of equations (2.7)–(2.10).
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REMARK 2

The second step in the procedure described above can also be accomplished by using the so-called
Delta Method (see, e.g., Serfling 1980, Section 3.1). Asymptotically both approaches yield identical
intervals; there are some differences, mainly in the length of intervals, in samples of fewer than 50
observations. However, as far as the sensitivity to assumptions is concerned (see the objectives (a), (b),
(c) of Section 2.2), both techniques lead to the same conclusion. �

Throughout this section we will assume that for each distribution of Section 2.3 there is available a
data set of independent and identically distributed observations X1, . . . , Xn. Also, X(1) � � � � � X(n)

will denote the ordered values of data X1, . . . , Xn.

3.1 Nonparametric Approaches

3.1.1 Empirical Approach
For the PHT and WT measures, the distortion function g (or, equivalently, function �) satisfies the
regularity conditions established by Jones and Zitikis (2003). As is also discussed by these authors, it
follows from asymptotic theory for L-statistics that, for underlying distributions with a sufficient number
of finite moments (this is true for our choice of F1, F2, F3 in Section 2.3), the empirical estima-
tor defined in equation (1.3), is asymptotically normal with the mean R(F) and the varianceˆR(F ),n

Q(�, �)/n, where Q(�, �) � [F(min(x, y)) � F(x)F(y)] �(F(x))�(F(y)) dx dy. To construct� �� ��� ��

confidence intervals for R(F) that could be used in practice, the asymptotic variance of has toˆR(F )n

be estimated. To this end, Jones and Zitikis proposed the following (strongly consistent) estimator of
Q(�, �):

n�1 n�1

Q (�, �) � c (i, j) �(i/n)�(j/n)[(X � X )(X � X )] (3.1)� �n n (i�1) (i) (j�1) (j)
i�1 j�1

with cn(i, j) � min{i/n, j/n} � (i/n)(j/n). Thus, combining equations (3.3) and (3.1) with the specific
definition of function � (of Section 2.1), we have the following empirical point and interval estimators
of the PHT and WT risk measures.

3.1.1.1 PHT MEASURE

The 100(1 � )% confidence interval of PHT(F, r) is given by

PHTQnˆPHT(F , r) � z ,n /2 � n

where
PHT n�1 n�1 r�1 r�1 ˆQ � � � c (i, j)[r(1 � i/n) ][r(1 � j/n) ][(X � X )(X � X )], PHT(F , r)n i�1 j�1 n (i�1) (i) (j�1) (j) n

n r r� � X [(1 � (i � 1)/n) � (1 � i/n) ]i�1 (i)

is the point estimator of PHT, and z/2 is the (1 � /2)-th quantile of the standard normal distribution.

3.1.1.2 WT MEASURE

The 100(1 � )% confidence interval of WT(F, �) is given by

WTQnˆWT(F , �) � z ,n /2 � n

where
�1 2 �1 2WT n�1 n�1 �� (i/n)�� /2 �� (j/n)�� /2Q � � � c (i, j)e e [(X � X )(X � X )],n i�1 j�1 n (i�1) (i) (j�1) (j)

n �1 �1ˆWT(F , �) � � X [(�(� (i/n) � �) � �(� (j/n) � �)]n i�1 (i)
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is the point estimator of WT, and z/2 is the (1 � /2)-th quantile of the standard normal distribution.
For the VaR and CTE measures, the approach of Jones and Zitikis (2003) does not directly apply.

However, these two measures are quite simple and can be estimated empirically by corresponding
sample statistics, general asymptotic theory for which is available, for example, in Serfling (1980).
Hence, we have the following empirical point and interval estimators of the VaR and CTE risk measures.

3.1.1.3 VAR MEASURE

Since VaR is a quantile of the distribution function, its empirical point estimator is the corresponding
sample quantile: that is, �) � X(n�[n�]), where [�] denotes ‘‘greatest integer part.’’ TheˆVaR(F ,n

100(1 � )% distribution-free confidence interval of VaR(F, �) is given by

(X , X ),(k ) (k )1n 2n

where sequences of integers k1n and k2n satisfy 1 � k1n � k2n � n and

k /n � (1 � �) � �z ��(1 � �)/n1n /2

and

k /n � (1 � �) � z ��(1 � �)/n, as n → �.2n /2

Here again z/2 is the (1 � /2)-th quantile of the standard normal distribution. For derivation of this
interval and discussion, see Serfling (1980, Section 2.6).

3.1.1.4 CTE MEASURE

The 100(1 � )% confidence interval of CTE(F, �) is given by

ˆCTE(F , �) � z �V /[n�],n /2 �

where
�1 nˆCTE(F , �) � [n�] � Xn i�n�[n�]�1 (i)

is the point estimator of CTE(F, �),
2 2ˆ ˆV � s � (1 � �)[VaR(F , �) � CTE(F , �)]� � n n

with
2 �1 n 2ˆs � ([n�] � 1) � [X � CTE(F , �)] ,� i�n�[n�]�1 (i) n

and z/2 is the (1 � /2)-th quantile of the standard normal distribution. In the actuarial literature,
the variance function V� is derived by Manistre and Hancock (2005). More general CTE estimation
problems are treated by Brazauskas et al. (2006).

3.1.2 Bootstrap
Let us resample (with replacement) n observations from the given data X1, . . . , Xn assuming that each
data point has an equal chance, 1/n, to appear in the new sample, called the bootstrap sample and
denoted . . . , (Such a resampling scheme is known as nonparametric bootstrap.) Next, eval-(i) (i)X , X .1 n

uation of the empirical estimator based on the sample . . . , yields estimate(i) (i) (i)ˆ ˆR(F ), X , X , R (F ).n 1 n n

(Note that represents any of the point estimators of Section 3.1.1: r), �),ˆ ˆ ˆR(F ) PHT(F , WT(F ,n n n

�), �).) After repeating this process B number of times one gets B estimatesˆ ˆVaR(F , CTE(F ,n n

. . . , Then the 100(1 � )% bootstrap confidence interval of R(F) is given by(1) (B)ˆ ˆR (F ), R (F ).n n

([B/2]) ([B(1�/2)])ˆ ˆ(R (F ), R (F )),n n* *
where [�] denotes ‘‘greatest integer part’’ and � � � � � denote the ordered values of(1) (B)ˆ ˆR (F ) R (F )n n* *

. . . , For further reading on bootstrap techniques, see Efron and Tibshirani (1993).(1) (B)ˆ ˆR (F ), R (F ).n n
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3.2 Parametric Methods
In the strict parametric modeling, parameters of the families F1, F2, F3 are estimated using the maxi-
mum likelihood approach. Straightforward derivations yield the following formulas for the MLEs of the
parameters 	, 
, and �, respectively:

�1n1
	 � log(X /x ) ,�ˆ 	 
MLE i 0n i�1

n1

 � log(X � x ),�ˆMLE i 0n i�1

n1
�̂ � (X � x ).�MLE i 0n i�1

Further, as is well known from asymptotic theory for the maximum likelihood procedures, the esti-
mators and are each asymptotically normal with, respectively, the means 	, 
, and �ˆ	 , 
 , �ˆ ˆMLE MLE MLE

and the variances 	2/n, 1/n, and �2/n. Therefore, the 100(1 � )% confidence intervals for the param-
eters 	, 
, and � are given by

	 (1 � z �1/n),ˆMLE /2


 � z �1/n,ˆMLE /2

�̂ (1 � z �1/n), (3.2)MLE /2

where z/2 is the (1 � /2)-th quantile of the standard normal distribution.
Finally, to get the parametric confidence intervals for the risk measures of Section 2.1, one just has

to transform the end-points of each interval in expressions (3.2) according to the corresponding for-
mula of equations (2.7)–(2.10) and keep in mind that x0 is known.

3.3 Robust Parametric Procedures
In the robust parametric modeling, parameters of the families F1, F2, F3 are estimated using the
trimmed-mean–type estimators. For Pareto and exponential distributions, such procedures and their
applications to actuarial problems were extensively studied by Brazauskas and Serfling (2000, 2003)
and by Brazauskas (2003). (In this section a similar approach will be applied to define trimmed-mean–
type estimators for the lognormal distribution parameter 
.) Besides trimmed means, these authors
also considered the robust estimators based on generalized medians. For the lognormal distribution,
the latter-type estimators were developed by Serfling (2002). The generalized-median–types estimators,
though possessing favorable theoretical properties, are much more complex computationally and will
not be included in the present study.

For specified �1 and �2 satisfying 0 � �1, �2 � a trimmed mean (TM) is formed by discarding the1–,2

proportion �1 of the lowermost observations and the proportion �2 of the uppermost observations and
averaging the remaining ones in some sense. More specifically, for the Pareto distribution F1, the TM
estimator of 	 is given by

�1n

	 � d (log X � log x ) ,�ˆ � �TM ni (i) 0
i�1

with dni � 0, for 1 � i � [n�1] and n � [n�2] � 1 � i � n, and � 1/d, for [n�1] � 1 � i � n � [n�2],
where [�] denotes ‘‘greatest integer part,’’ and

n�[n� ] j�12
�1d � d(� , � , n) � (n � k) .� �1 2

j�[n� ]�1 k�01

For the exponential distribution F3, the TM estimator of � is given by



260 NORTH AMERICAN ACTUARIAL JOURNAL, VOLUME 10, NUMBER 4

n

�̂ � d (X � x ),�TM ni (i) 0
i�1

with the same choice of coefficients dni as above. In a similar vein, for the lognormal distribution F2,
the TM estimator of 
 (with �1 � �2 � �) is given by

n�[n�]1

 � log(X � x ).�ˆTM (i) 0n � 2[n�] i�[n�]�1

Note that, for �1 � �2 � � � 0, the estimators become respectively.ˆ ˆ	 , 
 , � 	 , 
 , � ,ˆ ˆ ˆ ˆTM TM TM MLE MLE MLE

Further, since all these TM estimators fall in a general class of L-statistics, their asymptotic dis-
tribution is readily available (see, e.g., Serfling 1980, Chapter 8). That is, the estimators 	 , 
 ,ˆ ˆTM TM

and are each asymptotically normal with, respectively, the means 	, 
, and � and the variances�̂TM

	2/n, K�/n, and �2/n, where constants and K� represent the loss of efficiency of the TMC C C� ,� � ,� � ,�1 2 1 2 1 2

estimator relative to the MLE, at the model, and are equal to

�1 � �2 � � 0.00 0.05 0.15 0.45

C� ,�1 2
1.00 1.090 1.271 1.946

K� 1.00 1.026 1.100 1.474

Thus, the 100(1 � )% confidence intervals for the parameters 	, 
, and � are given by

	 (1 � z �C /n),ˆTM /2 � ,�1 2


 � z �K /n,ˆTM /2 �

�̂ (1 � z �C /n), (3.3)TM /2 � ,�1 2

where z/2 is the (1 � /2)-th quantile of the standard normal distribution.
Finally, to get the robust parametric confidence intervals for the risk measures of Section 2.1, one

just has to transform the end-points of each interval in expression (3.3) according to the corresponding
formula of equations (2.7)–(2.10).

4. ILLUSTRATION

As an illustration of the ideas discussed in the previous sections, we show how the interval estimators
of all risk measures work on real data. For this, we use the Norwegian fire claims data, taken from
Beirlant, Teugels, and Vynckier (1996), which has been studied in the actuarial literature. It represents
the total damage done by 142 fires in Norway for the year 1975, which exceed 500,000 Norwegian
krones. (For convenience the data are presented in Appendix, Table A.1.) To avoid clustering of data
due to rounding, we degroup the data by following the degrouping method of Brazauskas and Serfling
(2003). It is based on the assumption that claims are uniformly distributed around an integer obser-
vation. For example, instead of four observations of ‘‘650’’ we take the expected value of four-order
statistics of the random variable distributed uniformly on the interval (649.5; 650.5): that is, the
observations 650, 650, 650, 650 are replaced with

649.700, 649.900, 650.100, 650.300.

All diagnostics and estimation in this section are done using the degrouped data (measured in millions
of Norwegian krones).

In Figure 3 we illustrate the results of preliminary diagnostics—histogram and quantile-quantile plots
(QQ-plots)—for the data set at hand. While the histogram suggests that any of the three distributions
of Section 2.3 (F1, F2, F3, all with x0 � 0.5) might be appropriate for the Norwegian fire claims, the
QQ-plot approach reveals the following:

• A truncated exponential distribution is inappropriate for this data set
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Figure 3
Preliminary Diagnostics for the Norwegian Fire Claims (1975) Data

• In comparison with the exponential case, the lognormal QQ-plot shows mild improvement and
• The Pareto QQ-plot exhibits nearly perfect fit for the Norwegian fire claims data.

Fitting a Pareto model (with x0 � 0.5) to these claims, using the MLE and TM(�1 � �2) procedures,
yields the following point and 95% confidence interval estimates for 	: � 1.218 and (1.017; 1.418);	̂MLE

� 1.220 and (1.017; 1.430); � 1.236 and (1.007; 1.465); � 1.173 and (0.904;	 	 	ˆ ˆ ˆTM, .05 TM, .15 TM, .45

1.442). The narrowness of the range of (ranging from 1.173 to 1.236) points to a very good fit	̂

between the data and the Pareto model, which was initially suggested by the QQ-plot. Also, such low
values of indicate that the underlying model is heavy-tailed, and, intuitively, we would expect the	̂

claim data to be ‘‘risky.’’ In Table 1 we provide a summary of formal estimates of the ‘‘riskiness’’ of
this data set.

Clearly, the ‘‘wrong’’ models (i.e., lognormal and exponential) lead to quite different risk evaluations
from those based on Pareto distribution or nonparametric approaches. It is also interesting to note
that the robust estimators designed for F2 and F3 do not make significant corrections. Thus, preliminary
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Table 1
Empirical (EMP), Bootstrap (BOOT) with B � 1,000, Parametric (MLE), and Robust (TM)

Parametric Point and 95% Confidence Interval Estimates of Selected Risk Measures

Method of
Estimation

PHT(r � 0.85)

Point Interval

WT(
 � 0.25)

Point Interval

VaR(� � 0.05)

Point Interval

CTE(� � 0.05)

Point Interval

EMP 2,736 (1,463; 4,010) 2,769 (1,474; 4,100) 4,810 (3,860; 13,000) 15,769 (2,812; 28,726)
BOOT 2,681 (1,660; 4,061) 2,760 (1,702; 4,253) 5,658 (2,953; 7,834) 15,888 (6,318; 31,663)

MLE (F1) 14,816 (2,937; �) 5,148 (4,491; 6,063) 5,855 (4,136; 9,503) 32,767 (14,035; 0.6 	 106)
TM (0.05, F1) 13,897 (2,821; �) 5,068 (4,398; 6,015) 5,822 (4,063; 9,685) 32,239 (13,512; 0.9 	 106)
TM (0.15, F1) 10,399 (2,538; �) 4,668 (4,016; 5,617) 5,645 (3,864; 9,802) 29,576 (12,172; 1.5 	 106)
TM (0.45, F1) � — 6,867 (5,679; 8,763) 6,432 (3,993; 13,762) 43,661 (13,030; �)

MLE (F2) 1,199 (1,093; 1,325) 1,229 (1,118; 1,359) 2,284 (2,013; 2,603) 3,445 (2,998; 3,971)
TM (0.05, F2) 1,260 (1,143; 1,398) 1,292 (1,171; 1,436) 2,439 (2,141; 2,790) 3,701 (3,209; 4,281)
TM (0.15, F2) 1,251 (1,132; 1,393) 1,284 (1,159; 1,431) 2,417 (2,113; 2,778) 3,665 (3,164; 4,261)
TM (0.45, F2) 1,322 (1,174; 1,504) 1,357 (1,202; 1,547) 2,598 (2,218; 3,062) 3,964 (3,337; 4,729)

MLE (F3) 2,286 (1,992; 2,580) 2,390 (2,079; 2,701) 5,047 (4,299; 5,795) 6,565 (5,568; 7,563)
TM (0.05, F3) 1,527 (1,351; 1,703) 1,587 (1,400; 1,773) 3,115 (2,666; 3,564) 3,988 (3,390; 4,588)
TM (0.15, F3) 1,282 (1,137; 1,427) 1,327 (1,174; 1,480) 2,490 (2,121; 2,859) 3,155 (2,662; 3,647)
TM (0.45, F3) 1,189 (1,031; 1,347) 1,229 (1,062; 1,396) 2,254 (1,851; 2,656) 2,839 (2,302; 3,375)

Note: MLE and TM estimates are computed for Pareto (F1), lognormal (F2), and exponential (F3) distributions.

diagnostics is necessary to get some (approximate) knowledge about the underlying distribution be-
cause robust procedures designed for an inappropriate model do not fix the situation. Further, as
expected, the empirical and bootstrap estimates are reasonably close. However, they both differ (sub-
stantially, for the PHT and CTE measures, and somewhat, for the WT and VaR measures) from the
Pareto-based estimates, which suggest that the data set is very risky (in some cases, infinitely risky)
according to all risk measures. The infinite estimates occur because of the theoretical relationships
between the risk measure parameters and Pareto 	. Indeed, it follows from equations (2.7) and (2.10)
that PHT(F1, r) � �, for 	 � 1/r, and CTE(F1, �) � �, for 	 � 1.

5. COMPARISONS

In this section we summarize findings of the Monte Carlo simulation study with a special focus on the
sensitivity to assumptions issue (see the objectives (a), (b), (c) of Section 2.2).

Table 2 provides comparisons between the interval estimators of the WT(� � 0.25) � 1.286 measure,
under the ‘‘clean’’ and ‘‘contaminated’’ data scenarios, where n � 25, 50, 100, 250. As one can see,
under the ‘‘clean’’ data scenario, coverage proportions of the nonparametric intervals are below the
nominal level in small samples (0.81–0.91 for n � 25) for all distributions. These proportions increase
as sample size gets larger (0.85–0.92 for n � 50; 0.88–0.93 for n � 100; 0.91–0.94 for n � 250).
Overall, coverages of the nonparametric intervals get reasonably close to the intended 95% confidence
level for n � 250. Parametric and robust parametric intervals, on the other hand, perform very well
with respect to the coverage criterion having coverage proportions of at least 0.92 for all distributions
and in samples as small as n � 25. Further, as predicted by asymptotic theory, for large sample size
(e.g., n � 100) the MLE intervals dominate empirical, bootstrap, and TM counterparts with respect to
the length criterion. These conclusions change, however, when we consider the ‘‘contaminated’’ data
scenario. First, the length of nonparametric intervals increases by more than 20 times for all distri-
butions and for all sample sizes. Although the coverage proportions of nonparametric intervals are not
bad for n � 25 (between 0.80 and 0.88), they decrease dramatically (0.57–0.73 for n � 50; 0.17–0.27
for n � 100) becoming virtually 0 for n � 250. Second, the parametric intervals, though significantly
less inflated (e.g., the largest increase of length is by a factor of about 7, for F3 and all n), have very
poor coverage proportions that converge to 0–7% coverage for n � 250. Third, the robust parametric
intervals are also affected by outliers, but overall they perform quite well. Except for the TM(0.05)
estimator, for F3 and n � 50, the lengths of TM intervals do not change much (by a factor of less than
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Table 2
Length and Proportion of Coverage of 95% Empirical (EMP), Bootstrap (BOOT), Parametric
(MLE), Robust Parametric (TM) Confidence Intervals of WT(
 � 0.25) � 1.286, for Selected

Sample Size n, When Data Are Generated by ‘‘Clean’’ and ‘‘Contaminated’’ Pareto (F1), Lognormal
(F2), and Exponential (F3) Distributions (Standard Errors Given in Parentheses)

Data
Method of
Estimation

n � 25

Length Coverage

n � 50

Length Coverage

n � 100

Length Coverage

n � 250

Length Coverage

‘‘Clean’’ data scenario: ε � 0.00

F1 EMP 0.24 (0.001) 0.84 (0.004) 0.19 (0.001) 0.87 (0.002) 0.14 (0.000) 0.90 (0.004) 0.09 (0.000) 0.92 (0.003)
BOOT 0.24 (0.001) 0.87 (0.005) 0.18 (0.001) 0.89 (0.002) 0.14 (0.002) 0.91 (0.009) 0.09 (0.000) 0.93 (0.003)
MLE 0.25 (0.000) 0.96 (0.002) 0.17 (0.000) 0.95 (0.002) 0.12 (0.000) 0.95 (0.002) 0.07 (0.000) 0.95 (0.002)
TM (0.05) 0.27 (0.000) 0.96 (0.002) 0.18 (0.000) 0.95 (0.002) 0.12 (0.000) 0.95 (0.002) 0.08 (0.000) 0.95 (0.003)
TM (0.15) 0.31 (0.001) 0.96 (0.002) 0.20 (0.000) 0.95 (0.003) 0.13 (0.000) 0.95 (0.002) 0.08 (0.000) 0.95 (0.002)
TM (0.45) 0.43 (0.001) 0.96 (0.002) 0.26 (0.001) 0.95 (0.002) 0.17 (0.000) 0.95 (0.002) 0.10 (0.000) 0.95 (0.001)

F2 EMP 0.25 (0.002) 0.81 (0.005) 0.19 (0.001) 0.85 (0.005) 0.15 (0.001) 0.88 (0.003) 0.10 (0.000) 0.91 (0.004)
BOOT 0.24 (0.003) 0.84 (0.006) 0.19 (0.002) 0.87 (0.005) 0.15 (0.001) 0.89 (0.007) 0.10 (0.001) 0.92 (0.003)
MLE 0.23 (0.004) 0.95 (0.002) 0.16 (0.002) 0.95 (0.001) 0.11 (0.001) 0.95 (0.002) 0.07 (0.001) 0.95 (0.002)
TM (0.05) 0.23 (0.000) 0.95 (0.002) 0.16 (0.000) 0.95 (0.001) 0.11 (0.000) 0.95 (0.002) 0.07 (0.000) 0.95 (0.001)
TM (0.15) 0.24 (0.000) 0.95 (0.001) 0.17 (0.000) 0.95 (0.001) 0.12 (0.000) 0.95 (0.002) 0.07 (0.000) 0.95 (0.002)
TM (0.45) 0.28 (0.000) 0.96 (0.001) 0.20 (0.000) 0.95 (0.002) 0.14 (0.000) 0.95 (0.002) 0.09 (0.000) 0.95 (0.003)

F3 EMP 0.20 (0.001) 0.88 (0.004) 0.15 (0.001) 0.91 (0.005) 0.11 (0.000) 0.93 (0.003) 0.07 (0.000) 0.94 (0.003)
BOOT 0.20 (0.000) 0.91 (0.007) 0.15 (0.002) 0.92 (0.002) 0.11 (0.001) 0.93 (0.004) 0.07 (0.001) 0.94 (0.002)
MLE 0.22 (0.003) 0.93 (0.003) 0.16 (0.000) 0.94 (0.001) 0.11 (0.000) 0.95 (0.002) 0.07 (0.000) 0.95 (0.002)
TM (0.05) 0.23 (0.000) 0.93 (0.003) 0.17 (0.000) 0.94 (0.002) 0.12 (0.000) 0.94 (0.002) 0.07 (0.000) 0.95 (0.002)
TM (0.15) 0.25 (0.000) 0.93 (0.002) 0.18 (0.000) 0.94 (0.002) 0.13 (0.000) 0.95 (0.002) 0.08 (0.000) 0.95 (0.002)
TM (0.45) 0.31 (0.001) 0.92 (0.003) 0.22 (0.001) 0.93 (0.002) 0.16 (0.000) 0.94 (0.003) 0.10 (0.000) 0.95 (0.002)

‘‘Contaminated’’ data scenario: ε � 0.05, H � U(10, 50)

F1 EMP 5.91 (0.066) 0.87 (0.003) 4.99 (0.031) 0.73 (0.005) 3.84 (0.007) 0.27 (0.004) 2.52 (0.003) 0.00 (0.001)
BOOT 5.30 (0.028) 0.82 (0.004) 4.78 (0.046) 0.59 (0.007) 3.80 (0.018) 0.17 (0.007) 2.50 (0.003) 0.00 (0.000)
MLE 0.47 (0.003) 0.29 (0.006) 0.32 (0.002) 0.15 (0.006) 0.22 (0.001) 0.03 (0.003) 0.13 (0.000) 0.00 (0.000)
TM (0.05) 0.41 (0.002) 0.58 (0.006) 0.26 (0.002) 0.50 (0.009) 0.16 (0.000) 0.48 (0.006) 0.10 (0.000) 0.26 (0.000)
TM (0.15) 0.36 (0.001) 0.85 (0.003) 0.22 (0.001) 0.84 (0.006) 0.15 (0.000) 0.79 (0.004) 0.09 (0.000) 0.66 (0.000)
TM (0.45) 0.47 (0.001) 0.92 (0.002) 0.28 (0.001) 0.90 (0.004) 0.18 (0.000) 0.88 (0.002) 0.11 (0.000) 0.83 (0.000)

F2 EMP 5.88 (0.045) 0.86 (0.004) 5.00 (0.024) 0.72 (0.005) 3.84 (0.011) 0.27 (0.006) 2.52 (0.004) 0.00 (0.000)
BOOT 5.34 (0.025) 0.82 (0.004) 4.76 (0.044) 0.61 (0.006) 3.79 (0.014) 0.18 (0.005) 2.50 (0.003) 0.00 (0.000)
MLE 0.31 (0.001) 0.67 (0.004) 0.21 (0.001) 0.54 (0.007) 0.15 (0.000) 0.32 (0.005) 0.09 (0.000) 0.07 (0.003)
TM (0.05) 0.28 (0.001) 0.78 (0.003) 0.20 (0.001) 0.73 (0.004) 0.13 (0.000) 0.70 (0.005) 0.08 (0.000) 0.51 (0.006)
TM (0.15) 0.27 (0.000) 0.89 (0.004) 0.19 (0.000) 0.89 (0.003) 0.13 (0.000) 0.85 (0.003) 0.08 (0.000) 0.75 (0.004)
TM (0.45) 0.31 (0.001) 0.93 (0.002) 0.21 (0.000) 0.92 (0.003) 0.15 (0.000) 0.90 (0.002) 0.09 (0.000) 0.85 (0.003)

F3 EMP 5.90 (0.029) 0.88 (0.002) 4.99 (0.031) 0.73 (0.004) 3.85 (0.008) 0.27 (0.005) 2.52 (0.003) 0.00 (0.001)
BOOT 5.28 (0.032) 0.80 (0.004) 4.76 (0.027) 0.57 (0.004) 3.78 (0.023) 0.17 (0.005) 2.51 (0.006) 0.00 (0.000)
MLE 1.60 (0.009) 0.24 (0.005) 1.15 (0.001) 0.07 (0.007) 0.82 (0.003) 0.01 (0.001) 0.52 (0.001) 0.00 (0.000)
TM (0.05) 0.85 (0.008) 0.59 (0.006) 0.49 (0.005) 0.51 (0.006) 0.23 (0.002) 0.52 (0.005) 0.12 (0.001) 0.30 (0.006)
TM (0.15) 0.34 (0.002) 0.91 (0.003) 0.20 (0.000) 0.93 (0.002) 0.14 (0.000) 0.88 (0.003) 0.09 (0.000) 0.75 (0.006)
TM (0.45) 0.33 (0.000) 0.95 (0.002) 0.24 (0.001) 0.95 (0.003) 0.17 (0.000) 0.94 (0.003) 0.11 (0.000) 0.90 (0.004)

2 in all cases). Moreover, as the level of trimming (�1 � �2) increases, the robust estimators maintain
stable interval lengths and coverage proportions, under both data-generating scenarios, for all F and
for all n. For instance, for the TM(0.45) intervals, for F2, the length vector changes from 0.28, 0.20,
0.14, 0.09 (‘‘clean’’ scenario) to 0.31, 0.21, 0.15, 0.09 (‘‘contaminated’’ scenario), and the coverage
proportions change from 0.96, 0.95, 0.95, 0.95 (‘‘clean’’ scenario) to 0.93, 0.92, 0.90, 0.85 (‘‘contam-
inated’’ scenario).

Very similar patterns were observed for the other three risk measures: PHT(r � 0.85) � 1.272,
VaR(� � 0.05) � 1.724, CTE(� � 0.05) � 2.107. To make this claim more credible, we include in
Appendix (see Table A.2) an equivalent table for the VaR(� � 0.05) � 1.724 measure. There we notice
that the inflation of lengths of nonparametric intervals is even more dramatic; coverage proportions,
however, are slightly better than in the WT(� � 0.25) � 1.286 case.

Furthermore, in the analysis of the Norwegian Fire Claims data we observed that application of robust
procedures designed for the wrong model yields erroneous estimates. In the simulation study we ex-
amined this problem in more detail. In Table 3 we present a summary of this investigation for the
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Table 3
Length and Proportion of Coverage of the 95% Empirical (EMP), Bootstrap (BOOT), Parametric
(MLE), Robust Parametric (TM) Confidence Intervals of CTE(� � 0.05) � 2.107, for Sample Size n
� 100, When Data Are Generated by ‘‘Clean’’ and ‘‘Contaminated’’ Pareto (F1), Lognormal (F2),

and Exponential (F3) Distributions (Standard Errors Given in Parentheses)

Distributional
Assumption

Method of
Estimation

Distribution of Generated Data

Pareto (F1)

Length Coverage

Lognormal (F2)

Length Coverage

Exponential (F3)

Length Coverage

‘‘Clean’’ data scenario: ε � 0.00

EMP 0.92 (0.006) 0.81 (0.003) 1.07 (0.011) 0.79 (0.005) 0.64 (0.005) 0.85 (0.002)
BOOT 0.89 (0.009) 0.79 (0.005) 1.04 (0.008) 0.78 (0.009) 0.60 (0.004) 0.82 (0.006)

F1 MLE 0.68 (0.003) 0.95 (0.003) 0.58 (0.002) 0.85 (0.004) 1.03 (0.002) 0.41 (0.004)
TM (0.05) 0.73 (0.003) 0.95 (0.000) 0.67 (0.002) 0.96 (0.001) 1.22 (0.002) 0.24 (0.003)
TM (0.15) 0.80 (0.004) 0.95 (0.001) 0.74 (0.002) 0.97 (0.001) 1.46 (0.003) 0.21 (0.003)
TM (0.45) 1.06 (0.005) 0.95 (0.002) 0.98 (0.004) 0.98 (0.001) 2.17 (0.003) 0.27 (0.003)

F2 MLE 0.38 (0.001) 0.65 (0.001) 0.44 (0.001) 0.95 (0.003) 0.53 (0.001) 0.53 (0.005)
TM (0.05) 0.41 (0.001) 0.81 (0.011) 0.45 (0.001) 0.95 (0.003) 0.58 (0.001) 0.30 (0.005)
TM (0.15) 0.45 (0.001) 0.88 (0.003) 0.46 (0.001) 0.95 (0.002) 0.64 (0.001) 0.17 (0.003)
TM (0.45) 0.56 (0.001) 0.88 (0.004) 0.54 (0.001) 0.95 (0.004) 0.79 (0.001) 0.14 (0.006)

F3 MLE 0.35 (0.001) 0.35 (0.006) 0.33 (0.001) 0.23 (0.004) 0.43 (0.001) 0.94 (0.005)
TM (0.05) 0.34 (0.001) 0.20 (0.005) 0.32 (0.001) 0.08 (0.003) 0.45 (0.001) 0.94 (0.002)
TM (0.15) 0.36 (0.001) 0.16 (0.004) 0.34 (0.000) 0.05 (0.002) 0.49 (0.001) 0.94 (0.001)
TM (0.45) 0.42 (0.001) 0.21 (0.004) 0.41 (0.001) 0.09 (0.004) 0.61 (0.002) 0.94 (0.001)

‘‘Contaminated’’ data scenario: ε � 0.05, H � U(10, 50)

EMP 38.55 (0.167) 0.42 (0.006) 38.36 (0.177) 0.42 (0.010) 38.42 (0.196) 0.42 (0.004)
BOOT 31.69 (0.049) 0.18 (0.005) 31.76 (0.073) 0.19 (0.002) 31.74 (0.042) 0.18 (0.003)

F1 MLE 3.35 (0.038) 0.03 (0.002) 2.96 (0.036) 0.06 (0.003) 4.71 (0.054) 0.00 (0.001)
TM (0.05) 1.41 (0.018) 0.48 (0.006) 1.31 (0.014) 0.55 (0.008) 2.21 (0.024) 0.04 (0.003)
TM (0.15) 0.99 (0.004) 0.80 (0.007) 0.90 (0.001) 0.91 (0.004) 1.81 (0.008) 0.06 (0.005)
TM (0.45) 1.24 (0.004) 0.89 (0.005) 1.12 (0.002) 0.96 (0.001) 2.60 (0.013) 0.13 (0.007)

F2 MLE 0.51 (0.002) 0.62 (0.009) 0.58 (0.001) 0.33 (0.007) 0.69 (0.002) 0.07 (0.005)
TM (0.05) 0.48 (0.002) 0.75 (0.010) 0.51 (0.001) 0.67 (0.008) 0.66 (0.002) 0.10 (0.005)
TM (0.15) 0.50 (0.001) 0.81 (0.007) 0.50 (0.000) 0.85 (0.004) 0.69 (0.002) 0.06 (0.007)
TM (0.45) 0.60 (0.002) 0.77 (0.006) 0.57 (0.001) 0.90 (0.006) 0.85 (0.003) 0.06 (0.005)

F3 MLE 2.60 (0.012) 0.00 (0.001) 2.59 (0.020) 0.01 (0.001) 2.70 (0.010) 0.01 (0.001)
TM (0.05) 0.71 (0.009) 0.39 (0.004) 0.69 (0.010) 0.30 (0.013) 0.83 (0.004) 0.52 (0.007)
TM (0.15) 0.40 (0.001) 0.49 (0.010) 0.38 (0.000) 0.30 (0.006) 0.55 (0.001) 0.88 (0.003)
TM (0.45) 0.46 (0.001) 0.39 (0.010) 0.44 (0.001) 0.24 (0.007) 0.65 (0.002) 0.94 (0.002)

CTE(� � 0.05) � 2.107 measure, for sample size n � 100. (Conclusions remain the same for the other
three measures and for other choices of n.) It is of interest to see what happens to all procedures when
diagnostics step is inconclusive or is simply ignored. For example, if data were generated according to
the Pareto model F1 but the actuary estimates the CTE(� � 0.05) measure, which is equal to 2.107
for all three distributions, by assuming the lognormal distribution F2, the coverage proportions of the
MLE and TM estimators are not too bad: 0.65, 0.81, 0.88, 0.88. They are even better when one assumes
F1 for the F2 data: 0.85, 0.96, 0.97, 0.98. However, this ‘‘success story’’ Pareto-for-lognormal and
lognormal-for-Pareto seems to be accidental because none of the parametric or robust estimators de-
signed for F1 or F2 work when data were generated by the exponential distribution F3. In addition,
consideration of the ‘‘contaminated’’ data scenarios eliminates MLE and TM(0.05) estimators from the
list of reasonably good performers. Hence, only sufficiently robust estimators, that is, TM(0.15) and
TM(0.45), designed for the right model work consistently well.

Finally, the last conclusion becomes even more evident when we graphically summarize the simula-
tion study by plotting coverage proportions of all estimators for all four risk measures, under the
‘‘clean’’ and ‘‘contaminated’’ data scenarios. In each plot of Figure 4, estimators are displayed as points
(asterisks), dashed lines represent the nominal 0.95 levels of coverage, and the distribution marked
inside the plot shows which family was used to generate either ‘‘clean’’ (vertical axis) or ‘‘contami-
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Figure 4
Proportions of Coverage of the 95% Confidence Intervals of Selected Risk Measures, under

‘‘Clean’’ (	 � 0) and ‘‘Contaminated’’ (	 � 0.05, H � U(10, 50)) Data Scenarios, When n � 250
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nated’’ (horizontal axis) data. Only most favorable estimators being located in the upper right corner
(or northeast direction) of the plot, reflecting high coverages under both scenarios, are labeled. For
convenience, the following notation for the estimators is used: TM(0.15) and TM(0.45), designed for
F1, are denoted as T15p and T45p, respectively; TM(0.15) and TM(0.45), designed for F2, are denoted
as T15L and T45L, respectively; TM(0.15) and TM(0.45), designed for F3, are denoted as T15e and
T45e, respectively. Although we only present plots for sample size n � 250, other choices of n do not
change the conclusion.

6. DISCUSSION

The findings of this paper combined with the conclusions of Brazauskas and Kaiser (2004) and Bra-
zauskas et al. (2006) suggest the following answers to the questions raised in Section 2.2.

a. Convergence rates
Convergence of the proportion of coverage of the nonparametric intervals is slow and depends on
the function �. For ‘‘light’’ � (e.g., for PHT with 0.85 � r � 1), the coverage levels of these intervals
get reasonably close to the nominal level for n � 100 and for all distributions F that we considered.
For ‘‘severe’’ � (e.g., for the PHT measure with r � 0.70), however, their performances are unac-
ceptable even for n � 1,500. On the other hand, parametric and robust intervals attain the intended
confidence levels for all � and F, and for sample sizes as small as n � 50.

b. Performance at the model
At the assumed model F, robust and parametric intervals perform better than nonparametric inter-
vals with respect to the coverage criterion. Also, for n � 250, parametric intervals dominate robust
and nonparametric counterparts with respect to the length criterion. Superior overall performance
of parametric intervals should not come as a surprise because they are equipped with additional
information, namely, the knowledge of underlying F.

c. Sensitivity to assumptions
When the assumed model F is contaminated or cannot be identified with the 100% accuracy (this
is almost always true in practice!), both parametric and nonparametric procedures perform poorly.
In such situations, only the sufficiently robust estimators, designed for that model, yield intervals
with consistently satisfactory performance. Also, it is quite obvious that preliminary diagnostics is
always necessary because even highly robust estimators, if designed for the wrong model, will not
save a flawed analysis, which, in turn, will lead to erroneous risk estimates.

Further, let us summarize what we wanted to accomplish with this work. The objective of this paper
is not to discredit nonparametric methods as an approach for measuring the riskiness of portfolios or
for solving some other actuarial problem. Rather, we want the reader to be aware that under some
idealistic scenarios (when the assumed distribution is exactly correct, but it is impossible to prove that
in practice) or under some realistic scenarios (when the assumed distribution is approximately correct,
and that’s what one can check in practice) there are better ways for solving problems. In particular,
the robust parametric approach is quite general and relatively simple:

• Use preliminary diagnostics and goodness-of-fit techniques to decide what distribution approximately
fits the data, and

• Use robust intervals (designed for that distribution) to estimate the quantity of interest.

The resulting intervals will have (approximately) the intended coverage level.
Finally, let us mention a problem for further research, which goes beyond the scope of the present

paper but is of practical interest. In practice, an actuary has one data set that is updated over time.
Thus, instead of seeking general solutions, he or she may be satisfied with a methodology that works
for that particular data set. if that’s the case, then the so-called cross-validation techniques are appro-
priate, and they work as follows. One splits the data into two parts: one part for finding a solution and
the other for its verification/comparison. To find the solution, nonparametric, parametric, or robust
parametric methods can be employed. Thus, it would be interesting to see whether, in this context,
the robust parametric approach still maintains an edge over the other methodologies.
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APPENDIX

Table A.1
Norwegian Fire Claims (1975) Data (�1,000 Norwegian Krones)

500
500
500
502
515
515
528
530
530
530
540
544
550
550
551

552
557
558
570
572
574
579
583
584
586
593
596
596
600
600

600
605
610
610
613
615
620
622
632
635
635
640
650
650
650

650
672
674
680
700
725
728
736
737
740
748
752
756
756
777

798
800
800
800
826
835
862
885
900
900
910
912
927
940
940

948
957

1,000
1,002
1,009
1,013
1,020
1,024
1,033
1,038
1,041
1,104
1,108
1,137
1,143

1,180
1,243
1,248
1,252
1,280
1,285
1,291
1,293
1,298
1,300
1,305
1,327
1,387
1,455
1,475

1,479
1,485
1,491
1,515
1,519
1,587
1,700
1,708
1,820
1,822
1,848
1,906
2,110
2,251
2,362

2,497
2,690
2,760
2,794
2,886
2,924
2,953
3,289
3,860
4,016
4,300
4,397
4,585
4,810
6,855

7,371
7,772
7,834

13,000
13,484
17,237
52,600

Source: Beirlant, Teugels, and Vynckier (1996), Appendix I.

Table A.2
Length and Proportion of Coverage of 95% Empirical (EMP), Bootstrap (BOOT), Parametric
(MLE), Robust Parametric (TM) Confidence Intervals of VaR(� � 0.05) � 1.724, for Selected

Sample Size n, When Data Are Generated by ‘‘Clean’’ and ‘‘Contaminated’’ Pareto (F1), Lognormal
(F2), and Exponential (F3) Distributions (Standard Errors Given in Parentheses)

Data
Method of
Estimation

n � 25

Length Coverage

n � 50

Length Coverage

n � 100

Length Coverage

n � 250

Length Coverage

‘‘Clean’’ data scenario: ε � 0.00

F1 EMP 0.69 (0.006) 0.73 (0.004) 0.88 (0.005) 0.91 (0.003) 0.66 (0.003) 0.95 (0.001) 0.37 (0.001) 0.95 (0.001)
BOOT 0.78 (0.003) 0.74 (0.005) 0.54 (0.004) 0.73 (0.003) 0.48 (0.003) 0.88 (0.006) 0.33 (0.002) 0.92 (0.003)
MLE 0.91 (0.004) 0.95 (0.002) 0.58 (0.002) 0.95 (0.002) 0.39 (0.001) 0.95 (0.001) 0.24 (0.000) 0.95 (0.001)
TM (0.05) 1.05 (0.004) 0.95 (0.003) 0.64 (0.002) 0.95 (0.002) 0.42 (0.001) 0.95 (0.002) 0.25 (0.000) 0.95 (0.003)
TM (0.15) 1.21 (0.006) 0.96 (0.003) 0.71 (0.002) 0.95 (0.002) 0.45 (0.001) 0.95 (0.002) 0.27 (0.000) 0.95 (0.002)
TM (0.45) 1.98 (0.018) 0.96 (0.003) 0.98 (0.004) 0.95 (0.002) 0.59 (0.002) 0.95 (0.002) 0.34 (0.001) 0.95 (0.002)

F2 EMP 0.79 (0.011) 0.72 (0.005) 1.06 (0.008) 0.91 (0.002) 0.77 (0.005) 0.95 (0.002) 0.42 (0.002) 0.95 (0.003)
BOOT 0.89 (0.015) 0.74 (0.008) 0.60 (0.007) 0.73 (0.009) 0.54 (0.005) 0.88 (0.002) 0.37 (0.002) 0.92 (0.005)
MLE 0.58 (0.001) 0.95 (0.004) 0.41 (0.001) 0.95 (0.002) 0.29 (0.000) 0.95 (0.002) 0.18 (0.000) 0.95 (0.003)
TM (0.05) 0.59 (0.001) 0.95 (0.003) 0.42 (0.001) 0.95 (0.002) 0.29 (0.000) 0.95 (0.003) 0.18 (0.001) 0.95 (0.003)
TM (0.15) 0.61 (0.002) 0.96 (0.003) 0.43 (0.001) 0.95 (0.002) 0.30 (0.000) 0.95 (0.002) 0.19 (0.000) 0.95 (0.002)
TM (0.45) 0.72 (0.002) 0.95 (0.003) 0.50 (0.001) 0.95 (0.002) 0.35 (0.000) 0.95 (0.002) 0.22 (0.000) 0.95 (0.003)

F3 EMP 0.50 (0.003) 0.73 (0.006) 0.59 (0.004) 0.91 (0.003) 0.47 (0.002) 0.95 (0.002) 0.28 (0.001) 0.95 (0.002)
BOOT 0.59 (0.002) 0.74 (0.005) 0.42 (0.003) 0.73 (0.003) 0.36 (0.002) 0.88 (0.006) 0.25 (0.002) 0.92 (0.005)
MLE 0.56 (0.001) 0.93 (0.003) 0.40 (0.001) 0.94 (0.002) 0.28 (0.000) 0.94 (0.002) 0.18 (0.000) 0.95 (0.003)
TM (0.05) 0.58 (0.001) 0.93 (0.002) 0.42 (0.000) 0.94 (0.002) 0.30 (0.000) 0.94 (0.003) 0.19 (0.000) 0.95 (0.003)
TM (0.15) 0.63 (0.001) 0.94 (0.002) 0.45 (0.001) 0.94 (0.003) 0.32 (0.000) 0.95 (0.002) 0.20 (0.000) 0.95 (0.003)
TM (0.45) 0.78 (0.003) 0.92 (0.005) 0.56 (0.001) 0.93 (0.003) 0.40 (0.000) 0.94 (0.002) 0.25 (0.001) 0.95 (0.003)

‘‘Contaminated’’ data scenario: ε � 0.05, H � U(10, 50)

F1 EMP 24.11 (0.072) 0.83 (0.007) 33.05 (0.056) 0.78 (0.005) 32.47 (0.063) 0.61 (0.005) 25.54 (0.026) 0.21 (0.004)
BOOT 24.40 (0.042) 0.92 (0.001) 20.91 (0.022) 0.90 (0.004) 25.07 (0.043) 0.70 (0.009) 22.02 (0.023) 0.30 (0.005)
MLE 4.41 (0.010) 0.30 (0.007) 2.14 (0.013) 0.15 (0.004) 1.27 (0.004) 0.03 (0.002) 0.73 (0.002) 0.00 (0.001)
TM (0.05) 3.34 (0.090) 0.57 (0.004) 1.40 (0.010) 0.49 (0.003) 0.68 (0.002) 0.49 (0.006) 0.38 (0.001) 0.26 (0.004)
TM (0.15) 1.86 (0.058) 0.84 (0.004) 0.86 (0.002) 0.84 (0.002) 0.54 (0.002) 0.80 (0.004) 0.32 (0.003) 0.65 (0.005)
TM (0.45) 2.34 (0.022) 0.92 (0.005) 1.13 (0.003) 0.91 (0.003) 0.67 (0.004) 0.90 (0.002) 0.39 (0.005) 0.83 (0.004)

F2 EMP 24.29 (0.130) 0.83 (0.004) 33.18 (0.100) 0.78 (0.003) 32.26 (0.097) 0.62 (0.005) 25.51 (0.045) 0.21 (0.003)
BOOT 24.57 (0.099) 0.92 (0.004) 20.84 (0.099) 0.90 (0.002) 24.98 (0.095) 0.70 (0.007) 22.02 (0.094) 0.30 (0.007)
MLE 0.78 (0.003) 0.67 (0.004) 0.54 (0.001) 0.54 (0.005) 0.38 (0.008) 0.34 (0.007) 0.23 (0.002) 0.07 (0.002)
TM (0.05) 0.72 (0.002) 0.78 (0.003) 0.50 (0.001) 0.73 (0.003) 0.33 (0.000) 0.70 (0.006) 0.21 (0.000) 0.50 (0.005)
TM (0.15) 0.68 (0.002) 0.89 (0.003) 0.47 (0.001) 0.89 (0.004) 0.33 (0.000) 0.86 (0.005) 0.21 (0.000) 0.75 (0.004)
TM (0.45) 0.77 (0.001) 0.93 (0.002) 0.54 (0.001) 0.92 (0.003) 0.37 (0.000) 0.90 (0.004) 0.23 (0.000) 0.85 (0.004)

F3 EMP 23.85 (0.100) 0.83 (0.003) 33.09 (0.100) 0.78 (0.006) 32.24 (0.100) 0.62 (0.005) 25.63 (0.084) 0.20 (0.003)
BOOT 24.27 (0.160) 0.92 (0.003) 20.80 (0.097) 0.90 (0.003) 24.85 (0.093) 0.71 (0.006) 22.17 (0.090) 0.29 (0.005)
MLE 3.83 (0.052) 0.25 (0.008) 2.79 (0.002) 0.07 (0.005) 1.96 (0.006) 0.00 (0.001) 1.25 (0.003) 0.00 (0.000)
TM (0.05) 2.04 (0.033) 0.60 (0.005) 1.21 (0.015) 0.51 (0.009) 0.56 (0.005) 0.53 (0.005) 0.31 (0.001) 0.30 (0.004)
TM (0.15) 0.84 (0.015) 0.92 (0.004) 0.51 (0.002) 0.93 (0.002) 0.36 (0.001) 0.89 (0.003) 0.22 (0.000) 0.74 (0.003)
TM (0.45) 0.84 (0.002) 0.95 (0.002) 0.60 (0.002) 0.95 (0.003) 0.43 (0.002) 0.95 (0.003) 0.27 (0.000) 0.90 (0.003)
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