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We congratulate Dr. Jones and Dr. Zitikis for
making a very valuable contribution to an impor-
tant area of actuarial research, which involves the
price determination of an insurance risk. In this
article the authors introduced a unifying repre-
sentation of risk measures originally defined in
terms of expectations with respect to distorted
probabilities, and they proposed a general (and
intuitively appealing) approach for estimation of
these quantities. In particular, using asymptotic
theory for L-statistics, they have developed the
empirical nonparametric estimators for these risk
measures.

In this discussion we examine finite-sample
performance of the proposed (asymptotic) confi-
dence intervals. Using Monte Carlo simulations,
we investigate the following questions:

a. How fast do these intervals attain the intended
confidence level?

b. How much does one gain/lose if, instead of
empirical intervals, parametric confidence in-
tervals based on maximum likelihood estima-
tors are used?

c. How bad are the consequences if one of the
conditions necessary for the asymptotic nor-
mality of the empirical estimator to hold is
ignored?

1. INTRODUCTION

We consider a risk measure based on the propor-
tional hazard transform (PHT) and investigate its
interval estimation problem when data are gener-

ated by three similar shape parametric families
that in addition have equal PHT measures. Con-
fidence intervals are constructed by applying
(1) the empirical approach proposed by Jones
and Zitikis (2003), and (2) standard asymptotic
theory for the maximum likelihood estimators
(MLEs). From a practical standpoint it is of
interest to see how accurately we can estimate
the PHT measure when the underlying scenar-
ios of data generation are very similar (but not
identical).

The PHT measure is given by formula (2) of
Jones and Zitikis (2003),

PHT�F, r� � �
0

�

�1 � F�x��r dx.

In this formula we choose r � 0.55, 0.70, 0.85,
0.95 and the following three families for F:

● Exponential with the cdf given by
F1(x) � 1 � e�(x�x0)/�, for x 	 x0 and � 	 0

● Pareto with the cdf given by
F2(x) � 1 � (x0/x)
, for x 	 x0 and 
 	 0

● Lognormal with the cdf given by
F3(x) � �(log(x � x0) � �), for x 	 x0 and
��  �  �, where �� denotes the cdf of the
standard normal distribution.

Here the parameter x0 can be interpreted as a
deductible or a retention level and, thus, assumed
to be known. (Note that, due to x0, distributions
F1, F2, and F3 have the same support.) The re-
maining parameters 
, �, and � are unknown, and
we must estimate them from the data. For the
purposes of simulation, they are chosen so that,
except for the choice r � 0.55 and F2, for all other
combinations of r and F the assumptions of The-
orem 3.2 (see Jones and Zitikis 2003) are satis-
fied, and thus the empirical estimator of the PHT
measure is asymptotically normal. The require-
ment that all three distributions possess the same
PHT measure, that is, PHT(F1, r) � PHT(F2, r) �
PHT(F3, r), is equivalent to

x0 �

�

r
� x0 �

x0


r � 1
� x0 � Cre

�, (1)

where, for fixed r, the integral Cr � ���
� [1 �

�(z)]rez dz is found numerically. (For example,
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for the values of r considered here, one finds
C0.55 � 3.896, C0.70 � 2.665, C0.85 � 2.030, and
C0.95 � 1.758.) Thus, taking into consideration
equation (1) and the above discussion, we select

x0 � 1, 
 � 5.5, � �

r

5.5r � 1
,

� � �log�Cr�5.5r � 1��. (2)

Further, as follows from formulas (10), (18), (19),
and (28) of Jones and Zitikis (2003), the 100(1 � �)
percent confidence interval, based on the empirical
estimator of the PHT measure, is given by

Ln�X� � z�/ 2�Qn��, ��

n
,

where

Qn��, �� � �
i�1

n�1

�
j�1

n�1

cn�i, j���i/n�

� �� j/n��Xi�1:n � Xi:n��Xj�1:n � Xj:n�

with cn(i, j) � min{i/n, j/n} � (i/n)( j/n) and
�(s) � r(1 � s)r�1,

Ln�X� � �
i�1

n

cinXi:n

with cin � (1 � (i � 1)/n)r � (1 � (i/n))r, and z�/2

is the �/2-critical value of the standard normal
distribution, and X1:n � . . . � Xn:n denote the
ordered values of the sample X1, . . . , Xn.

Furthermore, as follows from asymptotic the-
ory for the maximum likelihood procedures, the
100(1 � �) percent confidence intervals for the
parameters �, 
, and � are given by

�̂�1 � z�/ 2�1/n�, 
̂�1 � z�/ 2�1/n�,

�̂ � z�/ 2�1/n, (3)

where

�̂ �

1

n
�
i�1

n

�Xi � x0�, 
̂ � �1

n
�
i�1

n

log�Xi/x0��
�1

,

and �̂ �

1

n
�
i�1

n

log�Xi � x0�

are the MLEs of �, 
, and �, respectively. Finally,
to get the parametric confidence intervals for the

PHT measure, one just has to transform the end
points of each interval in equation (3) according
to the corresponding formula of equation (1) and
keep in mind that x0 is known.

2. SIMULATIONS

We used the following design for the Monte Carlo
simulation study. Ten thousand samples of size n

were generated from a distribution F. For each
sample, a (1 � �) level confidence interval for the
PHT measure was constructed using the empiri-
cal and parametric approaches. Then, based on
these 10,000 intervals for each approach, the av-
erage length of the interval and the proportion of
times the interval covers the true value of the
PHT measure were evaluated. This procedure
was repeated 10 times, and the means and stan-
dard errors of the average length and the pro-
portion of coverage were recorded. The study
was performed for the following (specific)
choices of parameters:

● Sample sizes: n � 100, 250, 500, 1,000
● Confidence levels: 1 � � � 0.90, 0.95, 0.99
● r � 0.55, 0.70, 0.85, 0.95
● Distribution functions: exponential (F1), Pareto

(F2), and lognormal (F3), where parameters x0,

, �, and � are chosen according to equation (2)

● The true values of the PHT measure, PHT(F,
r) � x0 � x0/(
r � 1): PHT(F, 0.55) � 1.494,
PHT(F, 0.70) � 1.351, PHT(F, 0.85) � 1.272,
PHT(F, 0.95) � 1.237.

In Table 1 we report the average length (denoted
L) and the average proportion of coverage (de-
noted C) for the 90% empirical and parametric
confidence intervals. For other choices of confi-
dence level 1 � � patterns are similar. We graph-
ically summarize patterns for C in Figure 1; those
for L are easily predictable, and we do not present
them here.

DISCUSSION OF TABLE 1

For all n and r, the proportions of coverage of the
parametric intervals attain the nominal level of
0.90. Except for a few cases at the exponential
model, the proportions of coverage of the empir-
ical intervals do not attain the nominal level even
for sample sizes as large as 1,000. For n � 100 at
the exponential model and for n � 250 at the
Pareto model, parametric intervals have the same
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length as (or are longer than) empirical ones, and
thus their better coverage can be viewed as a
trade-off between L and C. As n increases, how-

ever, they become as good as (or even better
than) empirical intervals with respect to the L

criterion and uniformly better with respect to C.

Figure 1

Proportions of Coverage of 95% and 99% Confidence Intervals for PHT(F, r)

for Selected Distribution Function F, Sample Size n, and r

Table 1

Performance of 90% Confidence Intervals for PHT(F, r), for Selected F, r, and n

n r

Exponential (F1) Pareto (F2) Lognormal (F3)

Empirical Parametric Empirical Parametric Empirical Parametric

L C L C L C L C L C L C

100 0.55 .14 .70 .16 .90 .18 .50 .26 .90 .19 .44 .16 .90
0.70 .11 .82 .12 .90 .14 .73 .16 .90 .15 .68 .12 .90
0.85 .09 .87 .09 .90 .11 .83 .12 .90 .12 .81 .09 .90
0.95 .08 .88 .08 .90 .09 .87 .10 .90 .10 .85 .08 .90

250 0.55 .10 .75 .10 .90 .14 .54 .16 .90 .15 .47 .10 .90
0.70 .07 .85 .07 .90 .10 .77 .10 .90 .11 .72 .07 .90
0.85 .06 .89 .06 .90 .07 .86 .07 .90 .08 .84 .06 .90
0.95 .05 .90 .05 .90 .06 .88 .06 .90 .06 .87 .05 .90

500 0.55 .07 .77 .07 .90 .11 .56 .11 .90 .13 .50 .07 .90
0.70 .05 .87 .05 .90 .07 .79 .07 .90 .09 .75 .05 .90
0.85 .04 .89 .04 .90 .05 .87 .05 .90 .06 .86 .04 .90
0.95 .03 .90 .03 .90 .04 .89 .04 .90 .05 .88 .03 .90

1,000 0.55 .06 .79 .05 .90 .09 .57 .08 .90 .10 .52 .05 .90
0.70 .04 .88 .04 .90 .06 .81 .05 .90 .07 .77 .04 .90
0.85 .03 .90 .03 .90 .04 .88 .04 .90 .04 .87 .03 .90
0.95 .02 .90 .02 .90 .03 .89 .03 .90 .03 .89 .02 .90

Note: Standard errors for all entries are �.001 (for L) and between .002 and .007 (for C).
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DISCUSSION OF FIGURE 1

Similarly to the 90% case (see Table 1), the pro-
portions of coverage of the parametric intervals
attain the nominal levels of 0.95 and 0.99, for all
r and n. Convergence of the proportions of cov-
erage of the empirical intervals is slow, but it
improves as intervals become wider (i.e., as con-
fidence level 1 � � increases, for fixed n and r).
For PHT(F, r) with r � 0.95 and 0.85, perfor-
mances of the empirical intervals are very good at
the exponential distribution and good at Pareto
and lognormal families. For PHT(F, r) with r �
0.70, empirical intervals perform reasonably well
at the exponential distribution, but their perfor-
mance significantly deteriorates at Pareto and
lognormal families. For instance, for n � 1,000,
the proportion of coverage of the 99% empirical
interval at the lognormal model barely reaches
0.90. The case of r � 0.55 is extreme and very
interesting. While at the Pareto model the empir-
ical estimator of PHT(F, r) is not asymptotically
normal, and, thus, one can anticipate poor per-
formance of the corresponding intervals, that per-
formance is even worse at the lognormal model
and still unsatisfactory at the exponential model.

3. CONCLUSIONS

Simulation results in Section 2 suggest the follow-
ing answers to the questions raised at the begin-
ning of this discussion:

a. Convergence of the proportion of coverage of
the empirical intervals is slow and depends on
the value of r. For “large” r (e.g., 0.85 � r  1),
the coverage levels of these intervals get rea-
sonably close to the nominal level for n � 500
and for all distributions F that we considered.
For r � 0.70, however, their performances are
unacceptable even for n � 1,000. (Moreover, a
smaller simulation study suggests that there is
not much improvement even for n � 1,500.)

b. Parametric intervals attain the intended confi-
dence levels for all sample sizes under consid-
eration, that is, for n � 100. (In additional
studies we found that this is true even for n �
50.) For heavier-tailed distributions (Pareto,
lognormal) or for n 	 250, these intervals
dominate empirical counterparts with respect
to the length criterion too.

c. Investigations of this question yielded some-
what puzzling results. On the one hand, the

choice of r � 0.55 and F2 (Pareto) was intro-
duced to check what happens if violations of
certain theoretical assumptions occur. As ex-
pected, performance of the empirical intervals
in this case was poor. On the other hand,
although no violations of the assumptions for
r � 0.55 and other choices of F were found, the
empirical intervals performed similarly to the
Pareto case. Even for such a “nice” distribu-
tion as an exponential one, their performance
was still unsatisfactory.

Hence, to achieve the intended coverage levels in
applications, we recommend that the proposed
empirical intervals for PHT(F, r) should be used
for r � 0.85 and n � 500. In situations when one
of these conditions is not satisfied, parametric
intervals should be relied on, though these pro-
cedures are (typically) sensitive to model mis-
specifications. Finally, similar conclusions were
also reached for the right-tail risk measure de-
fined by formula (4) of Jones and Zitikis (2003).
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We are truly delighted to see the thought-provok-
ing analysis by Brazauskas and Kaiser (2004) of
our recent results on empirical estimation of risk
measures and related quantities.

In Jones and Zitikis (2003) we concentrate on
developing a nonparametric approach for esti-
mating risk measures and in this way contribute
to filling the gap in the actuarial literature on the
topic. Thus, in the literature we now find two
competing and complementary approaches for
analyzing risk measures: parametric and non-
parametric. Given the choice of approaches, the
researcher and, especially, the practitioner now
face a dilemma: which approach should be pre-
ferred?

Sufficiently many examples in the statistical,
actuarial, and econometric literature clearly
prove that neither parametric nor nonparametric
approaches work well in every situation and at
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