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Nonparametric Statistics

Introduction

Nonparametric statistical methods enjoy many

advantages over their parametric counterparts. Some

of the advantages are as follows:

• Nonparametric methods require fewer assump-

tions about the underlying populations from which

the data are obtained.

• Nonparametric techniques are relatively insensi-

tive to outlying observations.

• Nonparametric procedures are intuitively appeal-

ing and quite easy to understand.

The earliest works in nonparametric statistics date

back to 1710, when Arbuthnott [2] developed an

antecedent of the sign test, and to 1904, when Spear-

man [43] proposed the rank correlation procedure.

However, it is generally agreed that the systematic

development of the field of nonparametric statistical

inference started in the late 1930s and 1940s with

the seminal articles of Friedman [16], Kendall [24],

Mann and Whitney [28], Smirnov [42], and Wilcoxon

[46]. Most of the early developments were intuitive

by nature and were based on ranks of observations

(rather than their values) to deemphasize the effect of

possible outliers on the conclusions.

Later, an important contribution was made by

Quenouille [36]. He invented a clever bias-reduction

technique – the jackknife – which enabled nonpara-

metric procedures to be used in a variety of situations.

Hodges and Lehmann [22] used rank tests to derive

point estimators and proved that these estimators have

desirable properties. Their approach led to the intro-

duction of nonparametric methods into more general

settings such as regression.

Among the most important modern advances

in the field of nonparametric statistics is that of

Efron [11]. He introduced a computer-intensive

technique – the bootstrap – which enables nonpara-

metric procedures to be used in many compli-

cated situations, including those in which paramet-

ric–theoretical approaches are simply intractable.

Finally, owing to the speed of modern computers,

the so-called smoothing techniques, prime examples

of which are nonparametric density estimation and

nonparametric regression, are gaining popularity in

practice, including actuarial science applications.

In the section ‘Some Standard Problems’, some

standard nonparametric problems for one, two, or

more samples are described. In the section ‘Spe-

cial Topics with Applications in Actuarial Science’,

more specialized topics, such as empirical estimation,

resampling methods, and smoothing techniques, are

discussed and, for each topic, a list of articles with

actuarial applications of the technique is provided. In

the section ‘Final Remarks’, we conclude with a list

of books for further reading and a short note on soft-

ware packages that have some built-in procedures for

nonparametric inference.

Some Standard Problems

Here we present the most common nonparametric

inference problems. We formulate them as hypoth-

esis testing problems, and therefore, in describing

these problems, we generally adhere to the following

sequence: data, assumptions, questions of interest (i.e.

specification of the null hypothesis, H0, and possible

alternatives, HA), test statistic and its distribution, and

decision-making rule. Whenever relevant, point and

interval estimation is also discussed.

One-sample Location Problem

Let Z1, . . . , Zn be a random sample from a

continuous population with cumulative distribution

function (cdf) F and median µ. We are interested

in the inference about µ. That is, H0 : µ = µ0

versus HA : µ > µ0, or HA : µ < µ0, or HA : µ �=
µ0, where a real number µ0 and HA are prespecified

by the particular problem.

Also, let us denote the ordered sample values by

Z(1) ≤ Z(2) ≤ · · · ≤ Z(n).

Sign Test. In this setting, if besides the continuity

of F, no additional assumptions are made, then the

appropriate test statistic is the sign test statistic:

B =
n∑

i=1

�i, (1)

where �i = 1, if Zi > µ0, and �i = 0, if Zi < µ0.

Statistic B counts the number of sample obser-

vations Z that exceed µ0. In general, statistics of
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such a type are referred to as counting statistics. Fur-

ther, when H0 is true, it is well known (see [37],

Section 2.2) that B has a binomial distribution with

parameters n and p = P{Zi > µ0} = 1/2 (because

µ0 is the median of F ). This implies that B is a

distribution-free statistic, that is, its null distribution

does not depend on the underlying distribution F .

Finally, for the observed value of B (say, Bobs), the

rejection region (RR) of the associated level α test is

HA RR

µ > µ0 Bobs ≥ bα

µ < µ0 Bobs ≤ n − bα

µ �= µ0 Bobs ≤ n − bα/2 or Bobs ≥ bα/2

where bα denotes the upper αth percentile of the

binomial (n, p = 1/2) distribution.

A typical approach for constructing one- or two-

sided confidence intervals for µ is to invert the

appropriate hypothesis test. Inversion of the level α

two-sided sign test leads to the following (1 − α)

100% confidence interval for µ: (Z(n+1−bα/2), Z(bα/2)).

The one-sided (1 − α) 100% confidence intervals for

µ, (−∞, Z(bα)) and (Z(n+1−bα ), ∞), are obtained

similarly. Finally, the associated point estimator for

µ is µ̃ = median{Z1, . . . , Zn}.

Wilcoxon Signed-rank Test. Consider the same

problem as before with an additional assumption

that F is symmetric about µ. In this setting, the

standard approach for inference about µ is based on

the Wilcoxon signed-rank test statistic (see [46]):

T + =
n∑

i=1

Ri�i, (2)

where Ri denotes the rank of |Zi − µ0| among

|Z1 − µ0|, . . . , |Zn − µ0| and �i is defined as before.

Statistic T + represents the sum of the |Z − µ0| ranks

for those sample observations Z that exceed µ0.

When H0 is true, two facts about �i and |Zi − µ0|
hold: (i) the |Zi − µ0|’s and the �i’s are indepen-

dent, and (ii) the ranks of |Zi − µ0|’s are uniformly

distributed over the set of n! permutations of integers

(1, . . . , n) (see [37], Section 2.3). These imply that

T + is a distribution-free statistic. Tables for the crit-

ical values of this distribution, tα , are available in

[23], for example. For the observed value T +
obs, the

rejection region of the associated level α test is

HA RR

µ > µ0 T +
obs ≥ tα

µ < µ0 T +
obs ≤ n(n + 1)

2
− tα

µ �= µ0 T +
obs ≤ n(n + 1)

2
− tα/2 or T +

obs ≥ tα/2

(The factor n(n + 1)/2 appears because T + is sym-

metric about its mean n(n + 1)/4.)

As shown previously, the one- and two-sided con-

fidence intervals for µ are derived by inverting the

appropriate hypothesis tests. These intervals are based

on the order statistics of the N = n(n + 1)/2 Walsh

averages of the form Wij = (Zi + Zj )/2, for 1 ≤ i ≤
j ≤ n. That is, the (1 − α) 100% confidence inter-

vals for µ are (W(N+1−tα/2), W(tα/2)), (−∞, W(tα)), and

(W(N+1−tα ), ∞), where W(1) ≤ · · · ≤ W(N) denote the

ordered Walsh averages. Finally, the associated point

estimator for µ is µ̂ = median{Wij , 1 ≤ i ≤ j ≤ n}.
(This is also known as the Hodges–Lehmann [22]

estimator.)

Remark 1 Discreteness of the true distribution func-

tions. Although theoretically the probability that Zi =
µ0 or that there are ties among the |Zi − µ0|s is zero

(because F is continuous), in practice, this event may

occur due to discreteness of the true distribution func-

tion. In the former case, it is common to discard such

Zis, thus reducing the sample size n, and, in the latter

case, the ties are broken by assigning average ranks

to each of the |Zi − µ0|s within a tied group. Also,

due to discreteness of the distribution functions of

statistics B and T +, the respective levels of the asso-

ciated tests (α) and confidence intervals (1 − α) are

not attained exactly.

Two-sample Location Problem

Let X1, . . . , Xn1
and Y1, . . . , Yn2

be independent ran-

dom samples from populations with continuous cdfs

F and G respectively. We assume that these pop-

ulations differ only by a shift of location, that is,

we assume that G(x) = F(x − �), and we want to

know if there is indeed the nonzero shift �. That

is, H0 : � = 0 versus HA : � > 0, or HA : � < 0,

or HA : � �= 0. (Another possible (though less com-

mon) approach is to test H0 : � = �0. In such a case,
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all procedures described here remain valid if applied

to the transformed observations Y ∗
i = Yi − �0.)

In this setting, the most commonly used proce-

dures are based on the rank sum statistic of the

Wilcoxon–Mann–Whitney (see [28, 46]):

W =
n2∑

i=1

Ri, (3)

where Ri is the rank of Yi among the com-

bined sample of N = n1 + n2 of observations

X1, . . . , Xn1
, Y1, . . . , Yn2

. (See Remark 1 for how to

handle the ties among observations.)

When H0 is true, it follows from fact (ii) of

Section ‘Wilcoxon Signed-rank Test’ that W is a

distribution-free statistic. Tables for the critical values

of this distribution, wα , are available in [23], for

example. For the observed value Wobs, the rejection

region of the associated level α test is

HA RR

� > 0 Wobs ≥ wα

� < 0 Wobs ≤ n2(N + 1) − wα

� �= 0 Wobs ≤ n2(N + 1) − wα/2 or Wobs ≥ wα/2

(The factor n2(N + 1) is due to the symmetricity of

W about its mean n2(N + 1)/2.)

The associated confidence intervals are based

on the order statistics of the n1n2 differences

Uij = Yj − Xi , for i = 1, . . . , n1, j = 1, . . . , n2.

That is, the (1 − α) 100% confidence intervals

for � are (U((n2(n1+2n2+1)/2+1−wα/2), U(wα/2−n2(n2+1)/2)),

(−∞, U(wα−n2(n2+1)/2)), and (U(n2(n1+2n2+1)/2+1−wα ),

∞), where U(1) ≤ · · · ≤ U(n1n2) denote the ordered

differences Uij . Finally, the Hodges–Lehmann [22]

point estimator for � is �̂ = median{Uij , i =
1, . . . , n1, j = 1, . . . , n2}.

Remark 2 An application. In the insurance context,

Ludwig and McAuley [26] applied the Wil-

coxon–Mann–Whitney test to evaluate reinsurers’

relative financial strength. In particular, they used

the statistic W to determine which financial ratios

discriminated most successfully between ‘strong’ and

‘weak’ companies.

Related Problems and Extensions

There are two types of problems that are closely

related to or directly generalize the location model.

One arises from the consideration of other kinds of

differences between the two distributions–differences

in scale, location and scale, or any kind of dif-

ferences. Another venue is to compare locations of

k > 2 distributions simultaneously. Inference proce-

dures for these types of problems are motivated by

similar ideas as those for the location problem. How-

ever, in some cases, technical aspects become more

complicated. Therefore, in this section, the technical

level will be kept at a minimum; instead, references

will be provided.

Problems of Scale, Location–Scale, and General

Alternatives. Let X1, . . . , Xn1
and Y1, . . . , Yn2

be

independent random samples from populations with

continuous cdfs F1 and F2 respectively. The null

hypothesis for comparing the populations is H0 :

F1(x) = F2(x) (for every x). Here, several problems

can be formulated.

Scale Problem. If we assume that, for every

x, F1(x) = G(x − µ/σ1) and F2(x) = G(x − µ/σ2),

where G is a continuous distribution with a possibly

unknown median µ, then the null hypothesis can be

replaced by H0 : σ1 = σ2, and possible alternatives

are HA : σ1 > σ2, HA : σ1 < σ2, HA : σ1 �= σ2. In

this setting, the most commonly used procedures

are based on the Ansari–Bradley statistic C. This

statistic is computed as follows. First, order the

combined sample of N = n1 + n2 X- and Y -values

from least to greatest. Second, assign the score ‘1’

to both the smallest and the largest observations in

this combined sample, assign the score ‘2’ to the

second smallest and second largest, and continue

in this manner. Thus, the arrays of assigned scores

are 1, 2, . . . , N/2, N/2, . . . , 2, 1 (for N -even) and

1, 2, . . . , (N + 1)/2, . . . , 2, 1 (for N -odd). Finally,

the Ansari–Bradley statistic is the sum of the scores,

S1, . . . , Sn2
, assigned to Y1, . . . , Yn2

via this scheme:

C =
n2∑

i=1

Si (4)

(see [23], Section 5.1, for the distribution of C, rejec-

tion regions, and related questions).

Location–Scale Problem. If we do not assume that

medians are equal, that is, F1(x) = G(x − µ1/σ1)

and F2(x) = G(x − µ2/σ2) (for every x), then the

hypothesis testing problem becomes H0 : µ1 = µ2,

σ1 = σ2 versus HA : µ1 �= µ2 and/or σ1 �= σ2. In this
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setting, the most commonly used procedures are

based on the Lepage statistic L, which combines stan-

dardized versions of the Wilcoxon–Mann–Whitney

W and Ansari–Bradley C:

L = (W − E0(W))2

Var0(W)
+ (C − E0(C))2

Var0(C)
, (5)

where the expected values (E0) and variances

(Var0) of the statistics are computed under H0 (for

further details and critical values for L, see [23,

Section 5.3]). Note that an additional assumption

of µ1 = µ2 (or σ1 = σ2) yields the scale (or the

location) problem setup.

General Alternatives. The most general problem in

this context is to consider all kinds of differences

between the distributions F1 and F2. That is, we

formulate the alternative HA : F1(x) �= F2(x) (for at

least one x). This leads to the well-known Kol-

mogorov–Smirnov statistic:

D = n1n2

d
max

1≤k≤N
|F̂1,n1

(Z(k)) − F̂2,n2
(Z(k))|. (6)

Here d is the ‘greatest common divisor’ of n1 and n2,

Z(1) ≤ · · · ≤ Z(N) denotes the N = n1 + n2 ordered

values for the combined sample of X’s and Y ’s,

and F̂1,n1
and F̂2,n2

are the empirical distribution

functions for the X and Y samples:

F̂1,n1
(z) = 1

n1

n1∑

i=1

1{Xi ≤ z}

and F̂2,n2
(z) = 1

n2

n2∑

j=1

1{Yj ≤ z}, (7)

where 1{·} denotes the indicator function. For further

details, see [23], Section 5.4.

One-way Analysis of Variance. Here, the data are

k > 2 mutually independent random samples from

continuous populations with medians µ1, . . . , µk

and cdfs F1(x) = F(x − τ1), . . . , Fk(x) = F(x −
τk), where F is the cdf of a continuous distribution

with median µ, and τ1 = µ1 − µ, . . . , τk = µk − µ

represent the location effects for populations 1, . . . , k.

We are interested in the inference about medians

µ1, . . . , µk , which is equivalent to the investigation

of differences in the population effects τ1, . . . , τk .

This setting is called the one-way layout or one-

way analysis of variance. Formulation of the problem

in terms of the effects instead of the medians has

interpretive advantages and is easier to generalize (to

two-way analysis of variance, for example).

For testing H0 : τ1 = · · · = τk versus general alter-

natives HA: at least one τi �= τj , the Kruskal–Wallis

test is most commonly used. For testing H0 ver-

sus ordered alternatives HA : τ1 ≤ · · · ≤ τk (with at

least one strict inequality), the Jonckheere–Terpstra

test is appropriate, and versus umbrella alter-

natives HA : τ1 ≤ · · · ≤ τq−1 ≤ τq ≥ τq+1 ≥ · · · ≥ τk

(with at least one strict inequality), the most popular

techniques are those of Mack and Wolfe [27].

Also, if H0 is rejected, then we are interested in

finding which of the populations are different and

then in estimating these differences. Such questions

lead to the multiple comparisons and contrast estima-

tion procedures. For further details and extensions

of the one-way analysis of variance, the reader is

referred to [23], Chapter 6.

Independence

Let (X1, Y1), . . . , (Xn, Yn) be a random sample from

a continuous bivariate population. We are interested

in the null hypothesis H0 : X and Y are indepen-

dent. Depending on how the strength of association

between X and Y is measured, different approaches

for testing H0 are possible. Here we briefly review

two most popular procedures based on Spearman’s ρ

and Kendall ’s τ . For further details and discussion,

see [23], Chapter 8.

Spearman’s ρ. The Spearman rank correlation coef-

ficient ρ was introduced in 1904, and is probably

the oldest nonparametric measure in current use. It is

defined by

ρ = 12

n(n2 − 1)

n∑

i=1

(
RX

i − n + 1

2

)(
RY

i − n + 1

2

)

= 1 − 6

n(n2 − 1)

n∑

i=1

(RX
i − RY

i )2, (8)

where RX
i (RY

i ) denotes the rank of Xi (Yi) in

the sample of Xs (Y s). Using the first expression,

it is a straightforward exercise to show that ρ is

simply the classical Pearson’s correlation coefficient
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applied to the rank vectors RX and RY instead of the

actual X and Y observations respectively. The second

expression is more convenient for computations.

For testing the independence hypothesis H0 versus

alternatives HA : X and Y are positively associated,

HA : X and Y are negatively associated, HA: X and

Y are not independent, the corresponding rejection

regions are ρ ≥ ρα , ρ ≤ −ρα , and |ρ| ≥ ρα/2. Critical

values ρα are available in [23], Table A.31.

Kendall’s τ . The Kendall population correlation

coefficient τ was introduced in 1938 by Kendall [24]

and is given by

τ = 2P{(X2 − X1)(Y2 − Y1) > 0} − 1. (9)

If X and Y are independent, then τ = 0 (but the

opposite statement is not necessarily true). Thus,

the hypotheses of interest can be written as H0 :

τ = 0 and HA : τ > 0, HA : τ < 0, HA : τ �= 0. The

appropriate test statistic is

K =
n−1∑

i=1

n∑

j=i+1

Q((Xi , Yi), (Xj , Yj )), (10)

where Q((a, b), (c, d)) = 1, if (d − b)(c − a) > 0,

and = −1, if (d − b)(c − a) < 0. The corresponding

rejection regions are K ≥ kα , K ≤ −kα , and |K| ≥
kα/2. Critical values kα are available in [23], Table

A.30. If ties are present, that is, (d − b)(c − a) = 0,

the function Q is modified by allowing it to take a

third value, Q = 0. Such a modification, however,

makes the test only approximately of significance

level α. Finally, the associated point estimator of τ

is given by τ̂ = 2K/(n(n − 1)).

Besides their simplicity, the main advantage of

Spearman’s ρ and Kendall’s τ is that they provide

estimates of dependence between two variables. On

the other hand, some limitations on the usefulness of

these measures exist. In particular, it is well known

that zero correlation does not imply independence;

thus, the H0 statement is not ‘if and only if’. In the

actuarial literature, this problem is addressed in [6].

A solution provided there is based on the empirical

approach, which we discuss next.

Special Topics with Applications in

Actuarial Science

Here we review some special topics in nonparametric

statistics that find frequent application in actuarial

research and practice. For each topic, we provide a

reasonably short list of actuarial articles where these

techniques (or their variants) are implemented.

Empirical Approach

Many important features of an underlying distri-

bution F , such as mean, variance, skewness, and

kurtosis can be represented as functionals of F ,

denoted T (F ). Similarly, various actuarial parame-

ters, such as mean excess function, loss elimination

ratio, and various types of reinsurance premiums

can be represented as functionals of the underlying

claims distribution F . For example, the net pre-

mium of the excess-of-loss reinsurance, with pri-

ority β and expected number of claims λ, is given

by T (F ) = λ
∫

max{0, x − β} dF(x); the loss elim-

ination ratio for a deductible of d is defined as

T (F ) =
∫

min{x, d} dF(x)/
∫

x dF(x).

In estimation problems using empirical nonpara-

metric approach, a parameter of interest T (F ) is

estimated by T (F̂n), where F̂n is the empirical dis-

tribution function based on a sample of n obser-

vations from a population with cdf F , as defined

in the section ‘Problems of Scale, Location–Scale,

and General Alternatives’. (Sometimes this approach

of replacing F by F̂n in the expression of T (·)
is called the plug-in principle.) Then, one uses the

delta method to derive the asymptotic distribution of

such estimators. Under certain regularity conditions,

these estimators are asymptotically normal with mean

T (F ) and variance (1/n)
∫

[T ′(F )]2 dF(x), where

T ′(F ) is a directional derivative (Hadamard-type)

of T (F ). (In the context of robust statistics (see

Robustness), T ′(F ) is also known as the influence

function.)

The empirical approach and variants are exten-

sively used in solving different actuarial problems.

Formal treatment of the delta-method for actuarial

statistics is provided by Hipp [21] and Præstgaard

[34]. Robustness properties of empirical nonpara-

metric estimators of the excess-of-loss and stop-

loss reinsurance (see Stop-loss Reinsurance) pre-

miums, and the probability of ruin are investigated by

Marceau and Rioux [29]. More extensive robustness

study of reinsurance premiums, which additionally

includes quota-share (see Quota-share Reinsur-

ance), largest claims and ECOMOR (see Largest

Claims and ECOMOR Reinsurance) treaties, is

carried out by Brazauskas [3]. Carriere [4, 6] applies
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empirical approach to construct nonparametric tests

for mixed Poisson distributions and a test for inde-

pendence of claim frequencies and severities. In a

similar fashion, Pitts [32] developed a nonparametric

estimator for the aggregate claims distribution (see

Aggregate Loss Modeling) and for the probability of

ruin in the Poisson risk model. The latter problem

is also treated by Croux and Veraverbeke [8] using

empirical estimation and U -statistics (for a compre-

hensive account on U -statistics, see Serfling [39],

Chapter 5). Finally, Nakamura and Pérez-Abreu [30]

proposed an empirical probability generating func-

tion for estimation of claim frequency distributions.

Resampling Methods

Suppose we have an estimator θ̂ = T (F̂n) for the

parameter of interest θ = T (F ), where F̂n is defined

as in the preceding section. In all practical situations,

we are interested in θ̂ as well as in the evaluation of

its performance according to some measure of error.

The bias and variance of θ̂ are a primary choice but

more general measures of statistical accuracy can also

be considered. The nonparametric estimation of these

measures is based on the so-called resampling meth-

ods (see Resampling) also known as the bootstrap.

The concept of bootstrap was introduced by Efron

[11] as an extension of the Quenouille–Tukey jack-

knife. The latter technique, invented by Quenouille

[36] for nonparametric estimation of bias and later

extended by Tukey [45] for estimation of variance,

works as follows. It is based on the idea of sequen-

tially deleting points Xi and then recomputing θ̂ .

This produces n new estimates θ̂(1), . . . , θ̂(n), where

θ̂(i) is based on a sample of size n − 1, that is,

the corresponding empirical cdf F̂ (i)
n (x) = 1/(n −

1)
∑

j �=i 1{Xj ≤ x}, i = 1, . . . , n. Then, the jackknife

bias and variance for θ̂ are

B̂IAS(θ̂ ) = (n − 1)(θ̂(·) − θ̂ )

and V̂ar(θ̂ ) = n − 1

n

n∑

i=1

(θ̂(i) − θ̂(·))
2, (11)

where θ̂(·) = 1/n
∑n

i=1 θ̂(i).

More general approaches of this ‘delete-a-point’

procedure exist. For example, one can consider delet-

ing d ≥ 2 points at a time and recomputing θ̂ .

This is known as the delete-d jackknife. The boot-

strap generalizes/extends the jackknife in a slightly

different fashion. Suppose we have a random sample

X1, . . . , Xn with its empirical cdf F̂n putting proba-

bility mass 1/n on each Xi . Assuming that X1, . . . , Xn

are distributed according to F̂n, we can draw a sam-

ple (of size n) with replacement from F̂n, denoted

X∗
1, . . . , X∗

n, and then recompute θ̂ based on these

observations. (This new sample is called a bootstrap

sample.) Repeating this process b number of times

yields θ̂∗
(1), . . . , θ̂∗

(b). Now, based on b realizations of

θ̂ , we can evaluate the bias, variance, standard devi-

ation, confidence intervals, or some other feature of

the distribution of θ̂ by using empirical formulas for

these measures. For example, the bootstrap estimate

of standard deviation for θ̂ is given by

ŜDboot(θ̂ ) =

√√√√ 1

b − 1

b∑

i=1

(
θ̂∗
(i) − θ̂∗

(·)

)2

, (12)

where θ̂∗
(·) = 1/b

∑b
i=1 θ̂∗

(i). For further discussion of

bootstrap methods, see [9, 12].

Finally, this so-called ‘sample reuse’ principle is

so flexible that it can be applied to virtually any

statistical problem (e.g. hypothesis testing, parametric

inference, regression, time series, multivariate

statistics, and others) and the only thing it requires

is a high-speed computer (which is not a problem

at this day and age). Consequently, these techniques

received a considerable share of attention in the

actuarial literature also. For example, Frees [15]

and Hipp [20] use the bootstrap to estimate

the ruin probability; Embrechts and Mikosch [13]

apply it for estimating the adjustment coefficient;

Aebi, Embrechts, Mikosch [1] provide a theoretical

justification for bootstrap estimation of perpetuities

and aggregate claim amounts; England and Verrall

[14] compare the bootstrap prediction errors in claims

reserving with their analytic equivalents. A nice

account on the applications of bootstrap and its

variants in actuarial practice is given by Derrig,

Ostaszewski, and Rempala [10]. Both the jackknife

and the bootstrap are used by Pitts, Grübel, and

Embrechts [33] in constructing confidence bounds

for the adjustment coefficient. Zehnwirth [49] applied

the jackknife for estimating the variance part of

the credibility premium. See also a subsequent

article by Sundt [44], which provides a critique of

Zehnwirth’s approach.
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Smoothing Techniques

Here we provide a brief discussion of two lead-

ing areas of application of smoothing techniques –

nonparametric density estimation and nonparametric

regression.

Nonparametric Density Estimation. Let X1, . . . ,

Xn be a random sample from a population with the

density function f , which is to be estimated nonpara-

metrically, that is, without assuming that f is from

a known parametric family. The naı̈ve histogram-like

estimator, f̃ (x) = 1/n
∑n

i=1(1{x − h < Xi < x +
h})/2h, where h > 0 is a small (subjectively selected)

number, lacks ‘smoothness’, which results in some

technical difficulties (see [40]). A straightforward

correction (and generalization) of the naı̈ve estimator

is to replace the term 1{·}/2 in the expression of f̃ by

a smooth function. This leads to the kernel estimator

f̂ (x) = 1

nh

n∑

i=1

K

(
x − Xi

h

)
, (13)

where h > 0 is the window width or bandwidth, and

K(·) is a kernel function that satisfies the condition∫ ∞
−∞ K(x) dx = 1. (Note that the estimator f̂ is sim-

ply a sum of ‘bumps’ placed at the observations. Here

function K determines the shape of the bumps while

the bandwidth h determines their width.)

In this setting, two problems are of crucial impor-

tance – the choice of the kernel function K and the

choice of h (i.e. how much to smooth). There are

many criteria available for choosing K and h. Unfor-

tunately, no unique, universally best answer exists.

Two commonly used symmetric kernels are the Gaus-

sian kernel KG(x) = (1/
√

2π)e−x2/2, for −∞ < x <

∞, and the Epanechnikov kernel KE(x) = (3/4
√

5)

(1 − x2/5), for −
√

5 < x <
√

5. Among all sym-

metric kernels, the Epanechnikov kernel is the most

efficient in the sense of its smallest mean integrated

square error (MISE). The MISE of the Gaussian ker-

nel, however, is just about 5% larger, so one does

not lose much efficiency by using KG instead of KE.

The MISE criterion can also be used in determining

optimal h. The solution, however, is a disappoint-

ment since it depends on the unknown density being

estimated (see [40], p. 40). Therefore, additional (or

different) criteria have to be employed. These consid-

erations lead to a variety of methods for choosing h,

including subjective choice, reference to a standard

distribution, cross-validation techniques, and others

(see [40], Chapter 3).

There are many other nonparametric density

estimators available, for example, estimators based

on the general weight function class, the orthogonal

series estimator, the nearest neighbor estimator, the

variable kernel method estimator, the maximum

penalized likelihood approach, and others (see [40],

Chapter 2). The kernel method, however, continues

to have leading importance mainly because of its

well-understood theoretical properties and its wide

applicability. In the actuarial literature, kernel density

estimation was used by Young [47, 48] and Nielsen

and Sandqvist [31] to derive the credibility-based

estimators.

For multivariate density estimation techniques, see

Chapter 4 in [40, 41].

Nonparametric Regression. The most general

regression model is defined by

Yi = m(xi) + εi, i = 1, . . . , n, (14)

where m(·) is an unknown function and ε1, . . . , εn

represent a random sample from a continuous popu-

lation that has median 0.

Since the form of m(·) is not specified, the vari-

ability in the response variable Y makes it diffi-

cult to describe the relationship between x and Y .

Therefore, one employs certain smoothing techniques

(called smoothers) to dampen the fluctuations of Y

as x changes. Some commonly used smoothers are

running line smoothers, kernel regression smoothers,

local regression smoothers, and spline regression

smoothers. Here we provide a discussion of the spline

regression smoothers. For a detailed description of

this and other approaches, see [38] and Chapter 5 in

[41].

A spline is a curve pieced together from a number

of individually constructed polynomial curve seg-

ments. The juncture points where these curves are

connected are called knots. The underlying princi-

ple is to estimate the unknown (but smooth) function

m(·) by finding an optimal trade-off between smooth-

ness of the estimated curve and goodness-of-fit of

the curve to the original data. For regression data,

the residual sum of squares is a natural measure of

goodness-of-fit, thus the so-called roughness penalty

estimator m̂(·) is found by solving the minimization
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problem

L = 1

n

n∑

i=1

(Yi − m(xi))
2 + φ(m), (15)

where φ(·) is a roughness penalty function that

decreases as m(·) gets smoother. To guarantee that

the minimization problem has a solution, some

restrictions have to be imposed on function φ(·). The

most common version of L takes the form

L = 1

n

n∑

i=1

(Yi − m(xi))
2 + h

∫
(m′′(u))2 du, (16)

where h acts as a smoothing parameter (analogous

to the bandwidth for kernel estimators) and functions

m(·) and m′(·) are absolutely continuous and m′′(·) is

square integrable. Then, the estimator m̂(·) is called a

cubic smoothing spline with knots at predictor values

x1, . . . , xn.

Carriere [5, 7] used smoothing splines (in con-

junction with other above-mentioned nonparamet-

ric approaches) for valuation of American options

and instantaneous interest rates. Qian [35] applied

nonparametric regression methods for calculation of

credibility premiums.

Remark 3 An alternative formulation. A natural

extension of classical nonparametric methods to reg-

ression are the procedures based on ranks. These tech-

niques start with a specific regression model (with

associated parameters) and then develop distribution-

free methods for making inferences about the un-

known parameters. The reader interested in the rank-

based regression procedures is referred to [19, 23].

Final Remarks

Textbooks and Further Reading

To get a more complete picture on the theory and

applications of nonparametric statistics, the reader

should consult some of the following texts. Recent

applications-oriented books include [17, 23]. For

theoretical intermediate-level reading, check [18, 25,

37]. A specialized theoretical text by Hettmansperger

and McKean [19] focuses on robustness aspects of

nonparametric regression. Silverman [40] presents

density estimation techniques with special emphasis

on topics of methodological interest. An applications-

oriented book by Simonoff [41] surveys the uses

of smoothing techniques in statistics. Books on

bootstrapping include Efron and Tibshirani’s [12]

introductory book and Davison and Hinkley’s [9]

intermediate-level book. Both texts contain many

practical illustrations.

Software

There is a rich variety of statistical packages that have

some capabilities to perform nonparametric infer-

ence. These include BMDP, Minitab, SAS, S-Plus,

SPSS, Stata, STATISTICA, StatXact, and others.

Of particular interest in this regard is the StatXact

package because of its unique ability to produce exact

p-values and exact confidence intervals. Finally, we

should mention that most of the packages are avail-

able for various platforms including Windows, Mac-

intosh, and UNIX.
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