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Abstract

In this paper we illustrate the usefulness of influence functions for studying robustness properties of empirical nonparametric
estimators of net premiums of various reinsurance treaties. (Proportional, stop-loss, excess-of-loss, largest claims, and excédent
du cofit moyen relatif (ECOMOR) type reinsurance treaties are considered.) We use the gross error sensitivity (GES) and the
upper breakdown point (UBP) as robustness criteria. It is found that empirical nonparametric estimators are not robust with
respect to GES and UBP. Alternative methods of estimation are suggested.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The net premium principle (also known as principle of equivalence) is a popular choice among premium calcula-
tion principles in the actuarial literature. It has been investigated in applications by Beirlant et al. (1996), Embrechts
etal. (1997), Hipp (1996), Reiss and Thomas (1997), and others. Also, it is one of a few principles that satisfy all five
“desirable properties” discussed by Gerber (1979), Section 5.3: nonnegative safety loading, no ripoff, consistency,
additivity, and iterativity.

Based on the net premium, which is defined as the expected value of the total claim amount for an individual or a
portfolio of risks, the reinsurer calculates the total premium that must be paid by the policy holder. (In this case, the
policy holder is another insurance company, the ceding company, originally covering the risk.) Therefore a reliable
estimate of the cumulative distribution function (CDF) of the total claim amount is necessary. A brief discussion
of typical methodologies for estimation of the CDF of the total claim amount and consequently net premiums of
various reinsurance treaties is provided in Section 3.

In this paper the reliability of empirical nonparametric estimators of the net premiums is investigated by ap-
plication of robust statistics theory. An overview of robust statistical methods based on the influence function
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approach is given in Section 2. Standard robustness tools, such as breakdown point, gross error sensitivity, and
change-of-variance sensitivity are defined. The use of these concepts is illustrated in Fig. 1.

In Section 4, reinsurance contracts are introduced and described. In particular, proportional, stop-loss, excess-of-
loss, largest claims, and ECOMOR type treaties are considered. The net reinsurance premiums of these treaties are
then expressed as statistical functionals of the underlying claims distribution. Finally, corresponding empirical non-
parametric estimators of the net premiums are derived and their robustness properties are investigated using methods
in Section 2.

In Section 5, behavior of robust and nonrobust estimators of the net proportional reinsurance premium under
contaminated data scenario is examined. Specifically, for severity of claims we choose a single-parameter Pareto
model and mix it with another Pareto model with different parameters. The trimmed mean and generalized median
type estimators are considered for robust estimation of parameters. It is shown that these estimators are significantly
less affected by contaminating observations than empirical nonparametric estimators.

Conclusions are drawn and final remarks are made in Section 6.

2. Robustness: the influence function approach

The influence function approach, also known as the “infinitesimal approach”, was initiated more than three
decades ago by Hampel (1968). And it is based on three fundamental concepts: qualitative robustness, influence
function (with a variety of derived quantities), and breakdown point. Loosely speaking, they correspond to continuity
and derivative of a function, and to the distance to its nearest singularity, respectively.

The role of qualitative robustness in this setup is as follows. First, it requires that if the level of contamination in
the data gradually decreases (or increases) so should behave the bias and variance of the estimator. Second, if the
data is perfectly “clean”, i.e., the level of contamination is zero, then the estimator must behave like it does under
the pre-supposed ideal model. Based on this, one may notice that qualitative robustness is a necessary but rather
weak robustness condition. The weakness of this concept is its inability to discriminate between two qualitatively
robust estimators. Fortunately, the necessary ranking and comparison of robust procedures can be accomplished
using quantitative robustness measures, i.c., the “influence function” (and derived quantities) and the “breakdown
point”. Let us examine these concepts precisely.

2.1. The influence function

For a parameter H(F') estimated by H(I:*n), where ﬁ,, is an empirical CDF estimating a CDF F on the basis of a
sample of size n, the associated influence function is defined for real-valued x as

0
IF(x; H(F)) = g[H((l - F 4+ 5sA)]=o+,

where A, is the distribution placing all mass at the point x. To interpret this function and understand its role, one
uses functional analysis and Taylor expansion of the functional H(F') in the space of CDFs F, which leads to a first
order approximation to the estimation error in terms of the IF:

n
HE) — HF) ~ = Y T HOF)),
e

where X1, ..., X, denote the sample values. The approximate numerical impact or “influence” of the observation
X; on the error of estimation is then given by n~VIF(X;; H(F)). In particular, the potential impact of outliers and/or
contaminating observations becomes so quantified.

Several useful robustness measures based on IFs has been suggested in the statistical literature (Hampel et al.
(1986)). The gross error sensitivity

GES = sup|IF(x; H(F))|,
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which (divided by n) measures the worst possible effect on the estimator due to contamination of the data by gross
eITOrS.
Another, the change-of-variance sensitivity
CVF(x; H(F))

VS =P Ery

with the change-of-variance function (CVF), defined by
0
CVF(x; H(F)) = EIV(H((I — ) F +5A:) =0+,

where V(H(F)) = f [IE(x; H(F))]*> dF(x) is the asymptotic variance. The CVS is a standardized version of the
CVF which for negative values points to a decrease in variance, V (H(F')), indicating a higher accuracy and shorter
confidence intervals (which is beneficial). Large positive values of the CVF point to nonrobustness.

Remark. An estimator is called B-robust (V -robust) if its GES (CVS) is finite. Also, we shall mention here that the
concept of V -robustness is stronger than the concept of B-robustness. That is, if an estimator is V -robust then it must
also be B-robust. Further, if an estimator is not B-robust, then it also is not V-robust. (For a rigorous mathematical
treatment of B-robustness versus V-robustness, see Hampel et al. (1986, Section 2.5b.)

2.2. The breakdown point

The breakdown point (BP) provides a guidance up to what distance from the model a first order approximation
provided by the IF can be used. In practice, the BP is loosely characterized as the largest proportion of corrupted
sample observations that the estimator can cope with. Typically, there are two types of contamination that may
cause corruption of an estimator: lower and upper contamination. The lower contamination is to take observations
to some lower limit (for example, 0), while the most extreme form of upper corruption is to take observations to
. Thus, separate versions of lower and upper BP (LBP, UBP) can (and should) be considered. In the reinsurance
context, however, contamination of the lower type is of lesser concern because the lower limit of losses is usually
pre-defined by a contract. (For example, the lower limit can be represented as a deductible or a retention level.)
Thus, in the present treatment we emphasize UBP as a global robustness criterion. As by Brazauskas and Serfling
(2000b) we use the following definition of UBP.

The upper breakdown point (UBP) is the largest proportion of upper sample observations which may be taken
to an upper limit without taking the estimator to an uninformative limit not depending on the parameter being
estimated.

Clearly, the above notion of BP is constructed around the idea of infinite bias of the estimator. In analogy to the
bias, a similar concept can be constructed for the variance.

The variance breakdown point is the largest proportion of sample observations which may be corrupted without
taking the variance of the estimator to infinity.

See Huber (1981, Sections 1.4 and 6.6) for more detailed discussion of variance BP.
2.3. An illustration

In this subsection we illustrate the role of previously presented robustness concepts. Let us start with the description
of what might be called an “approximate parametric viewpoint”.

Suppose we have a parametric model, which (hopefully) is a good approximation to the true underlying situation.
Contrary to the classical parametric viewpoint, we do not assume that the postulated parametric model is exactly



118 V. Brazauskas / Insurance: Mathematics and Economics 32 (2003) 115-133

correct. In other words, we believe in a more realistic approach claiming that our initial parametric guess bears
no guarantees that the data will follow it exactly. Such an approximate parametric approach was first introduced
in the context of location parameter estimation by Huber (1964), where he suggested the following mathematical
formalization of it:

Fo=({0—-¢8F+¢G, (0

where G is any distribution (or a mixture of distributions) from a neighborhood of possible contaminating distri-
butions, and ¢ represents the probability that a sample observation comes from the distribution G instead of F.
Note that there are no restrictions on G, thus (1) is essentially a nonparametric neighborhood of the distribution F.
Eq. (1) is also known as the gross error model. (Strictly speaking, in Huber’s case G is a symmetric distribution,
because he considered symmetric F'.)

When applying such an approach, however, one should also be prepared for the worst case scenario. That is, for
such contaminating distribution G which produces largest bias and variance of the estimator. More importantly,
reasonable approximations of these are desirable. It turns out that it is possible to approximate the worst bias and
variance by means of the GES and CVS, respectively. Let us find these approximations by following derivations by
Hampel et al. (1986, Section 2.7). The worst bias can be approximated by

sup|H(F;) — H(F)| = sup|H((1 — &) F + ¢G) — H(F)| ~ sup
G G G

s/IF(x;H(F))dG(x)
=¢ x sup|IF(x; H(F))| = ¢ x GES, 2)

and variance by

supV (H(F;)) =exp {sup[log VH1 —e)F + aG))]]
G G

N CVF(x; H(F))
A exp {sgp [log VH(F)) +¢& / TVECF) dG(x)] }

CVF(x; H(F))
exp {log VH(F))+¢e x sgp VHE))

In Fig. 1 we illustrate the most extreme behavior of asymptotic bias and variance of robust estimator under the
worst type of contamination.

The plot of Fig. 1 illustrates several important points. First, the maximum asymptotic bias and log(variance)
approach 0 and In[V (H(F))], respectively, as the level of contamination tends to 0, emphasizing that “qualitatively
robust” estimators are preferred. Second, respective BPs tell us up to what amounts of contamination a robust
estimator can be trusted and approximations (2) and (3) can be of value. In particular, these approximations seem
to be very accurate up to about 1/3 of the corresponding BP and deteriorate rapidly thereafter. (As a rule of thumb,
Hampel et al. (1986, p. 178), suggest to use such approximations up to 1/2 of the corresponding BP.) Finally, we
should keep in mind that if the estimator is nonrobust, i.e., its BP = 0 and/or GES = oo, then the whole picture
collapses, “approximate parametric” approach is not applicable, and the estimator cannot be trusted at all.

} = V(H(F)) exp{e x CVS}. A

3. Estimation methodologies

In this section we briefly discuss typical methodologies for estimation of claims severity CDF and consequently
net premiums of various reinsurance treaties which are defined in Section 4. As will be seen there, all reinsurance
premiums under consideration can be represented as statistical functionals of the underlying claims distribution
F. Therefore, the quality of estimators resulting from the methods discussed in this section can be investigated by
applying the robustness tools in Section 2.
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Fig. 1. Ilustration of robustness concepts.

3.1. Parametric approach

In parametric modeling of F (say, F depends on parameters &; and 82) one represents functionals H(F) as
explicit functions of the parameters ; and §, and obtains estimates H(F ) by substitution of 8, for 8, and &, for
8. Particular choices of parametric families for claims distribution include: the gamma distribution and variants,
the Pareto distribution and variants, the Benktander-type-I and -type-II distributions, the lognormal distribution, the
Weibull distribution, and others (see Klugman et al. (1998) and Reiss and Thomas (1997) for more examples of loss
distributions).

The strength of parametric approach is 2-fold. First, it is in keeping with the principle of parsimony in mod-
eling. Second, it permits inferences to be made beyond the range of the actual observed data. On the other
hand, this methodology depends directly upon parametric assumptions, which may be of questionable validity.
Thus, in this setting, a key issue is that of robustness, i.e., of insensitivity to small deviations from distributional
assumptions.



120 V. Brazauskas /Insurance: Mathematics and Economics 32 (2003) 115-133
3.2. Semiparametric approach

Instead of dealing with a whole range of claims, semiparametric methodology restricts attention to the tail of
distribution (which corresponds to large claims) modeling small and medium claims by some slowly varying function.
For this type of modeling, a broad and effective assumption is a Pareto-type distribution: a distribution F for which
the survival function 1 — F(c) tends to 0 at a polynomial rate ¢ ™* as ¢ — oo, for some index «. In such a case we have

1 — F(cx)
im ————— =
= 1 — F(c)
i.e., the conditional distribution of an observation, given that it exceeds a threshold ¢, becomes for large ¢ approx-
imately a single-parameter Pareto distribution. Therefore for estimation of « one may apply methods designed for
standard Pareto distribution.

This approach is actively advocated and extensively used by Beirlant et al. (1996), Embrechts et al. (1997) among
others, to model extremal events in (re)insurance problems. When using semiparametric models in applications,
however, one should keep in mind that the right tail of the distribution is assumed to be parametric. Thus, besides
possessing the strength of a parametric approach this methodology also shares its weaknesses.

x4, @)

3.3. Robust parametric approach

Robust parametric (or “approximate parametric”) approach is a solution that we suggest in order to overcome
drawbacks of parametric methodology. That is, in the parametric setting (which was discussed above) we recommend
to use robust estimators of parameters instead of standard ones. Two types of robust estimators for a one-parameter
Pareto distribution are presented in Section 5.

Also, for the parametric part of semiparametric models, similar “approximate” approach can be used for robust
estimation of index « in (4).

3.4. Empirical nonparametric approach

Empirical nonparametric approach is intuitively appealing and straightforward to handle. Here a parameter of
interest H(F) of the unknown CDF F is estimated by H(I:",,), with ﬁn the empirical CDF based on a sample of size
n. With this approach one can avoid parametric distributional assumptions, and therefore gain some robustness in
return. The empirical nonparametric methodology, however, may turn out to be highly deficient in modeling large
claims due to a scarcity of sample data in the tails.

In the actuarial context, this approach is used, for example, by Reiss and Thomas (1997) to estimate the net premi-
um of the excess-of-loss reinsurance treaty. Also, Hipp (1996) uses the so-called Delta Method to derive asymptotic
distribution of empirical nonparametric estimators of various actuarial parameters including the net excess-of-loss
reinsurance premium. We examine robustness properties of this methodology in detail in the next section.

4. Empirical nonparametric estimators of the net reinsurance premiums

In Sections 4.2-4.6, we first introduce reinsurance treaties and the associated net premiums. Then we reexpress
these premiums as statistical functionals of the underlying claims distribution. Finally, we define corresponding
empirical nonparametric estimators and evaluate their GESs and UBPs. For description of reinsurance treaties, we
closely follow Embrechts et al. (1997, Section 8.7).

4.1. Standard setting

As by Brazauskas (2000) we consider the homogeneous risk model. That is:

The individual claim sizes, X, X3, ..., are independent identically distributed nonnegative random variables
with common distribution function F, independent of the number N of claims occurring over a specified time
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period, for example, a year. The total claim amount of an insurance portfolio is then given by
N
Sv=>Y_ Xi.
i=1

Typically, the number of claims N is assumed to be distributed according to Poisson, binomial or negative binomial
distribution. In this paper, we focus on estimation of claim sizes treating the quantities associated with N as known
parameters. Also, we assume that E(X ) exists.

4.2. Proportional or quota share reinsurance

This is a common form of reinsurance for claims of “moderate” size. Here simply a fraction p € (0, 1) of each
claim (hence the pth fraction of the whole portfolio) is covered by the reinsurer. Thus the reinsurer pays for the
amount

whatever the size of the claims.
The parameter of interest (the net premium) is the expected value of Rp, i.e., E(Rp). It follows from Section 4.1
that E(Rp) can be rewritten as

N
E(Rp) =E { > X.-} = pE(WN)E(X/) = pE(N) / xdF (x).

i=l

Thus, the statistical functional corresponding to the net proportional premium is
Hi(F, p) = pE(N)fxdF(X),
and its empirical nonparametric estimator is
Hi(Fy. p) = pB) [ 24,00 = BN, )

where X = n~! Y7, X; is the sample mean.
Next, we find the influence function of H, (F, p). The following steps are easily justified:

d d
IF(x; H(F, p)) = g[Hl((l — S F +5Ax, p)li=o+ = s [PE(N) / yd{I =) F(y) + sAx(y)}]

s=0t

ad

:PE(N)g [(1—.Y)fde(Y)+.9x:| =pxE(N) — H|(F, p). (6)
s=07*

Further, using expression (6) we can evaluate the GES of H| (I:",,, p). In particular

GES = sup|IF(x; Hi(F, p))| = sup|jpx E(N) — H|(F, p)| = oo.
X X

Finally, we evaluate the UBP of H;(F}, p). For any fixed n, if even a single X; is taken to oo, then X — oo
and consequently H (Fp, p) — oo. That is, corruption of a single data value by upper contamination can render
the estimator completely uninformative. Thus, the estimator (5) can cope with 0% of “bad” observations in a
sample and therefore its UBP is 0. Obviously, GES = oo in conjunction with UBP = 0 implies that H( I:",,, p)is
nonrobust.
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4.3. Stop-loss reinsurance

The reinsurer covers losses in the portfolio exceeding a well defined limit K, the so-called ceding company’s
retention level. This means that the reinsurer pays for the amount

Rs. = (Sy — K)* = max{0, Sy — K}.

This type of reinsurance is useful for protecting the company against insolvency due to excessive claims on the
coverage.
The parameter of interest E(Rsy) can be rewritten as

00 n +
E(Rs) = E(Sy — K)* = En{E[(Sy — K)YIN =nl} =} [P{N =n}E (Z Xi — K) }
i=1

n=1
= Z I:P{N =n) /(x — Kyt dF*" (x)] ,
n=1

where F** denotes the n-fold convolution of F,i.e., F*(x) = P{Z;’Zl X; < x}
Thus, the statistical functional corresponding to the net stop-loss premium with retention level K is

Hy(F,K) = Z [P{N =n) f(x -kt dF*"(x)i| ,

n=1

and its empirical nonparametric estimator is

Hy(Fy K)=) [P{N = n) f (x = K)+dﬁ*"<x>}
n=1
= |PIN=npn" Y Xyt X, KT Y
n=1 1<iy,... in<n

Next, in order to derive the influence function we first have to reexpress functional Ha(Fs, K) = Hy((1 — s)F +
sAy, K) into more tractable form. Using the fact that

FX = (1=s)"F* 4+ snF*" D s A 4 0(s) = (1 —sm)F* +snF* "™V % Ap + 0(s),

we have

8

Hy(Fs, K) = [P{N = n} /(y - K" dFs*”(y)}

n

il

M

{P{N = n} [(1 —sn) /(y - KT dFT(y) + sn/(y —K)PA(F Y A () + O(S)}

3
il

{P{N = n} [(1 — sn) /(y — K)TAF*"(y) + Sn/(x +y—K)TdF D) 4 o(s)”.

ity

I
WK

3
Il
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Now using (8) we find the influence function of H>(F, K)
IF(x; Ha(F, K)) = %[H2(Fs’ K)ls=o+
o0
= {nP{N =) [ f (r+y = KT dF ) — / o =K)7 dF*"(y)“ : ©)
n=1
It follows from (9) that

GES = sup|IF(x; H2(F, K))| = sup = 00.
X X

f(x +y - K)+ dF*(n—])(y)

Finally, let us examine the behavior of estimator (7) when asingle X; is takento co. Insuchacase, » 5 ;. ; <, (Xi +

ot X, — K )T — oo which implies that this estimator has UBP = 0. Thus, the estimator Hz(ﬁ”, K) is classified
as nonrobust.

44. Excess-of-loss reinsurance

The reinsurance company pays for all individual losses in excess of some limit D, the so-called priority. This
means that the reinsurer covers the amount

N
Rep =) (X — D).

i=1
The parameter of interest E(Rgy.) can be rewritten as

N
E(Rg) =E{) (i - D)+} =EW)EX, - D)t =EWN) /(x — D)t dF (x).

i=l

Thus, the statistical functional corresponding to the net excess-of-loss premium with priority D is
H3(F, D) = E(N) f(x - D)t dF(x),
and its empirical nonparametric estimator is

H3(Fy, D) = E(N) /(x — D)"dF,(x) = E(N)(X — D)7, (10)

where (X — D)t =n ' Y7, (X; — D).
Next, we derive the influence function of H3(F, D)

a 9
IF(x; H3(F, D)) = 5[113(1‘}, D))o+ = P [E(N) f(y —DyTd{(l —5)F(y) + SAx(y)}jl

s=07t
=E(N)% [(1 —5) /(y - D)TdF(y) + Sx] =EN)(x — D) — H;(F, D). (11)
s=07t
Further, it follows from (11) that

GES = sup|IF(x; H3(F, D))| = sup|E(N)(x — D)" — H3(F, D)| = c0.
X X
Finally, we evaluate the UBP of Hy(F,, D). Using the same arguments as in derivation of UBP for Hi(Fy, p)

and Hg(ﬁ,,, K), we arrive at similar conclusion for the empirical nonparametric estimator of the excess-of-loss net
premium: UBP = 0 and hence the estimator is nonrobust.
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4.5. Largest claims reinsurance

At the time when the contract is underwritten the reinsurance company guarantees that the k largest claims ina
fixed time frame, for example, a year, will be covered. (The number £ is either fixed or it grows sufficiently slowly
with time.) This means that one has to study the quantity

k
Ric=) Xyn-itl,

i=1

where X,, » denotes the mth order statistic in a sample of n ordered observations X, | < -+ < Xy, < -+ <

Xn Je
In this case, the parameter of interest E(Ryc) can be rewritten as

k

k 3
E(RLC)ZE{ZXN.N—H—I] =Ey {E[ XN\N_,-+]|N=ni|}
i=1 i=l
oo k . x
=2 {P{N =n ZE(X”'”‘"“)} =2 [P{N =n} ZfXan.n_iJrl(x)] : (1)
n=1 i=1

i=1 n=I1

where F), ,» (-) denotes the CDF of mth order statistic, that is,

Fn(®) = P(Xnm <31 = (’;> [FVI = FeoT™.

Jj=m
Further, the differential of F}, ,, is given by

dFym(x) =n ( " ) [F)" ' = F)I"™" dF (x).
n—m

Combining the last expression with (12) we arrive at the following expression for the parameter of interest E(Ryc)
(and equivalently, for the corresponding statistical functional H4(F, k)):

o

k
Z {P{N = n} Zn ('Z: 11 ) fx[F(x)]”‘i[l —Fx)] ! dF(x)} . (13)
i=l

n=I

Thus, the empirical nonparametric estimator of the net k largest claims premium is given by the following
formula

. o0 k -1 N . N . )
Hy(Fp )= {P{N =n}y n (': o ) f X[ Ep 1 1= Bl anm}

n=1 i=1

00 k n—1 n j n—i ] i—1
> PN =n) (i_l)}:xn,,-(;) (1—;> . (14)

n=I i=1
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In order to derive the influence function of H4(F, k), it will be beneficial to first find the influence function of
E(X,.n) = H(F; n, m). We proceed as follows

IF(x; H(F; n,m))

d d -1
= E[H(Fs; n, m)ls—g+ = — [n ( ! )/y[Fs(y)]'"’l[1—Fs(y)]"_’" d{(1-s)F(y) +sAx()’)}}

0s n—m

n—1 0 m—1 n—m
=n — l:(l —5) f YIEWI™ L = Fs(WIT™ dF (y)

s=07T
a5

+sx[1 +s(1 — F(x))]m_l[(l —5)(1 — F(x))]”_m}

s=0F

-1
=n ( 5 ) [* f YIFO)I" 1= FO)I"™™dF (y) + / YIFO)I™ L= FO) ™ = m)F(y)

n—m

— m — (1 = FOGNIAF () + x[F ][ - F(x)]”*'"}

=—mH(F;n,m)+(n—m)H(F;n,m+1)+n(n )x[F(x)]m_][l—F(x)]"_'”. (15)
it

Next, we combine expression (15) with (12) and (13), and find that the influence function of H4(F, k) is given
by

IF(x; Hy(F, k))
= —a%rm((l — $)F +5Ac, B)]ymor

00 k
=Z{P{N=n}2{(n4i+1)H(F;n,n—i+l)+(i—1)H(F;n,n—i+2)

n=1 i=1

n—1 n—i i—1
+n i1 x[F))"'[1 — F(x)] . (16)

Further, we note that only the last term in (16) depends on x. Thus, for calculations of the GES, we have
GES = sup|IF(Hy(F, k))|
X

20 k 1 ‘ _
S P(N=n}) n (r;_ l)x[F(x)]”’[l — FOI™ ! = oo.
=1

= constant (with respect to x) + sup
X
n=I i=

The supremum is infinite since summation Zf-;, (--+) can be reexpressed as
-1 4 ,
X(FEY' ™+ ( . ) X[FEP 1= Fr—, a7
S\ 1

where the term x (F(x))" ! is unbounded. .
Finally, examination of (14) shows that UBP = 0 (since for i = 1, H4(Fy, k) — oo as X, , — o0) and hence
the estimator H4(f7,,, k) is nonrobust.
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Remarks.

(i) Note that all other terms in (17) are bounded for distributions with a finite first moment. Thus, for example,
if a reinsurance treaty was defined as “k largest claims except the largest claim”, then the GES of the net

(i)

4.6.

premium for such a treaty would be finite and, consequently, its empirical nonparametric estimator would be
robust.

Besides being nonrobust the empirical nonparametric estimator given by (14) is also significantly biased. This
can be easily seen by choosing, for instance, k = 1 in formula (14):

n—1

n o 1—1 .\ n—1
EEX,,)=E|> X, (i) =E(Xy.0) + ) _E(X.)) (ﬁ) >E(Xpn), n>1
j=1

j=I1

An unbiased (and perhaps better known) nonparametric estimator of E(X,, ;) is the jth largest sample obser-
vation X,, ;. And a nonparametric estimator of E(Ry ¢) based on observations X, ,—j+1, j = 1, ..., k, hasan
advantage of being unbiased. Therefore, we will use this estimator (instead of empirical nonparametric) in a
numerical example of Section 5.

Excédent du colit moyen relatif (ECOMOR) reinsurance

This form of a treaty can be considered as an excess-of-loss reinsurance with a random deductible which is
determined by the kth largest claim in the portfolio. This means that the reinsurer covers the claim amount

N
Reco = Z(Xi — XnN-k+D) 7
i—

for a fixed number & > 2.
It is straightforward to show that in this case the parameter of interest E(Rgco) can be rewritten as a function of
E(Xn ~v—k+1) and E(RLc) (based on k — 1 largest claims). In particular

N k—1
E(Reco) =E {Z(xi - XN.N_k+1>+} =E {Z(xw_m ~ XN,N_k+1>}

i=1 i=1

= E(RLc|based on k — 1largestclaims) — (k — DE(Xxy y—k+1)

=Hy(F.k—1)— (k=1 Z [P{N = n}fxan.n—k+1(X)] :

n=1

Thus, the associated statistical functional is given by

Hs(F.k) = Hy(F. k= 1) = (k = 1) Y [P{N =n}H(F:in,n —k+ D),

n=1

and its empirical nonparametric estimator is

¢
Hs(F,, k) = Hy(Fy, bk — 1) — (k — I)Z[P{N =n}H(Eyn,n—k+1)].

n=1

Since Hs(ﬁ,,, k) is a function of H4(1:“,,, k — 1) and H(ﬁ,,; n,n — k + 1), it shares the same robustness properties
as these two estimators, i.e., GES = oo and UBP = 0. Thus, it is also nonrobust.
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Remark. As was the case with the estimator H4(I:‘,,, k), the empirical nonparametric estimator of E(Rgco) is also
biased. Moreover, it can even produce negative estimates of the net premium. Therefore, in Section 5 we will use
an unbiased nonparametric estimator based on sample order statistics X, ,—;11, j =1,..., k.

4.7. Discussion

Clearly, the empirical nonparametric estimators of the net premiums of the above considered reinsurance treaties
are nonrobust with respect to UBP and GES criteria. At first look, this conclusion does not appear to be sur-
prising because the net premium is an expected value-type functional. However, similar conclusions not neces-
sarily can be obtained for all functionals of this type. In fact, as derivations in Sections 4.2—4.6 suggest, that
depends on the underlying function the expected value of which is computed. If the function itself is unbounded
the functional will be nonrobust, and if it is bounded the functional (most likely) will be robust. Since reinsur-
ance treaties (that are currently available in the actuarial literature) are unbounded functions, the net premium
functionals corresponding to those treaties are found to be nonrobust. Also, we note here that this conclusion
does bear a certain element of surprise. That is because it contradicts a quite popular belief that empirical non-
parametric estimators must be robust simply because they are not based on assumptions, which may be vio-
lated. We emphasize again that robustness of such methods depends on a function (or a parameter) one tries to
estimate.

Further, in a very recent paper by Marceau and Rioux (2001), similar conclusions were reached for the excess-of-
loss and stop-loss premiums, and the probability of ruin. Their approach was based on the influence function
and its empirical equivalent the sensitivity function. In order to obtain robust estimators, these authors proposed
to use the minimum distance methods, in particular, the minimum Cramér-von Mises estimator. The robust-
ness of this estimator was then illustrated for the case when individual claims are coming from an exponential
distribution.

Finally, although the work by Marceau and Rioux and this paper have some overlap, these papers also very
nicely complement each other by presenting different robustness tools and investigating complimentary risk mea-
sures. Thus, we hope that the ideas of statistical robustness presented and illustrated here and by Marceau and
Rioux (2001) will continue to attract attention of other researchers as well as stimulate interest of practicing
actuaries.

5. Example: robust estimators versus nonrobust

In this section we present a numerical example which illustrates what may happen in practice if one uses nonrobust
estimators instead of robust ones. In order to do this, we investigate behavior of robust and nonrobust estimators
of the net premiums for all treaties under contaminated data scenario. For severity of claims, we consider the
contamination model of form

F, = (1 — ¢)Pa(o, o) + e Pa(c*, a™),

where e represents the level of contamination and Pa(o, «) denotes the Pareto distribution having CDF

o\
F(x):l*(—) , X >o0, (18)
X
defined for@ > 0 and o > 0.

Besides insurance claims, the Pareto distribution (18) is suitable for many situations including models in telecom-
munications, medicine, finance, and in applications of extreme value theory. Robust estimators of parameter « (with
@ known or unknown) are developed and investigated by Brazauskas and Serfling (2000a,b, 2001a,b). Let us briefly
review robust estimators of « in the Pareto model, which will be relevant for further discussion.



128 V. Brazauskas/Insurance: Mathematics and Economics 32 (2003) 115-133

5.1. Robust estimation of « in Pa(o, a) with o known

Consider a sample X1, ..., X, from the model Pa(o, ) as described by (18). Denote the ordered sample values
by X, <--- < X, ,. For brevity, results are presented only in the case of o known.

5.1.1. Trimmed mean estimators

For specified 8 and B, satisfying 0 < B, 82 < 1/2, atrimmed mean (TM) is formed by discarding the proportion
Bi1 lowermost observations and the proportion 8, uppermost observations and averaging the remaining ones in some
sense. In particular

" -1
arm = (Z cnilog Xp i — IOgU)) ;

i=1
with
0, 1=<i=[npl],

Cni =

7 A1+ 1=i=n—Inpal,
0, n—[npol+1<i<n,
where [-] denotes “greatest integer part”, and

n—[nf] j—I

d=dBi, pom= Y D (-

Jj=[np11+11=0

This choice of ¢,;’s makes &{1\1,1 mean unbiased.

1t follows from the definition of ¢;;’s that the TM estimator &ty is completely unaffected by proportion B, of
uppermost observations. This implies that &y has UBP = g, and therefore it is globally robust. For details see
Brazauskas and Serfling (2000b).

The GES for these estimators is derived and evaluated by Brazauskas and Serfling (2001b) where it was found
that the TM estimator &ty is B-robust (also, see Kimber (1983a,b)). Table 1 provides numerical values for GES/x
and UBP for the TM estimators.

5.1.2. Generalized median estimators

Generalized median (GM) statistics are defined by taking the median of the (Z ) evaluations of a given kernel
h(xy, ..., xy) over all k-sets of the data. Such an estimator was considered by Brazauskas and Serfling (2000b) for

Table 1
GES/a and UBP for selected S,
Robustness measure B

0.05 0.10 0.15 0.20
GES/a, 81 = f2 2.56 2.10 1.87 172
GES/a, 81 =0 2.56 2.09 1.85 1.69

UBP 0.05 0.10 0.15 0.20
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Table 2

Values of Cy for k = 1-7

k=1 k=2 k=3 k=4 k=S5 k=6 k=7
144 1.19 L.12 1.09 1.07 1.06 1.05

the parameter « in the case of o known:
acum = Median{h(X;,. ..., X;,; o)},
with a particular choice of kernel %:

1

h(xy, ..., xk0) = — ,
Cr k! ZI;-:] logx; —logo

where Cy is a multiplicative median-unbiasing factor, i.e., chosen so that in each case the distribution of £(X;,, ...,
Xi,; o) has median .. Values of C;, are provided in Table 2. (For k > 7, Cy is given by a very accurate approximation,
Cexk/tk—1/3).)

A detailed study of robustness of the GM estimators, including the case of ¢ unknown and small sample perfor-
mance, is available by Brazauskas and Serfling (2000a, 2001a,b). It was found that these estimators are globally and
B-robust. The UBP of GGy is given by the following formula: UBP = 1 —2~!/%_In Table 3, we provide numerical
values for GES/« and UBP for the GM estimators.

5.2. Underlying situation

Suppose we have a data set of observed claims which is contaminated (due to unknown reasons) with only
4% of “bad” observations. In reality this 4% contamination model can occur as follows. There are 24 claims,
X1, ..., Xa4, distributed according to model (18) with parameters o = 1 and « = 1.50 and 1 observation, X>s,
from Pa(oc* = 4, «* = 1.05), which is not representative of the model being estimated. That is, the underlying
probabilistic rule which generates claims is

Foos = (1 —0.04)Pa(oc = 1, a = 1.50) + 0.04 Pa(o* =4, «* = 1.05). (19)

Clearly, it is impossible (for an actuary) to know that observation X»5 comes from Pa(o* = 4, a* = 1.05) and
not Pa(o = 1, @ = 1.50), because X»5 will be a number which is >4 (since 0* = 4) and that is a quite probable
realization for the Pa(o = 1, @ = 1.50) model. Indeed, the probability of such an event

Ppy11500(X = 4) = (_}—‘)1'50 =0.125,

is relatively high. Thus, our hypothetical actuary has no other choice but to assume that all 25 observations came
from a single model, in particular, the Pa(o = 1, « = 1.50) model.

For estimation of premiums E(Rp), E(Rsy.), E(RgL), E(R1¢), and E(Rgco), if the true underlying model is
indeed Pa(1, 1.50), the GM and TM estimators are consistent, asymptotically normal, and asymptotically unbiased

Table 3
GES/a and UBP for k = 1-4 and 7
Robustness measure k
1 2 3 4 7
GES/u 1.44 1.90 227 2.60 3.38

UBP 0.50 0.29 0.21 0.16 0.09
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estimators of the corresponding claim severity quantity. The nonparametric estimators that we consider here are
all unbiased but nonrobust and also have infinite variances. Let us examine behavior of robust and nonparametric
estimators when the underlying model slightly deviates from the Pa(o = 1, & = 1.50) model.

5.3. Behavior of estimators

First, we find the target values that we wish to estimate for each treaty. (Here all data points X1, ..., X5 are
coming from the target model Pa(e = 1, = 1.50).)

e Proportional reinsurance. The net proportional premium is given by E(Rp) = pE(N) E(X). Thus, the targ
value is:

oo
E(X) = —— =3.
o—1

e Stop-loss reinsurance (K = 75). The net stop-loss premium is given by E(Rg1.) = Zflil P(N =n}E(S, - K)".
Thus, the target quantity is E(S, — K)* = f (x — K)* dF* (x). Typically, the distribution function F*" is found
using the fast Fourier transform (FFT) method which is described by Klugman et al. (1998, pp. 317-320). In our
case, however, this approach is inapplicable since it requires an explicit formula of the characteristic function
which is quite intractable for the Pareto distribution (see Arnold (1983, pp. 52-56)). Nevertheless, a reliable
approximation can be found using methods of extreme value theory. In particular, for very large x, we have
1 — F*(x) =~ n(l — F(x)) (see Beirlant et al. (1996, p. 117)). Hence, the approximated target value is:

—a+1

ES, - K" ~nEX-K)"=n =5.77.

a—1
o Excess-of-loss reinsurance (D = 4). The net excess-of-loss premium is given by E(RgL) = E(N) E(X — D)*.
Thus, the target value is:

—o+1

EX-D)" =
oa—1

= 1.

e Largest claims reinsurance (k = 1). The net largest claims premium is given by E(Ri¢c) = Z,fo:l P{N =
n} Zﬁ':l E(X, - j+1). Thus, the target value is:

n

k .
ZE(sz,n—j+l) = E(Xn.n) = 1_[ ( i l) = 23.01.

—
j=1 j=1 M

e ECOMOR reinsurance (k = 2). The net ECOMOR premium is given by E(Rgco) = Yoo PN = ”}Zi‘;]l
EXpp—j+1) — E(X,, 1—k+1))- Thus, the target value is:

k—1 n

1 o
S E® i nmjt = Xnnicr) =EXp = Xnn-n) = — [ ] ( - ) =15.34.
i=1 R VA !

Further, robust estimators for the above presented quantities are found by replacing & with the values of TM and
GM estimates &. Corresponding nonparametric estimators are: X (proportional), n= " 32y ;< (Xip + -+

Xi, — 75)1 (stop-loss), (X — 4)* (excess-of-loss), X, , (largest claims), and X, , — X, »—1 (ECOMOR). Behavior of
nonparametric estimators when the underlying model is (19) instead of Pa(l, 1.5), is investigated using simulations,
and behavior of robust estimators under contamination is evaluated via simulations as well as by the theoretical
approximation (2). These investigations are summarized in Table 4.
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Three runs of simulations clearly demonstrate that behavior of nonparametric estimators with (theoretically)
infinite variance is completely unpredictable (Table 4). Sometimes they may converge to values that are relatively
close to each other (e.g., Run nos. 1 and 3) while in the case of Run no. 2 they approach absolutely different values.
Moreover, even though all of them are unbiased estimators when data follow Pa(1, 1.5), due to the nonrobustness
these nonparametric estimators approach values that are way off target when data follow a 4% contaminated model.

As expected, the TM and GM estimators are stable for all three simulation runs and just moderately deviate from
the target values. Also, note that simulated and approximated values are very close for estimators with high UBP
and diverge for the ones with low UBP. A better performance (i.e., values closer to the target value) of simulated
values for the low UBP estimators means that Pa(4, 1.05) is not the worst contaminating model in this case.

6. Final remarks

The example of Section 5 demonstrates that while robust estimators of the net premiums do react to contaminat-
ing observations, corresponding nonparametric estimators tend to over-react. Moreover, even when the data set is
“clean”, the nonparametric estimators may be biased or have infinite variance which leads to inconsistency. There-
fore, for estimation of reinsurance premiums, the empirical nonparametric approach should be used with extreme
caution.

A more reliable alternative is the robust parametric approach which we propose to use for fitting the distribution
of claims severity which is then applied to the estimation of net premiums. This approach, however, has to be
developed on a case-by-case basis. Since the one-parameter Pareto model is a quite restrictive model (although
most parsimonious and of paramount importance for insurance applications), the use of robust estimators for more
flexible distributions is of interest. We conclude with a short list of papers that already addressed the problem
of robust estimation for other models which are appropriate for reinsurance portfolios. For robust estimation in
gamma samples see Kimber (1983a,b); robust estimation of the mean, variance, and limited expected value of the
lognormal distribution is treated by Serfling (2002) and Marazzi and Ruffieux (1999) developed robust estimators
for the mean of the lognormal, gamma, and Weibull distributions; and Davison and Smith (1990), Peng and Welsh
(2001) proposed robust estimators for parameters of the generalized Pareto distribution.
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