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ABSTRACT

In this paper the exact form of information matrix for Pareto(IV)
and related distributions is determined. The Pareto(IV) family being
very general includes more specialized families of Pareto(I),
Pareto(Il), and Pareto(IIl), and the Burr family of distributions, as
special cases. These distributions, for example, arise as tractable
parametric models in actuarial science, economics, finance, and
telecommunications. Additionally, a useful mathematical result
with its own domain of importance is obtained. In particular, explicit
formula for the improper integral [;° ((logx)" /(1 + X)) dx, with
b > 0 and non-negative integer m, is derived.
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1. INTRODUCTION

In this paper the exact form of (Fisher) information matrix for
Pareto(IV) and related distributions is determined. It is well-known
that information matrix serves as a valuable tool for derivation of
covariance matrix in the asymptotic distribution of maximum likelihood
estimators (MLE). As discussed in Serfling (1980), Sec. 4.1, under suita-
ble regularity conditions, the determinant (divided by the sample size) of
the asymptotic covariance matrix of MLE reaches an optimal lower
bound for the volume of the “spread ellipsoid” of joint estimators. In
the univariate case, this optimality property of MLE is widely used in the
“robustness versus efficiency” studies as a quantitative benchmark for
efficiency considerations. See, for example, Brazauskas and Serfling
(2000a, 2000b), Hampel et al. (1986), Huber (1981), Kimber (1983a,
1983b), and Lehmann (1983), Chapter 5.

The Pareto(IV) family being very general includes more specialized
families of Pareto(I), Pareto(Il), and Pareto(III), and the Burr family of
distributions, as special cases. These distributions are suitable for
situations involving relatively high probability in the upper tail. More
specifically, such models have been formulated in the context of actuarial
science, economics, finance, and teletraffic, for example, for distributions
of variables such as sizes of insurance claims, sizes of firms, incomes in a
population of people, stock price fluctuations, and length of telephone
calls. (See Arnold (1983) and Johnson et al. (1994), Chapter 19, for a
broad discussion of Pareto models, and their diverse applications.) New
application contexts continue to be found. For example, Crato et al.
(1997) have recently discovered Pareto-type tail behavior in the cost
distributions of combinatorial search algorithms.

As a by-product of the main result, a useful mathematical formula
(which plays a very important role in our derivations) is obtained. In
particular, explicit formula for the improper integral

00 (log x)m
———— dXx, 1.1
v/()‘ (1 +X)l+b ( )

with » > 0 and non-negative integer m1, is derived. Surprisingly, however,
computation of integral (1.1) has not been addressed in the mathematical
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literature including such comprehensive handbooks of mathematics as
Abramowitz and Stegun (1972) and Harris and Stocker (1998).

A hierarchy of Pareto models as well as their relation to the Burr
family is discussed in Sec. 2. Elements of the information matrix for
Pareto(IV), Burr, and related distributions are computed in Sec. 3.
Derivation of integral (1.1) along with other intermediate integrals and
formulas are presented in the Appendix.

2. PARETO(V) AND RELATED DISTRIBUTIONS

As discussed in Arnold (1983), Chapter 3, a hierarchy of Parcto
distributions is established by starting with the classical Pareto(I)
distribution and subsequently introducing additional parameters which
relate to location, scale, shape, and inequality. Such an approach leads to
a very general family of distributions, called the Pareto(IV) family, with
the cumulative distribution function

F(x):l—[l—l—(x;M)l/qa, x>, 2.1

where —oco < u < +o00 is the location parameter, o > 0 is the scale
parameter, y > 0 is the inequality parameter, and « > 0 is the shape
parameter which characterizes the tail of the distribution. We denote
this distribution by Pareto(IV) (u, o, ¥, @).

Note that in general statistical science there is no such type of param-
eters like “inequality.” Parameter y is called the inequality parameter
because of its interpretation in the economics context. That is, if we
choose o = 1 and u = 0 in expression (2.1), then parameter y (y < 1) is
precisely the Gini index of inequality.

Clearly, the other three types of Pareto distributions can be identified
as special cases of the Pareto(IV) family by appropriately choosing
parameters in Eq. (2.1) (see Arnold (1983), pp. 44-45):

Pareto(I) (o, @) = Pareto(1V) (o, o, 1, ),
Pareto(Il) (i, o, @) = Pareto(IV) (u, o, 1, @),
Pareto(III) (u, o, y) = Pareto(IV) (u, o, v, 1).

The Burr family of distributions is also sufficiently flexible and enjoys
long popularity in the actuarial science literature (see, for example,
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Daykin et al. (1994) and Klugman et al. (1998)). However, even this
family can be treated as a special case of Pareto(IV):

Burr (o, y, ) = Pareto(IV) (0, o, 1/y, «)

(see Klugman et al. (1998), p. 574).

In order to make the Pareto(IV) distribution a regular family, we
assume that parameter u is known and, without loss of generality, equal
to 0. (For regularity conditions on F and their interpretation, see, for
example, Serfling (1980), pp. 144-145.) Also, we note that this assump-
tion is not too restrictive for modeling purposes because in typical appli-
cations the lower limit of variables of interest is known. In insurance
and reinsurance context, for example, the lower limit is pre-defined by
a contract and can be represented as a deductible or a retention level.
(This perhaps is one of the main reasons why generality of the Burr
distribution remains sufficient for actuarial modeling.)

3. INFORMATION MATRIX FOR PARETO(1V)

Suppose X is a random variable with the probability density function
fo(-) where ® = (6y,...,0;). Then the information matrix I(®) is the
k x k matrix with elements

dlog fo(X) 310gf@(X)]'

%, 0

1(/'(@) = E@[

For the Pareto(IV) (0, o, y, @) distribution, we have ® = (0;, 6,, 6;) =
(o, y,a) and the density function

o (x/o)/7!

1O 0 W g

(3.1)

Thus the required partial derivatives are

dlog fo(x) _dlogf(x) o a+l 1
¥ o yo  yo 14/

dlog fo(x) _ dlog f(x) _ @, (E) _a+1 log(x/o) 1
9, dy oo\ L (xje) Y

dlog fo(x) _dlog f(x) _ AT
00, oa log(l * (0) )+
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Note that for this problem the first two partial derivatives 8* /96;06;
of fo(-) exist and, therefore, an alternative (based on the second-order
derivatives) formula for computation of information matrix elements
may be used. We found, however, that, except for a couple of cases,
this approach does not simplify our derivations. Therefore it is not
pursued here.

Since the information matrix I(®) is symmetric, it is enough to find
elements 7;{(©), 1;5(0), I;3(0), I»(0), I,3(®), and I3;(0). Derivation of
these elements is based on the following strategy: first, we express each
I;(®), 1 <i <j < 3,in terms of integrals 41-45, B1-B4, C1, C2, D1, D2,
which are defined (and their explicit formulas are presented) in Appendix
A.2; then, tedious algebraic simplifications yield the following formulas.

111(9)2/0 |:81052f(x)} S (x)dx

— <i>2 _ 2@+ D) A1+(a+1>2 A= %
yo (yo)* yo (yo) (e +2)

*®Tdlo x) dlo x)] .
112(®):/ [ gaf( ) dlog f( )}f (x) dx
0 o dy
2 2
:“_.31——2“(“3+1).Bz—%(atl) -B3+aj1-A1
Yo y'o y-o yo o

:L(()_L") )
Vol +2) M@ o« /)

1 1
ta(o) = [T PALED BTN 1
1 o+ 1 o+ 1 1
=3 v P e A e BTy
1 2 1 1
122(®):/0 [Mgi;(x)}j()dx_?-34 (“;:) 2
——2"‘(‘:‘;1)-01—?/—‘;‘-Bl+2(“f1)-32
__ e (T, 2e=1 (v _T@
_yz(a+2)<r()”“)“)+ (@ +2><F(1) r(a))
2o F(a)

“Yety T@ W
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*Tdlo x) dlo X
123(@):/ [ %f( ) dlog f( ):|f(x)dx
0 )4 oot
S T L SN Y B S AL )S LB
14 ay ay vy 14 y
1 M) )
= (==-T()—1),
e+ (F(a) )
*Talog f 2 1 2 1
133(@)2/ [%}f(x)dx:—z——-/ﬁ—i—/mz—z.
0 (o4 o o o

Finally, elements 7},(®), 1,,(®), and I,3(®) can be written in a simpler
form by using the polygamma functions y")(a) = (d"/dd")(T"(a)/T(a)),
for a > 0 and integer n > 0. Specifically, we use digamma v (a) = 1//(0)(a)
and trigamma /(@) functions. Thus the information matrix, I, (®), for
the Pareto(IV) (0, o, y, «) distribution is given by:

o a[(1) — Ylo) + 1] — 1 1
(o) (@+2) Yola+2) yo(a+1)
o) — Yl + 11— 1 af(¥(e) — (1) — 1)+ v (@) + V(D] 4 2((@) — Y1) ylor) — P(1) — 1
Yo(a+2) Y(a+2) ra+1)
o le) = y() — 1 1
yo(a + 1) y(a+1) o?

3.1. Special Cases
3.1.1. Burr(o, y, @) Distribution

Since the Burr distribution is a reparametrization of Pareto(IV)
0, o, y, @), it follows from Lehmann (1983), Sec. 2.7, that its informa-
tion matrix Iz(®) can be derived from JIp(®)J', where J is the
Jacobian matrix of the transformation of variables. Thus I (®) is then

given by:
o oY) — () = 1]+ 1 1
(o) (@+2) o(@+2) Yoa+ 1)
(@) — (1) =11+ 1 Ve[l — v(1) — 1 + ¢/ (@ + ¥/ (D] + 2@ — (1)) Av(1) — (e) + 1]
oo+ 2) o+2 a+1

R AU~ ¥@) + 1] 1
yola+1) atl 2
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3.1.2. Pareto(III) (0, 0, y) Distribution

This is a special case of Pareto(IV) with & = 1. Therefore third row
and third column (these represent information about parameter «) in
I,(®) vanish. And into expressions of the remaining clements we
substitute « = 1. This yields

1 1
2 0 2
(o, y) = 3(yo) _ 3(yo) )
’ o L2 0 T3
3)/2 9)/2

3.1.3. Pareto(II) (0, o, «) Distribution

This is a special case of Pareto(IV) with y = 1. Therefore second row
and second column (these represent information about parameter y)
in Ip(®) vanish. And into the remaining formulas we substitute y = 1.
This yields

o 1
o*(a+2) Co(a+ 1)
I** , —
(o, @) o 1
ola+1) o?

It should be noted here that information matrices I*(o,y) and
I"*(o, a) are readily available in Arnold (1983), p. 210.

APPENDIX
A.1. Three Lemmas

Lemma 1. For b > 0 and non-negative integer m,

00 (1 )m 1 m o -
/(; (1 j_g;;l+b dx = F(l + b)ZO: (},:l) (_1) F()(l) F( )(b),
(A.1)
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where T'(a) = [;° e ™dx and T"(a) = Jo (log x)" xYe ™ dx are

gamma function and its n-th order derivative, respectively.

Proof. We start with the following fact (Abramowitz and Stegun (1972),
p- 25%):
1 1 oo a—1 _—xt
— = e dt, x>0, a>0.
xt T(a) Jo

Next, after applying the above formula to the integral in Eq. (A.1) and
interchanging the order of integration we have

OO (]Og x)m 1 /OO b —t /oo —tx m
= “ .
/0 (1+x)1+bdx Ti+0) ), t’e ; e " (logx)"dx | dt

Further, substitution of variables z = tx and application of the binomial
formula to (logz —log)” lead to the following expression

i=0

Finally, simple reorganization of terms yields the result. <

Lemma 2. For b > 1 and integer n > 1,
rb) = (b — D% — 1)+ nr'" Dk - 1), (A.2)

where T'(+) and F(")(~) denote gamma function and its n-th order derivative,
respectively.

Proof. Integration by parts of the first derivative of the gamma function,
I (b), leads to

'b)y=bB-DI'(b—1)+TbB - 1).
Differentiation of this equation n — 1 times yields Eq. (A.2). <

Lemma 3. For b > 0,
[loste0 lopx o) [F@} . 1[r’<b> _ m)}
0 (1+x)'* b\ T(b) '(b) b T(b) ’
(A.3)
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where T'(-) and F(”)(~) denote gamma function and its n-th order derivative,
respectively.

Proof. Note that

“log(1l + x) logx d |: /Oo log x ]
————dx=—| - ————dx|.
'/(; (] +x)l+b db 0 (] +x)l+b

Formula (A.1) and differentiation of the right-hand side yield (A.3). <

A.2. Useful Integrals

In all expressions below function f (x) is the Pareto(IV) (0, o, v, «)
density function given by Eq. (3.1).
Integrals A1—AS5 are derived via straightforward integration.

(7 f® o«
1_/0 1+(x/a)‘/de_a+1’

> f(x) o
4 /0‘ [1 +(X/O’)l/y]2 Y a+2’

A3 = /oo log[1 + (x/0)""] f (x) dx = l,
0 o

A4 = /oo log*[1+ (x/0)'"] f (x) dx = a%
0

B O"log[l + (x/a)l/’/] o«
AS_/O 1+ (x/0)"” _f(x)dx—(a+1)2.

Integrals B1-B4 are computed by making use of formula (A.1).

Bl:/ooolog(x/a)f(x)dx_ (r(l) F(O‘))

(a)
° log(x/o) F(a) 1
Bz=/0 1+(x/a)1/yf(x)dx ( m- T(a) &)’
_ [ log(x/o) Y (o D@ 11
33_/0 T (s +2<F(1)_F(a)_o¢_a+l>’

B4 = / " logd(x/0)f (x)dx = (r”(l)—zr(l)r (@) FN(“))
0

[(@)  T(e)
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Lemmas 1 and 2 are applied in computation of integrals C1 and C2.

_ [ _log’(x/0)

V=], Ty O
_ o (g, M@, M@ 2r'()
(o [a‘”l)]+r(a)‘ .)

00 1 2 2 1 1
2= /0 %Jf (x) dx = a"‘—:z (F”(l) - 2r’(1)[a +a—+J

Me 2 @[l 1
T T+ ) T@ [a+a+1_r(1)}>‘

Integrals D1 and D2 are derived by employing Lemmas 1-3.

Dl = f ” log(x/0)log(1 + (x/0)/") f (x) dx
0

(T [T@] 1[T@
‘y< ro T~ elrio _F(”])’

_ [log(x/o)log(l + (x/0)"7)

oy () _ |:I‘/(a)i|2 B 1 |:l_'/(05) B F/(l):| _ 20+ 1

T a+1\ T (@) a+1|Na) Ala+1))
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