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Abstract

In this paper, the exact form of Fisher information matrix for the Feller—Pareto (FP) distribution is
determined. The FP family is a very general unimodal distribution which includes a variety of distributions
as special cases. For example:

e A hierarchy of Pareto models: Pareto (I), Pareto (Il), Pareto (III), and Pareto (IV) (see Arnold (Pareto
Distributions, International Cooperative Publishing House, Fairland, MD, 1983)); and

e Transformed beta family which in turn includes such general families as Burr, Generalized Pareto, and
Inverse Burr (see Klugman et al. (Loss Models: From Data to Decisions, Wiley, New York, 1998)).

Application of these distributions covers a wide spectrum of areas ranging from actuarial science, eco-

nomics, finance to biosciences, telecommunications, and extreme value theory.
(© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, the exact form of Fisher information matrix for the Feller—Pareto (FP) distribution is
determined. It is well known that Fisher information matrix serves as a valuable tool for derivation of
covariance matrix in the asymptotic distribution of maximum likelihood estimators (MLE). Further,
under suitable regularity conditions, the determinant (divided by the sample size) of the asymptotic
covariance matrix of MLE reaches an optimal lower bound for the volume of the “spread ellipsoid”
of joint estimators (see Serfling (1980, Section 4.1)). In the univariate case, this optimality property
of MLE is widely used in the “robustness versus efficiency” studies as a quantitative benchmark
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for efficiency considerations. See, for example, Brazauskas and Serfling (2000a, b), Hampel et al.
(1986), Huber (1981), Kimber (1983a, b), and Lehmann (1983, Chapter 5).

The FP family is a very general unimodal distribution which includes a variety of distributions as
special cases. As shown in Section 2, it includes:

e A hierarchy of Pareto models which is constituted of Pareto (I), Pareto (II), Pareto (III), and

Pareto (IV) distributions; and
e Transformed beta family which in turn includes such general families as Burr, Generalized Pareto,

and Inverse Burr.

A key feature of these distributions is a relatively high probability in the upper tail. However, it is
also interesting to note that there are some distributions that exhibit distinctly non-Paretian behavior
in the upper tail. For instance, Loglogistic, Inverse Pareto, and Inverse Paralogistic—each is a special
case of Inverse Burr—have relatively “light” tails (see Section 2.2 below).

Application of such models covers a wide spectrum of areas ranging from actuarial science,
economics, finance to medicine and telecommunications, for distributions of variables such as sizes
of insurance claims, incomes in a population of people, stock price fluctuations, duration of responses
to medical treatment, and length of telephone calls. (See Arnold, 1983; Johnson et al., 1994; Klein
and Moeschberger, 1997.) Moreover, some of these distributions are relevant within much broader
classes of models. For example, a Generalized Pareto distribution arises in semiparametric modeling
of upper observations in samples from distributions which are regularly varying or in the domain of
attraction of extreme value distributions (Embrechts et al., 1997).

The paper is organized as follows. In Section 2, we describe two different representations of the
FP family and specify some general distributions which the FP family includes as special cases. In
Section 3, we provide elements of the Fisher information matrix for FP, Pareto (IV), Inverse Burr,
and Generalized Pareto distributions. Intermediate technical results (integrals) are presented in the
Appendix.

2. Feller—Pareto and related distributions

The FP family traces its roots back to Feller (1971), but in the form we consider here it was first
defined and investigated by Arnold and Laguna (1977) (see also Arnold (1983, Section 3.2)).

Let random variable X, have a Beta distribution with parameters y; > 0 and y, > 0, then X; =
Xfl — 1 has (according to Feller (1971, p. 50)) a Pareto distribution. Next, if for —oco < u <
+ 00, 6 >0, and y >0 we define X = y + 0X;, then X has a Feller—Pareto distribution with the
density function

(x _ M>(V2/V)1
_ T(y1+72) o

CTOI(n) Y
Vi (P2 1+<x0,u>1

Yo
where I'(a)= fooo t*“le~!dt is the gamma function. We denote this distribution by FP(u, a,7, 71, y2).
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Alternatively, the FP distribution can also be represented via two independent gamma variables.
More specifically, if ¥; and Y, are independent gamma random variables with unit scale parameter
and y; and vy, respective shape parameters, then X =y + o(¥>/Y1)? has FP(u, a,7,71,y2) distribution.

2.1. A hierarchy of Pareto models

As discussed in Arnold (1983, pp. 44—-45), a hierarchy of Pareto models is established by starting
with the classical Pareto distribution, Pareto (I), and subsequently introducing additional parameters
which relate to location, scale, shape, and inequality. Such an approach leads to the Pareto (IV)
family with the density function

X — 1/y—1
)
_ 1y
1+ (x “) ]
)

where —oo < p < 400 is the location parameter, ¢ > 0 is the scale parameter, y > 0 is the inequality
parameter, and o > 0 is the shape parameter which characterizes the tail of the distribution. This is
a very general family of distributions which itself includes Pareto (I), Pareto (II), Pareto (III), and

the Burr distributions. Nevertheless, Pareto (IV) and, consequently, the other related distributions
can be identified as special cases of the FP family by appropriately choosing parameters in (1):

o
gl(x):'))_O' at1° x> U,

Pareto (I) (o,2) =FP (0,0,1,2, 1),
Pareto (Il (u,0,2) =FP (u,0,1,0, 1),
Pareto (IIl) (i, 0,7y =FP (p,0,7,1,1),
Pareto (IV) (i, 0,7, 0) =FP (u, 0,7, a, 1).

2.2. Transformed beta family

Another special case of the FP distribution is the transformed beta family. It can be found
in Klugman et al. (1998, p. 573), that the density function of the transformed beta distribution is
given by
I'(e+17) P(x/0)"
I(e)I'(t) x[1 + (x/0y1+"

Hence, it follows from (1) and the definition of g,(-) that

ga(x) = x> 0.

Transformed Beta (8,7, 1) =FP (0,6, 1/y,a,1).

This family itself includes a variety of distributions thus offering great flexibility in modeling.
Moreover, as it is seen from a below provided summary, those more specialized families are still
quite general and include other important distributions themselves. Specifically,
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e Burr (6,7, a) = Transformed Beta (6,y,o, 1):
Loglogistic (6,y) = Burr (6,7,1),
Paralogistic (6,a) = Burr (6,0, o),
Pareto (IT) (0,8, «) = Burr (6, 1, a),
e Generalized Pareto (6, x, 1) = Transformed Beta (6, 1, o, 7):
Pareto (IT) (0, 8, «) = Generalized Pareto (6,a, 1),
Inverse Pareto (4,7) = Generalized Pareto (6, 1, 1),
e Inverse Burr (4,7, 1) = Transformed Beta (8,y, 1,7):
Loglogistic (6,y) = Inverse Burr (6,7, 1),
Inverse Pareto (6,7) = Inverse Burr (6, 1,1),
Inverse Paralogistic (6,7) = Inverse Burr (6,y,1).

For further illustrations and discussion see Klugman et al. (1998, Section 2.7).

In order to make the FP distribution a regular family (in terms of maximum likelihood estimation),
we assume that parameter u is known and, without loss of generality, equal to 0. Thus, further
treatment is based on the density function

(714 72) (x/a) 2!

F(yOI(y2) yoll + (/o)
As the above-presented list of special cases suggests, the assumption of y known is not too restrictive
for modeling purposes. Also, in typical applications the lower limit of variables of interest is known.
For instance, in insurance and reinsurance context, the lower limit of severity of claims is pre-defined
by a contract and can be represented as a deductible or a retention level (see Daykin et al., 1994).

Solx)= x> 0. (2)

3. Information matrix for Feller—Pareto

Suppose X is a random variable with the probability density function fe(-) where @=(6,..., ).
Then the information matrix I(®) is the & x k£ symmetric matrix with elements

dlog fo(X) 610gf@(X)]
20, 20, |

1;i(©)=Ep [

If the density fo(-) has second derivatives 0 f o(x)/06; 00; for all i and j, then there is an alternative
expression for /;;(©), namely,

& log fo(X)
00,00, |

For the FP (0, ¢, v, v1,y2) distribution all second derivatives exist, therefore formula (3) is appropriate
and, most importantly, in our case it significantly simplifies computations. Thus, we have

1j(@) = —Eg [ )
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0= (017 027 037 04) = (O-s Vs V1, y2)9 the log_dGHSity
log fo(x) = (72/y — 1) log(x/) — (y1 + 72)log[1 + (x/0)"/']

—log(y) —log(o) + log I'(y1 + y2) — log I'(y,) — log I'(y2)

and the required second partial derivatives
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dy* » 92 ¥ L+ &/e) » (14 (x/o)tin)? 7
*log fo(x) 1 . 1 log(x/c )/
Z eJ0T o
dy oy Y 0gx/o) y 14 (x/o)’
*log fo(x) _ 1 log(x/a)"
oy 14 (o)
0% lo X
% = W(Vl +92) — W(Vl)a
1
221
% =y'(71 + ),
Y102
0% lo X
% = W(Vl +92) — W(Vz)s
2

where Y(a)=I"(a)/I'(a) and ¥/'(a)=dy¥(a)/da are, respectively, the digamma and trigamma function.
Computation of elements 133(6), 134(@), and 14(@) is trivial because the corresponding second
derivatives are constants. Thus,

< [d%1 |
(@) =~ [ | R ) dx =) < W 4 72)
L 1 i

o0 -62 1 ]
L4(0) = —/0 _%_ Sfo(x)dx = —y/'(y1 + 1),

> To%1 |
(@) = — /0 % Fo(x)dx =y (32) = ¥'(31 + 72)-
L 2 A
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Derivation of the remaining elements is based on the following strategy: first, we express each
I;;(®) in terms of integrals A1-46 which are defined (and their explicit formulas are presented) in
the Appendix; then, straightforward (but in some cases tedious) algebraic simplifications yield the
following formulas:

[eS] 2
(@)= [~ | R iy as

Y1 Y1+ 72 Y172

[(1 — 1/))Al 4+ (1/9)42] =

02 02 PoX(p 412+ 1)
> [%log fo(x)
112(@)——/0 [60—67)] So(x)dx
Y1 Y1+ P2 12 (12) =Yy + 91 — 12
AN [A1—45] = :
g P20 oy + 72+ 1)
0?log fo(x)] 1 —)2
I @:— dx=——[1 - Al]= —22
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0> log fo(x)] 1 N1
14(0) = — dy=—Al=—"11
W) [ dodys | Jolw)dx Vo yo(1 4 72)
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_ [0 log fo(x) B P20 (1) — (y2)] —
Is(0) = _/0 [ 0y 0y, ] folxydx = — [A3 —A4l= (71 +72) ’

_ > [6%log fo(x) 7l(y2) — (y1)] —
hy(0) = _/0 [ 0y 0y» ] Job)dx= A4 B (v +72)

3.1. Special cases

In this section, we provide several examples illustrating how to obtain Fisher information matrix for
distributions which are special cases of FP(0, 0,7, y1,72). Other choices of more specialized families
can be treated in a similar manner.



V. Brazauskas! Statistics & Probability Letters 59 (2002) 159-167 165

3.1.1. Pareto (IV) (0,0,y,%) distribution

This is a special case of FP(0, g, v, y1,72) with y; =« and y, =1. Therefore, elements that represent
information about parameter y; (i.¢., I4;(©®) and [;4(®@),1 < j < 4) vanish. And into the expressions
of the remaining elements we substitute y, = 1 and y; = a. This yields

o aly(1) — () +1] -1 ot
(yo Y (x+2) Pa(e+2) yo(e+1)
a(D) =)+ 1] =1 o) — (1) — 1) + ¢/ (@) + ' (D] +200(@) —¥(1)  P(a) — (1) —1
Po(a+2) P(a+2) e+ 1)
R Y@ w1 i
yo(o+ 1) (o + 1) o?

Remark. We note here that information matrix for Pareto (IV) is readily derived in Brazauskas
(2001). It is quite surprising that computations presented there are much messier and based on more
complicated integration results than in the case of more general FP family.

3.1.2. Inverse Burr (0,y,7) distribution
Information matrix for the Inverse Burr distribution is derived via a two-step procedure. First step,
we find information matrix for the transformed beta family. Second step, we use the fact that Inverse

Burr is a special case of the transformed beta family.

Since the transformed beta family is a reparametrization of FP(0,0,7,71,72) it follows from
Lehmann (1983, Section 2.7) that its information matrix can be derived from formula JIpp(O)J’,
where J is the Jacobian matrix of the transformation of variables, and Irp(@) is the FP information
matrix. Next, Inverse Burr (6,y,7) is a special case of the transformed beta distribution with o =1,
therefore elements that represent information about parameter o vanish, and into expressions of the
remaining elements we substitute o = 1. This leads to

T (D) — Yo+ 11— 1 1
(0 (t+2) 0(t + 2) y0(t + 1)
(D) — (o) + 11— 1 P le0h(x) — (1) — 1Y + /() + ' (D] + 20 (0) —v()] () — (1) — 1]
0(t +2) T+ 2 T+ 1
_ ) — ) — 1] 1
70z + 1) T+ 1 2

3.1.3. Generalized Pareto (0,u,71) distribution
Information matrix for Generalized Pareto (6, 1) is derived by following same steps as in the
case of Inverse Burr (6, y,7). This yields

AT T o
02 +7+1) S 0o+ 1) 0o + 1)
“tors V@-Vero et
o

0+ 1) M ACEEY Yi(t) —y(a+1)
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Appendix

In all expressions below function fo(x) is the FP (0, 7,71, 72) density function given by (2).
Integrals A1 and A2 are derived via straightforward integration.

o So(x) Y1
Al = d e N
]ﬁ T+ Gl it

e Solx) o 71(71 + 1)
4 _/0 [14 (x/a)/]? dr= 1+ )+ + 1)

Initial simplifications of integrals 43-46 lead to the following types of integrals: fol N1 —

£ MogH(r)de, [ 14 (1—1) " log* (1 —£)ds, for k=1 or 2, and [, #*~'(1—1)"'log(r) log(1—1¢) dt.
It is easily seen that these are either first- or second-order partial derivatives of the beta function
B(a,b). Thus, differentiation of B(a, b) and further algebraic simplifications yield

3= /0 log(x/c)" fo(x)dx =P(r2) — ¥(31 ).

[ log/o)V o,
A4—/0\ Wf@(x)d)(f— y1_|_y2[lp(y2)_¢(7)l)—1/?1],
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_ Y1¥2
(71 + 721+ 2+ 1)
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A6_/0 [+ (/o) T

So(x)dx

() —¥(2) + 1/y2 — 1/71],

_ Y172
Jobeydx= (1 + 721+ 2+ 1)
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VY3
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