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methods of maximum likelihood, trimming, and quantiles. Here we establish— via
simulation— that the superiority of the GM type estimators remains valid even for small
sample sizes n=10 and 25. To bridge between “small” and “large’”” sample sizes, we also
include the cases n=50 and 100. Further, we arrive at guidelines for selection of a
particular GM estimator in practice, depending upon the sample size, upon whether
protection is desired against upper outliers only, or against both upper and lower
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maximum likelihood estimator, breakdown points, and premium-protection plots.
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1. INTRODUCTION AND PRELIMINARIES

Diverse parametric and semiparametric applications call for estima-
tion of the tail index a of the two-parameter Pareto distribution
P(o, @) having cdf

o
Foy=1-(2) . x20 (1)
x

where o >0 and o> 0, or equivalently, via logarithmic transforma-
tion, of the scale parameter #=a ' of the two-parameter exponential
distribution E(p, #) having cdf

G(z) —=1= e—(z—ﬂ)/a, z>p, (2)

for >0 and —oo < p < oo. For estimation of a, when (1) is indeed
the true model for the data, the corresponding maximum likelihood
estimator (MLE) based on (1) possesses optimal asymptotic efficiency.
The performance of this estimator severely degrades, however, if the
true model for the observed data departs somewhat from (1).
Consequently, one desires to replace the MLE by an estimator which
is robust, i.e., which performs relatively well under departures from (1),
at the cost of a sacrifice of some efficiency when (1) is actually valid.

Various types of competing estimators have been formulated and
studied by simulation for fixed sample sizes. In the context of (1),
Quandt (1966) compared the MLE with moments estimators, a least
squares estimator, and certain “quantile” type estimators, on the basis
of 100 samples each for sample sizes n =25, 50, 100, 300, 500, 1000 and
2000; the MLE and quantile type estimators were judged to perform
best. Koutrouvelis (1981) extended the list of quantile type estimators
and compared them with the MLE and moments estimators, on the
basis of 3200 samples for sample size n=25, 800 samples for n= 150,
and 160 samples for n=3500; one of the extended quantile type
estimators was found most favorable overall. In the equivalent context
of (2) with  known, on the basis of 500 samples each of sizes n =35, 10
and 20, Willemain et al. (1992) compared the MLE (the mean) with a
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collection of robust estimators, including a rather computational
“transform” type estimator which they introduced and a trimmed
mean type estimator introduced by Kimber (1983a, b); for protection
against mild contamination from outliers the trimmed type estimator
performed best overall, while for protection against heavy contamina-
tion the transform type performed best.

In a recent large-sample study, Brazauskas and Serfling (1999)
introduced in the context of (1) new robust estimators of “generalized
median” (GM) type and compared them with the maximum likelihood,
quantile type, trimmed mean type, and other estimators. Using as
efficiency criterion the asymptotic relative efficiency (ARE) with respect
to the MLE and as robustness criterion the breakdown point (BP) (these
are defined below), the GM type was seen to dominate all competitors,
with the trimmed mean type second best. In Brazauskas and Serfling
(2000), similar conclusions were obtained in a study of estimators of o
for the one-parameter Pareto model given by (1) with o known.

In the present paper we establish—via simulation—that the
superiority of the GM type estimators remains valid even for small
sample sizes n=10 and 25. To bridge between “small” and “large”
sample sizes, we also include the cases n=150 and 100. Further, we
arrive at guidelines for selection of a particular GM estimator in
practice, depending upon whether protection is desired against upper
outliers only, or against both upper and lower outliers, and whether the
level of possible contamination by outliers is high or low. Our
treatment is carried out in terms of the two-parameter model P(c, a)
with o unknown, confining attention to those estimators ranked as
more favorable in the large-sample studies: the GM, trimmed mean,
and quantile types (all defined precisely in Section 2). Of course,
findings and comparisons regarding estimators & of a in P(o, &) convert
to corresponding statements about estimators § = ¢! of @ in E(u, 9).

1.1. Relative Efficiency Criterion

As is well-known (e.g., Arnold, 1983), for model (1) the MLE’s of «
and o are given by

1
- nl E;;! IOgX[ = lOgX(]},

aML

amL = Xy,



4 V. BRAZAUSKAS AND R. SERFLING

where X< ---< X, denote the ordered values of the sample.
Actually, we will use here the unbiased (but asymptotically equivalent)
version of dpy, namely

. n—2,
GMLU = GML-

As a benchmark for efficiency considerations, we use for fixed sample
size the exact relative efficiency (RE) taken with respect to the MLU
and based on the mean square error (MSE), i.e.,

MSE of MLU

RE(, dmu) = —yeEora

By comparison, the large sample relative efficiency may be defined as
ARE = (asymptotic MSE of MLU)/(asymptotic MSE of &), or,
equivalently, since all estimators under consideration are asymptoti-
cally unbiased, as (asymptotic variance of MLU)/(asymptotic variance
of &).

1.2. Breakdown Point Criterion

A popular and effective criterion for robustness of an estimator is its
(finite-sample) breakdown point (BP), loosely defined as the largest
proportion of sample observations which may be corrupted without
corrupting the estimator beyond any usefulness. It provides an index
valid over a broad and nonspecific range of possible sources of
contaminating data. We define separate versions for lower and upper
contamination:

Lower (Upper) Breakdown Point The largest proportion of lower
(upper) sample observations which may be taken to a lower (an upper)
limit without taking the estimator to an uninformative limit not
depending on the parameter being estimated.

Although estimators having both LBP > 0 and UBP > 0 are desired,
we give priority to UBP, which is more important in typical appli-
cations. In particular, dyy is readily seen to have LBP = UBP =0 and
thus is nonrobust and rejected as a contender for robust estimation
of a.
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For comparison of estimators in terms of efficiency and robustness
jointly, we will examine their RE’s and UBP’s together, paralleling
the use of ARE and UBP together in Brazauskas and Serfling
(1999, 2000).

1.3. “Premium Versus Protection” Approach

We shall also examine efficiency—robustness trade-offs via the
premium— protection (PP) approach of Anscombe (1960), here employ-
ing a specific form of contamination model,

F = (1 -¢)P(o,a) + eP(c*, a), (3)

where & represents the probability that a sample observation comes
from the distribution P(c*, a) instead of P(o, ). In particular, we
consider two cases:

model (3) with upper outliers (the case ¢* > o), and
model (3) with lower outliers (the case o* < o).

For each estimator 7 wunder consideration, corresponding
“premium” and “protection” values are defined:

Premium The relative change (increase) in MSE due to use of T
instead of the MLU in the null case Cy (no contamination), i.e.,

MSE(T, Cy) — MSE(MLU, Cy)

Premium(T) = MSE(MLU, Cy) ;

and

Protection The relative change (preferably decrease) in MSE due
to use of T instead of the MLU in a nonnull case C (contamination),
ie.,

MSE(MLU, C) — MSE(T, C)
MSE(MLU, C)

Protection(T, C) =

Premium versus protection works like an insurance policy. Favor-
able estimators T pay a low premium in terms of loss of efficiency in
the null case, in return for high protection (lower MSE than that of the
MLU) in the nonnull cases when the MLU is inefficient. For ease of
comparison, estimators are displayed as points on so-called PP-plots,
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with an ideal estimator being located in the upper left corner of the
PP-plot, reflecting maximal protection for minimal premium.

1.4. The Study

Models with upper and lower outliers were generated according to (3)
for the following choices of parameters and sample sizes:

a=1.50 (the center of a typical range of «’s arising in practice)
model with upper outliers: =1, ¢* =1000, e=0.10 and 0.20
model with lower outliers: o= 1000, ¢* =1, £=0.01 and 0.20
sample sizes: n=10, 25, 50, 100.

The case £ =0.20 represents a very severe level of contamination
which is survived by only the best estimators, and the PP-plots identify
these. The choice £ =0.01 for lower outliers serves to illustrate how
even a small amount of contamination can corrupt estimators with
LBP=0.

For each combination of parameters and sample size, and for each
estimator considered, 25,000 samples were generated and the MSE
evaluated. (For n > 100, the RE values approximate the corresponding
ARE values so closely that large-sample results suffice. This is seen in
Table 3.1, which for the uncontaminated case (¢=0) presents for
each estimator the RE’s for n=10, 25, 50, 100, and 200, and the
ARE.)

On the basis of these MSE’s, the GM, trimmed mean, and quantile
type estimators are compared in Section 3 from the standpoints of
efficiency and robustness considered separately (Sections 3.1 and 3.2,
respectively), as well as from the standpoint of efficiency —robustness
trade-offs (Sections 3.3 and 3.4). Conclusions and recommendations
are presented in Section 3.5.

2. THE ESTIMATORS

The MLE and MLU were given in Section 1. Here we briefly introduce
the other estimators in the study. Further discussion is available in
Brazauskas (1999) and Brazauskas and Serfling (1999, 2000).
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2.1. Generalized Median Estimators

Generalized median (GM) estimators are defined by taking the median
of the evaluations A(X;,,...,X;) of a given kernel A(xy, ..., x;) over all
subsets of observations taken k at a time, that is, corresponding to all
(:) k-sets {iy,..., i} of distinct indices from {1,...,n}. See Serfling
(1984, 2000) for general discussion. In Brazauskas and Serfling (1999),
such estimators were considered for the parameter « in the case of &
unknown:

dgm = Median{h(X;,,...,X; )},

with two particular choices of kernel A(x,, ..., x):

1 1
A (xp,. .. %) = —
b k) Ckk"lzj.;, log x; — log min{x,...,x;}

and

1 1

RO (xy,.. ., x5 X)) = 3
(x1 x5 X(1)) Cuph! E;‘:l log x; — log X1

where Cx and C, are multiplicative median-unbiasing factors, i.e.,
chosen so that in each case the distribution of /) (X;, ..., X;,), j=1,2,
has median . (Note that the kernel /) depends both on a k-set of the
data and the minimum order statistic X(;, of the whole sample. Except
when k=n, this differs from A", which uses the minimum of the
particular k-set forming the arguments of the kernel.) Let us denote
the corresponding GM estimators by &ggﬂ and dg}“, respectively.
Values of Cy and C,; are provided in the following tables. (For
n=150,100, and 200, C, is given by a very accurate approximation,
Cox = kf[k(1—1/n)—1/3].)

Although one may consider GM statistics for other choices of
median-unbiased kernel, our particular choices have special appeal, as

TABLE 2.1 Values of Cy, fork=2:10
k
2 3 4 5 6 7 8 9 10
2.89 1.79 1.50 1.36 1.28 1.23 1.20 1017 1.15
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TABLE 2.2 Values of C, for k=2:10 and n= 10,25, 50, 100, 200

k
n 2 3 4 5 6 7 8 9 10
10 1.36 1.27 1.23 1.20 1.19 1.17 1.17 1.16 1.15
25 1.25 118 1.14 1.12 1.11 1.10 1.09 1.08 1.08
50 1.23 1.15 1.12 1.09 1.08 1.07 1.07 1.06 1.06
100 1.21 1.14 1.10 1.08 1.07 1.06 1.05 1.05 1.05
200 1.21 1.13 1.10 1.08 1.06 1.05 1.05 1.04 1.04

follows. Note that each evaluation of the kernel A" is essentially the
MLE based on that particular subsample, thus endowing this kernel
with the efficiency of the MLE in extracting information about o from
a given subsample. The modification h? is similarly motivated.

For estimation of o when dgm is used, we shall use simply
oML = X(]}.

2.2. Trimmed Mean Estimators

For specified 3; and 3, satisfying 0 <, > < 1/2, a trimmed mean
is formed by discarding the proportion 3, lowermost observations
and the proportion 3; uppermost observations and averaging the
remaining ones in some sense. In particular, for & we introduce the
trimmed mean estimator

n |
Gt = (Zcm(logx(a) = k)gX(l))) ’
i=1

with ¢,;=0 for 1 <i<[n3], ¢,;=0 for n—[nf,]+1<i<n, and c,;=
1/d(By, B2, n) for [nfi]+1 <i<n—[nB,], where [-] denotes “greatest
integer part”, and

n—[nps] j—1

d(Br,Bo,m)= D D (n—i)".

J=lnil+1 =T

These estimators correspond to the trimmed mean estimators
introduced and studied by Kimber (1983a,b) for the equivalent
problem of estimation of #=ca " in the model E(y, #) with x known.
Note that various choices of weights d(3,, 3»,n) are possible, e.g., a
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choice that minimizes MSE of 6. Here, however, we follow the

existing literature where the above d's are a choice making 6t =

mean-unbiased for 6.

For estimation of o when é&r is used, we use dy = Xq).-

2.3. Quantile Type Estimators

ao]
Cep

Quantile estimators based on k>2 quantile levels 0<p; < - - <
pr < 1 are defined as follows:

with

and

k -1
aq = (belogx(rnmn) ,
i=1

dq = exp{ log X(1np,1) — t1/dq},

b __lu2~u1
' 7 TLem —em’
b~—l Wi — Uiy Ui — U rT<ick—1
PTL | et — et et — g | - !
1w — ug_y
bk_ze"‘*—e“k—l'
k 2
L_z(ui—"i—l)
- et — ethi-1 !

i=2

where u;= —log(l—p;), 1 <i<k, and [x] denotes the least integer
> x. Such estimators were introduced and studied for the Pareto
problem by Quandt (1966) for k=2 and by Koutrouvelis (1981) for
general k, and for the equivalent exponential problem by Sarhan,
Greenberg, and Ogawa (1963) with x4 known and by Saleh and Ali
(1966) with ¢ unknown.

As argued in Saleh and Ali (1966), the optimal choice of p; is

1
n+4.5

o
1

p

(4)
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As discussed in Brazauskas and Serfling (1999), a reduction to the case
of p known can be carried out, which permits the optimal choices of
P2+ P then to be found from Sarhan, Greenberg and Ogawa
(1963). (These values minimize the generalized variance, i.e., the
determinant of the asymptotic covariance matrix, of the estimators
of ¢ and «, subject to (4).) Denoting the corresponding estimator of

« by é“Q‘“"", we have in particular:

e For k=2, i.e., for d.r"th’z, the optimal p,’s are p; = p} and p, = .80.
e For k=5, ie., for d"th's, the optimal p/s are p; = pS, pa=.45,

p3=.74, p4=.91, and ps=.98.

We also consider a nonoptimal case which is robust also with
respect to lower outliers:

e For k=35, take p;=.13, p,=.32, p1=.50, p4= .69, and ps = .87. We
denote this estimator as df).

3. COMPARISONS AND CONCLUSIONS

The above-mentioned estimators are compared in Section 3.1 with
respect to efficiency (i.e., RE under the “null” model), in Section 3.2
with respect to robustness (via UBP), and in Sections 3.3 and 3.4 with
respect to efficiency —robustness trade-offs (i.e., by looking at RE and
UBP jointly, and via PP-plots). In Section 3.5 we present conclusions
and recommendations.

3.1. Efficiency Comparisons

Comparison of estimators on the basis of efficiency alone is carried out
for the case of no contamination (¢ =0). Table 3.1 provides the RE’s
for selected sample sizes n=10,25,50,100 and 200, along with the
ARE’s (for n=00). In Section 3.3 the RE’s for n=10, 25, 50 and oo
are examined again, in conjunction with the corresponding UBP values.

Remark 1 (for Tab. 3.1) The approximate sampling error of the RE’s
is +0.0089. Only 500,000 randomly chosen kernel evaluations were

used in cases where (k) exceeded this number, contributing at most an
additional +0.0001 error to the RE. These cases are indicated
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with an asterisk (x). Thus the overall sampling error of any RE is
approximately =+ 0.009.

Remark 2 (for Tab. 3.1) The above sampling error suffices to
explain some small deviations from monotonicity across rows that
occur in some rows of Table 3.1 for large sample sizes (n =100 and
200). Also, a rather larger deviation from monotonicity across rows
occurs for the GM estimators for k=35, due to the fact that for the
very small sample size n = 10 each relevant kernel evaluation is based
on a very informative full half of the sample. (For the case k= 10,
where there is only one kernel evaluation, we obtain just the MLE
itself, except modified by a factor that reduces its MSE from that of
the MLU.) Finally, non-monotonicity across rows for the optimal Q
estimators results from the smallness of the sample sizes n =10, 25 and
50, because the “optimal” quantile levels defining the estimators are
based on large n asymptotics.

TABLE 3.1 Values of RE for selected n

RE
n

Estimator 10 25 50 100 200 0o
&y 69 67 67 61 65 65
agv 84 75 97 92 93 93
ag (k=5) 32 56 67 67 69 72
ér, fi=Pa=.25 46 57 63 64 66 67
ér, Bi1=By=.20 46 62 67 70 &1 72
ér, By =Pa=.15 60 72 74 76 . 78
&r, Bi=f2=.10 60 78 80 £2 84 85
&r, By =Pa=.05 75 84 89 89 91 92
a0l k=2 64 69 70 n 7 72
a5 k=3 74 73 74 74 73 74
G, k=4 78 79 80 T 79 80
Gy k=5 92 84 79° 81° 83 85
&gy k=10 85 80° 87 89° 91* 93
a3, k=2 65 72 76 78 78 78
a3, k=3 82 83 86 87 88" 88
a2, k=4 83 89 91 90" 92 92
a3, k=5 97 92 91 92 94 94

ady, k=10 85 o1 95 96 97 98
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TABLE 3.2 Values of UBP for selected n

UBP
n
Estimator 10 25 50 100 00
ag? 10 16 18 20 20
& 00 00 00 01 02
ag (k= 5) 10 12 12 13 13
ar, Bi=f2=.25 20 24 24 25 25
ar, fi=F2=.20 20 20 20 20 20
ér, By =Pa=.15 10 12 14 15 15
ar, fr=F2=.10 10 08 10 10 10
&, fi=P2=.05 00 04 04 05 05
& k=2 20 28 28 29 29
Gy k=3 10 16 20 20 21
al, k=4 10 12 14 15 16
&l k=5 10 08 12 12 13
& k=10 .00 04 06 06 07

TABLE 3.3 Values of RE and UBP for selected n, and asymptotic LBP

n

10 25 50 P
Estimator RE UBP RE UBP RE UBP ARE LBP UBP
Y 6 .00 67 16 67 A8 65 0 20
s & 00 75 00 97 00 93 0 .02
& (k=5) 32 a0 56 12 67 A2 72 a3 .13

&1, Bh=Pa=25 46 20 57 24 63 24 67 0
ér, Bi=F,=.20 46 20 62 .20 67 .20 .72 0
Gr.Bi=f=.15 60 .10 72 12 74 .14 78 0 .15
ér, f=f=.10 .60 .10 78 08 80 .10 .85 0

0

&, Pi=P,=05 .75 00 84 04 89 04 92 05
a0 k=2 64 20 69 28 0 28 72 29 .29
agl, k=3 74 10 73 16 74 20 74 21 .21
&, k=4 78 10 79 .12 80 .14 80 .16 .16
GM

Al k=5 92 10 8 08 .79 .42 8 .13 .13
a5k k=10 8 00 80 04 &* 06 93 .07 .07
adl k=2 6 20 72 28 6 28 .78 0 .29
&l k=3 82 10 8 16 8 20 88 0 21
a2 k=4 83 10 8 12 91 14 92 0 .16
a@ k=5 97 10 92 08 91° .12 94 0 .13
(2 - .

a2, k=10 85 00 91" 04 95 06 98 0 .07
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3.2. Robustness Comparisons

For the estimators under study, values of UBP (finite sample and
asymptotic) established in Brazauskas and Serfling (1999) are provided
in Table 3.2 for sample sizes n= 10,25, 50, 100 and co. In Section 3.3
we examine the asymptotic UBP’s again, along with asymptotic LBP,
in conjunction with the corresponding RE values.

Remark (for Tab. 3.2) For each k, dg)M, i=1,2, have the same UBP
values. A coup[_e of non-monotonicities across the rows (for ér, 3, =
B>=.10 and &QM, k=35, i=1,2) are due to the discrete nature of the
UBP functions, which are not monotone in the range of small n ( < 25).

3.3. Efficiency — Robustness Trade-offs: RE Versus BP

In Table 3.3 we examine RE and UBP together, enabling us to select
estimators which provide favorable trade-offs between RE and UBP.
For completeness, we also include the asymptotic LBP, for cases when
this might be important.

Remark (for Tab. 3.3) RE’s marked with () are based on 500,000
randomly chosen kernel evaluations when () exceeds 500,000. The
approximate sampling error of RE’s is + 0.009.

For sample size n= 10, the following conclusions emerge:

e Quantile type estimators dominate the trimmed types. For example,
ar for §)=/f,=.10 with RE=.60 and UBP =.10 is dominated by
ag"? with RE=.69 and UBP =.10. (We do not consider cases with
UBP =0, which are nonrobust.)

e The generalized median type estimators, however, improve upon
both the quantile and trimmed type estimators. For example, &‘3’"2
with RE=.69 and UBP=.10 is dominated by &\, for k=5 with
RE =.97 and UBP = .10, as well as by 44}, for k=5 with RE =92
and UBP =.10.

For sample size n =25, the following conclusions emerge:

e Quantile and trimmed type estimators offer comparable trade-offs
between RE and UBP.

e The generalized median type estimators, however, again improve
upon both the quantile and trimmed type estimators. For example,
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“8‘“2 with RE = .67 and UBP =.16 is dominated by &, for k=3
with RE =.83 and UBP =.16, as well as by crg,)w for k=3 with
RE =.73 and UBP =.16. And &y for 3; =3, =.10 with RE = .78 and
UBP=.08 is dominated by aé,)u for k=5 with RE=.92 and
UBP =08, as well as by 41}, for k=5 with RE = .84 and UBP =.08.

For sample size n= 50, the following conclusions emerge:

e Trimmed type estimators show some improvement over quantile
types. For example, "“Q‘“z with RE=.67 and UBP=.18 is slightly
improved by ay for 8, =3, =.20 with RE =.67 and UBP =.20.

e Again, however, the generalized median type estimators improve
upon both the quantile and trimmed type estimators. For example,
“°Qp‘2 with RE = .67 and UBP =.18 is dominated by &gM for k=3
RE = .86 and UBP = .20, as well as by aGf“ for k=3 with RE=.74
and UBP=.20. And & aT for 8, =3, =.15 with RE=.74 and UBP =

14 is dommated by aGM for k=4 with RE=.91 and UBP =.14, as
well as by aGM for k=4 with RE=.80 and UBP =.14.

As the sample size n— oo, the trimmed means continue to
outperform the quantile types but in turn are dominated quite
definitively by the generalized median types. (This asymptotic finding
has aiready been given by Brazauskas and Serfling (1999).)

3.3.1. Overall Perspective

The generalized median type estimators are superior to the quantile
and trimmed types. If lower outliers are not of concern, then for
protection up to 10% contamination by upper outliers a suitable
choice is ag])\d for k=4 or 5, and for protection up to 20%
contamination a suitable choice is aGM for k=2, which trades off
some additional RE in exchange for higher UBP. If, however, lower
outliers are also of concern, then for protection up to 10%
contamination by either upper or lower outliers a suitable choice is
&g,’w with k ranging from 4 (for small #) to 10 (for larger n), and for
protection up to 20% contamination a suitable choice is a(m)“ with
k=2 (for small n) or 3 (for larger n).

In sum, a good overall choice is agfw with k=3, which can be
improved to the more efficient 0‘5}%,1 with k=3 if lower outliers are not

of concern, and in either case may be tightened to k=2 if n is very
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small (= 10() (Note that compared to the estimators ﬂ’él)w the
estimators G, trade off additional RE in exchange for nonzero LBP,
except the case n=10 and k= 10 where both estimators coincide.)

3.4. Efficiency — Robustness Trade-offs: PP-plots

Another way to explore efficiency —robustness trade-offs for the esti-
mators under consideration is provided by the PP-plots discussed in
Section 1. We exhibit a collection of PP-plots with the following features:

e In each PP-plot, the estimators offering the best trade-offs between
efficiency and robustness are those not dominated by other points,
i.e., those points with no other points to their “northwest”, These
non-dominated points constitute an “efficient—robust (ER)
frontier” of options and are connected by straight lines. Among
the points on the ER frontier, one selects according to one’s
utility function for (premium, protection).

¢ For each choice of , a PP-plot is given for each of the sample sizes
n=10,25,50, and 100, and the four plots are displayed in a single
captioned figure.

e For upper outliers, we consider e=.10 (Fig. 3.1) and £=.20
(Fig. 3.2). For lower outliers, we consider ¢ =.01 (Fig. 3.3) and
e =.20 (Fig. 3.4).

e In these figures, the following notation for the estimators is used:

dapl'k is denoted as Qk,
dg is denoted as Q,

SL, k=m, is denoted as Am,

GM, k =m, is denoted as Bm,
&rt, 31 =P,=p/100, is denoted as Tp.

3.4.1. Model with Upper Outliers

Discussion oF Figures 3.1 anp 3.2

(i) The Casee=.10 For n= 10, all estimators are poor (as might be
expected ), with ag])“ for k=2,4 and 10 formmg the ER frontier.
The worst performance is exhibited by . For n=25, 50 and 100,
the heavier trimmed estimators and aGM for k=2:5and 10, form
the ER frontier, substantially beating all competitors.
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(ii) The Case e=.20 For n=10, again all estimators are poor, with
the heavier trimmed and a3, (for k=2) and 43, (for k=2 and

4) forming the ER frontier. For n=25, 50, and 100, the
estimator 6, for k=2 j ignificantl ds “ »

GM jumps significantly towards “northwest”,

offering a very strong performance among estimators on the ER

frontier.

3.4.2. Model with Lower Outliers

DiscussioN oF FiGures 3.3 anp 3.4

(i) The case e=.01 For n= 10, all estimators are poor (as might be
expected ), with only dg])w for k=3 and 4 even exhibiting positive
protection. For n=25, the ER frontier consists of just &g])w for
k=35. For n=>50 and 100, the most attractive estimator is dggd
for k=10, although d"Qp"s is also on the ER frontier, and &gi& for
k=15 is competitive.

(i) The case e=.20 For all sample sizes, the estimators 5:83\.,_ for

k=2,3 and 4 are the most attractive.
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FIGURE 3.3 Model with lower outliers and £=.01.
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3.5. Conclusions and Recommendations

Although based on different approaches, the findings of Sections 3.3
and 3.4 tend to be in agreement. From a very conservative standpoint,
the estimator dggw for k=2 provides for any sample size a relatively
favorable efficiency—robustness trade-off with broad protection
against both upper and lower outliers and allowing rather high levels
of contamination. Its RE values range from .64 to .72 as n increases
from 10 to oo, and its BP values are .20 or above. We wish to do better,
however, whenever possible. Thus, if lower outliers are not of concern,
in the cases n > 25 we may replace this estimator by &ggw with k=2,
yielding improved RE values from .72 to .78 instead of .69 to .72.
Further, if, for example, protection against a contamination level of
only 10% suffices, then we may advance to c“rg,{{ with k=5 for n=10
and k=4 for n>25, yielding RE values of .97 and .89 to .92,
respectively, and corresponding BP values of .10 and = .12,

respectively.
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