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ROBUST PARAMETRIC MODELING OF THE
PROPORTIONAL REINSURANCE PREMIUM WHEN
CLAIMS ARE APPROXIMATELY PARETO-DISTRIBUTED

Vytaras Brazauskas, University of Wisconsin-Milwaukee
UWM, 3200 N. Cramer Ave., EMS Room E457, Milwaukee, WI 53211

KEY WORDS: Pareto, contamination model, ef-
ficiency, generalized median, nonparametric estima-
tion, reinsurance, robustness, tail index.

Abstract

A new approach—robust parametric modeling—is
introduced for estimation of the proportional rein-
surance premium when individual claim sizes are
(approximately) distributed according to a single-
parameter Pareto model. This methodology is com-
pared with well-established empirical nonparamet-
ric approach on the basis of two generally competing
criteria, efficiency and robustness, using the asymp-
totic variance of the estimator as an efficiency cri-
terion, and the breakdown point of the estimator as
a robustness criterion.

Various robust and efficient estimators of a Pareto
distribution tail index parameter are discussed. In
particular, trimmed mean type, and recently intro-
duced (see Brazauskas and Serfling (2000)) general-
ized median type estimators are considered.

1 Introduction

Extremal (or catastrophic) events in insurance can
lead to individual (or grouped) claims which by
far exceed the capacity of a single insurance com-
pany. A natural response from the insurance world
to this problem is the creation of a reinsurance mar-
ket which can be characterized as the industry that
protects insurance companies from insolvency.
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A focal statistical problem in reinsurance is to es-
timate the total claim amount. Based on the net
premium, which is defined as the expected value
of the total claim amount, the reinsurer calculates
the total premium that must be paid by the policy
holder (in this case, an insurance company). There-
fore a reliable estimate of the distribution function
of the total claim amount is necessary. We use a sim-
plified setting for this problem. (For a more general
setting see, e.g., [4], p. 507.)

The individual claim sizes, X;, Xq,..., are
independent identically distributed (iid)
non-negative random variables with com-
mon distribution function F, independent
of the number N of claims occurring over a
specified time period, for example, a year.
The total claim amount of an insurance
portfolio is then given by

N
S = Z X,'_.

i=1
Typically, the random variable N is as-
sumed to have Poisson distribution. For
the purposes of this paper, we can avoid
such a restriction. However, we assume
that the expected value of N, say A, is
known. It is also assumed that E(X;) ex-
ists. 0O

1.1 Proportional Reinsurance

This is a common form of reinsuranceé for claims of
“moderate” size. Here simply a fraction p € (0,1)



of each claim (hence the pth fraction of the whole
portfolio) is covered by the reinsurer. Thus the rein-
surer pays for the amount pS whatever the size of
the claims.

Further, the parameter of interest, i.e., the expected
value of the total claim amount, can be rewritten as
follows,

N
R;E{pZX,- (1)

i=1

}=pAE(X1)-

Note that the only unknown term which has to be
estimated in this expression is E(Xi). Hence, the
problem of estimation of R can be reduced to the
estimation of E(X1).

1.2 Pareto Models

In the context of reinsurance (insurance), heavy-
tailed distribution functions F are a quite realistic
choice. A useful and tractable parametric model
with relatively high probability in the upper tail is
the Pareto distribution Pa(o,a) having cdf

a
— >a"

F(z):l—(m)a, T . (2)

defined for o > 0 and & > 0. Here we assume that
the scale parameter ¢ is known. In actuarial appli-
cations, (2) with o known is appropriate when losses
or claims below a certain level are not relevant, as
for example when a deductible applies.

On the other hand, it is unrealistic to expect that
individual claim sizes will follow ezactly Pa(o, )
model. Therefore, we investigate the behavior of
estimators of the proportional reinsurance premium
when claims are approximately Pareto-distributed.

1.2.1 Approximate Pareto

We consider the contamination model of form

F = (1 -¢)Pa(o,a) +€G, (3)

where ¢ represents the probability that a sample
observation comes from the distribution G instead of
Pa(o, @), and G is an arbitrary distribution function
labeled as “contamination.”
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For Monte Carlo simulations, a choice of G =
Pa(c*,a) offers a flexible option of the contam-
ination model (3). This approach was used in
Brazauskas (1999) and it allows us to generate sev-
eral approximate Pareto models:

o model (3) with upper outliers (the case of ¢
many times greater than o, 0* > 0),

o model (3) with inliers (the case of o* slightly
greater than o).

(Although it is not of concern in this paper, but
the case o* & o results in model (3) with lower
outliers.)

1.3 Estimation Methodologies

It was suggested by Hipp (1996) that all types of
reinsurance premiums along with other important
features (e.g., mean, variance, coefficient of varia-
tion, skewness, kurtosis, the mean excess function,
and the loss elimination ratio) of an underlying dis-
tribution F' can be represented as functionals of F,
i.e., H(F). This idea serves as a motivation for sev-
eral estimation methodologies.

1.3.1 Empirical Nonparametric Approach

This approach is motivated by the fact that “in non-
parametric estimation problems, a parameter of in-
terest H(F) of the unknown distribution F is fre-
quently estimated by H(F,), with F,, the empiri-
cal distribution function based on a sample of n iid
observations Xi,... , Xn with distribution F.” (For
examples of functionals H, see Hipp (1996). For a
more comprehensive treatment of premium princi-
ples, see Gerber (1979).)

1.3.2 Robust Parametric Approach

In parametric modeling of F (say, F' depends on pa-
rameters 6, and 6,) one represents functionals H(F)
as explicit functions of the parameters 6, and 6; and
obtains estimates I-/I(_-}‘:S by substitution of 6, for &
and & for 6;. The major disadvantage of such,an ap-
proach is that it depends directly upon parametric
assumptions, which may be of questionable validity,



i.e., it is nonrobust. We suggest the following solu-
tion: use robust estimators of parameters instead of
standard ones. (See Brazauskas and Serfling (2000)
for discussion.)

1.4 Efficiency versus Robustness

For a parametric model, the Maximum Likelihood
Estimator (MLE) proves to be highly efficient (at
least for large sample size n). Typically, however,
it is nonrobust: highly sensitive to departures of
the actual data from the assumed parametric model.
Competing (in this context, robust) estimators are
designed to perform well over a specified range of de-
partures from the “ideal” model, necessarily achieve
their “robustness” at the expense of some sacrifice of
efficiency relative to performance when the “ideal”
model is indeed fully accurate. Thus robustness may
be viewed as a kind of “insurance” purchased for a
“premium” consisting of some loss of efficiency at
the assumed model. In selecting an estimator, there-
fore, we seek a good trade-off between “efficiency”
and “robustness,” i.e., a high degree of “protection”
in return for a given “premium.” Let us now intro-
duce precise notions of these criteria.

1.4.1 Efficiency

In terms of its optimum asymptotic variance, the
MLE provides a quantitative benchmark for effi-
ciency considerations. Thus we characterize effi-
ciency of competing estimators of the proportional

reinsurance premium via

ARE( R, Rm.) _ asymptotic-va:ia.fnce of M]E,E
asymptotic variance of R

where “asymptotic variance” denotes either exact
asymptotic variance or the variance parameter in an
asymptotic distribution, ARE stands for the asymp-
totic relative efficiency, and Ry, is defined in Sec-
tion 2.1. (Also, our definition of ARE is based
on “asymptotic variance.” Note that it is a valid
approach, because all the estimators under con-
sideration are asymptotically unbiased. Otherwise,
we should replace term “asymptotic variance” by
“asymptotic mean square error.”)

1.4.2 Robustness

A popular and effective criterion for robustness of
an estimator is its (finite-sample) breakdown point,
loosely defined as the largest proportion of sample
observations which may be corrupted without cor-
rupting the estimator beyond any usefulness. It pro-
vides an index valid over a broad and nonspeciﬁc
range of possible sources of contaminating data.

In the reinsurance context, protection against up-
per contamination is more important than protec-
tion against inliers or lower outliers. Thus we define

Upper Breakdown Point (UBP): the largest
proportion of upper sample observations
which may be taken to an upper limit with-
out taking the estimator to an uninforma-
tive limit not depending on the parameter
being estimated.

Also, it is important to decide upon the level of
contamination (i.e., probability ). For this we are
guided by the following principle.

The “e(n) — ex principle.”
portion £(n) of “contamination” that we
wish to protect against should be allowed
to decrease to some small limit £, (e.g.,
£oc = 0.05) as n — oo. Otherwise, having
an abundance of data when n is large, we
should estimate the entire mixture model,
not the “ideal” model. Also, in the case of

The pro-

many outliers in a large data set, the prob-
lem of identification of outliers reduces to
a classification problem.

See discussion by Jaeckel (1971), for example.

On the basis of these criteria various estimators
of R are compared. In particular, empirical non-
parametric, trimmed mean type, and generalized
median type estimators are considered. In Section
2 we briefly introduce the estimators in the study
and evaluate their UBP and ARE. Cc;mparisons and
conclusions are presented in Section 3.
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2 The Estimators

Consider a sample of claims Xj,... , Xn from the
Pa(c, @) model as described by (2) and denote the
ordered sample values by

Xﬂl an?. S "'ann

and the sample mean by X =n~' Y, Xi.

2.1 Maximum Likelihood Estimator

As is well-known (e.g., Arnold (1983)), for model
(2) the MLE of a is given by

1
n-1y 5 log X;

Additionally, the expected value of Pareto distribu-
tion with cdf (2) is

-~

Qugr, =

—logo’

oa
a—-1

(4)

Therefore, using (1) and (4) we find that the corre-
sponding MLE of R is given by

U&ML

RMI. =pA - & (5)

ML — 1

Since the estimator of a involves a mean of the
log Xi's, it has UBP = 0. Therefore, Ry, also has
UBP = 0 and it is classified as nonrobust.

Nevertheless, the MLE provides a benchmark for
efficiency considerations. Namely, Gy is asymptot-
ically normal with mean a and variance a?/n, which
we denote

052

-):

&ML is AN (a, i
Further, we have to find asymptotic distribution of
Ry, which is the transformation of G described
by (5). A straightforward application of asymptotic
distribution theory of transformations leads to the
fact that

)

See Serfling (1980), Chapter 3, for example.

a20'2

Ry is AN(

2.2 Nonparametric Estimator

Replace F by F, in E(X;). This leads to

X;=X.

1

E—)f)?;_) = /zdﬁﬂ(x) =

n

i=

Hence, the empirical nonparametric estimator of the

proportional reinsurance premium R is given by
RN = p)\ :?.

Clearly, X has UBP = 0. Consequently, Ry also
has UBP = 0 and thus is nonrobust.
For efficiency considerations we have that

2
Ry is AN (ph —— 2 __L_ 1
N lS (p b (pA) (a } (a_z) n
and therefore
P ala - 2)
ARE(Rn, Ruu) = W'

- which are valid provided a > 2.
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2.3 Trimmed Mean Estimators

For specified 8 and B satisfying 0 < 5,82 <1 /2,
a trimmed mean is formed by discarding the pro-
portion f; lowermost observations and the propor-
tion B, uppermost observations and averaging the
remaining ones in some sense. In particular,

Gr = (Z cni (log Xni — log o)

i=1
with
0, 1<ig[nB);
=1 1/d, A)+1<i<n-[nfa);
0’ n—{nﬂ2]+15i5ﬂ,

where [-] denotes “greatest integer part,” and

n=[nfa] j-1

z Z(n —-i)7h.

j=(nBi]+1i=D

= d(ﬁl H 52:”) =

These estimators correspond to the trimmed mean
estimators introduced and stutlied by Kimber
(1983a,b) for the equivalent problem of estimation
of § = ™! in the two-parameter exponential model



E(u,0) with u known. The above cp;’s are a choice
making f. = 7! mean-unbiased for 6.
It follows from (1) and (4) that the trimmed mean
estimators of R are given by

o G

R =p) = 1

Qr —

We see from the definition of trimmed mean estima-
tors that &, is unaffected by proportion f2 of up-
permost observations. This implies that G, (conse-
quently, R:) has UBP = f,. Therefore, the trimmed
mean estimators R are classified as robust.
For efficiency considerations we have that
ac (o)? a’o? Dﬂhg,)1
a-1 (=1 n

R, is AN (p,\

with Dg, s, computable following general methods
for L-statistics in Serfling (1980), Chapter 8. It fol-
lows immediately that

A o 1
ARE(R:,Ru) = Da o
1,92

2.4 Generalized Median Estimators

Generalized median (GM) statistics are defined by
taking the median of the (}) evaluations of a given
kernel h(zy,...,zx) over all k-sets of the data. In
Brazauskas and Serfling (2000), such an estimator
was considered for the parameter a in the case of o

known:

Gem = Median{h(X;,,... ,Xi,; 0)},

with a particular choice of kernel A:
1 1
Ck k-1 E_::: logz; —logo’

B(Z1y:0. 1Tk} O)
where C. is a multiplicative median-unbiasing fac-
tor, i.e., chosen so that in each case the distribu-
tion of h(Xi,,...,Xi,; o) has mediean a. Values
of Cy are provided in the following table. (For
k > 8, C} is given by a very accurate approximation,
Ci = k/(k-1/3).)

Table 1. Values of Cy, for k=2 :8.

k
2 3 4 5 6 1 8
[119 112 109 107 106 1.05 1.04]

Similarly to previous derivations, it follows from (1)
and (4) that the GM estimators of the proportional
reinsurance premium R are given by

» T Qgum

Raw —P)""'__&GM —1

A detailed study of robustness and asymptotic

distribution theory of the generalized median esti-
mators is available in Brazauskas (1999). It was
found that these estimators are robust, thus endow-
ing estimators Rgy with good robustness proper-
ties. The UBP of &gy (consequently, Rgy) is given
by the following formula:

UBP =1-2"V/¢k

For efficiency considerations we have that

alo?

C . ao Yk
N(pr 2L, (a2 X2 _ 2t
RGM ISA (p’\a_l (pA) (0—1)471),
which implies thé.t

- - 1
AR.E(RGM', RML) = —.
Yk

3 Comparisons

In the table below, several of the estimators of
the proportional reinsurance premium R considered
above are compared from the standpoint of effi-
ciency versus robustness.

| Estimator | ARE  UBP |
MLE 1 0
Re(2<a<25) | €056 0

R Bi=pB2=.25| 067 0.25
Re, Bi=fB2=.20| 072  0.20

Re, Bi=Ba=15| 0.78 0.15
Re, Bi=B2=10| 085 0.10
Ry, B1=B2=.05| 092 0.05
Row, k=2 0.78  0.29
Rom, k=3 0.88  0.21
B 092 0.6
Row, k=5 0.94 0.3
Rou, k=10 . 098" 0.07

The following conclusions are quite evident:



e The “empirical nonparametric” estimator is
neither robust nor efficient and thus is not com-
petitive.

e The “trimmed mean” type estimators offer a
good trade-off between ARE and UBP, but
they are improved upon by the “generalized
median” type estimators. For example, R for
B1 = B = .20, with ARE = 0.72 and UBP =
0.20, is dominated by Rey for k = 2, with ARE
= 0.78 and UBP = 0.29, and by R, for k = 3,
with ARE = 0.88 and UBP = 0.21. Likewise,
R for B, = B, = .05, with ARE = 0.92 and
UBP = 0.05, is dominated by Rgy for k = 4,
with ARE = 0.92 and UBP = 0.16, and by R\
for k = 5, with ARE = 0.94 and UBP = 0.13,
and also by Rey for k = 10, with ARE = 0.98
and UBP = 0.07.

The superiority of the generalized median estima-
tors can be explained by the following principle.

Smoothing followed by medianing yields a
very favorable combination of efficiency
and robustness.

That is, the two-step procedure

1. “Smooth” the data by taking a function of sev-
eral observations at a time over all subsets of
the data and replace the data with these func-
tion evaluations, and

2. Take the median of these evaluations,

leads to a statistic which possesses a favorable com-
bination of efficiency and robustness.
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