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ABSTRACT

Estimation of the tail index parameter of a single-parameter Pareto model has wide application in
actuarial and other sciences. Here we examine various estimators from the standpoint of two
competing criteria: efficiency and robustness against upper outliers. With the maximum likelihood
estimator (MLE) being efficient but nonrobust, we desire alternative estimators that retain a
relatively high degree of efficiency while also being adequately robust. A new generalized median
type estimator is introduced and compared with the MLE and several well-established estimators
associated with the methods of moments, trimming, least squares, quantiles, and percentile
matching. The method of moments and least squares estimators are found to be relatively deficient
with respect to both criteria and should become disfavored, while the trimmed mean and
generalized median estimators tend to dominate the other competitors. The generalized median
type performs best overall. These findings provide a basis for revision and updating of prevailing
viewpoints. Other topics discussed are applications to robust estimation of upper quantiles, tail
probabilities, and actuarial quantities, such as stop-loss and excess-of-loss reinsurance premiums
that arise concerning solvency of portfolios. Robust parametric methods are compared with

empirical nonparametric methods, which are typically nonrobust.

1. INTRODUCTION

A useful and tractable parametric model with rel-
atively high probability in the upper tail is the
Pareto distribution P(o, o) having cdf

Flx)=1— (g) x=0, (1.1)

defined for « > 0 and ¢ > 0. Here we treat
estimation of the shape parameter « that charac-
terizes the tail, with the scale parameter o as-

sumed known. That is, we consider Equation
(1.1) as a single-parameter Pareto model, follow-
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ing Beirlant, Teugels, and Vynckier (1996) and
Klugman, Panjer, and Willmot (1998). In actuar-
ial applications, Equation (1.1) with o known is
appropriate when losses or claims below a certain
level are not relevant (for example, when a de-
ductible applies). In such a case, o can represent
the deductible, or sometimes a lesser value in
order to incorporate inflation into the model,
while ignoring data irrelevant to the issues under
study. The parameter «, on which we shall focus,
plays a key role in connection with determination
of extreme quantiles, upper tail probabilities,
mean excess functions, and excess-of-loss and
stop-loss reinsurance premiums, for example. As
small relative errors in estimation of a can pro-
duce large relative errors in estimation of such
quantities, improvements in estimation of o can
yield significant favorable impact in applications
(see Section 6.1 for precise discussion).

More broadly, in the context of semiparametric
modeling, where one assumes merely a “Pareto-
type” distribution, an approximate model for the
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upper observations of a sample is given by (1.1).
This is apropos to situations where the upper tail
of the model is not parametrically related to the
lower and central parts and thus is estimated
separately using only the uppermost observa-
tions. These various applications are discussed in
detail in Section 6.

For general overviews of the role of P(o, a) and
variants in actuarial science, econometrics, and
other fields (see Arnold 1983 and Johnson, Kotz,
and Balakrishnan 1994, chap. 20). New applica-
tion contexts continue to arise; for example, the
cost distributions of combinatorial search algo-
rithms have recently been shown to exhibit Pa-
reto-type tail behavior (see Gomes, Selman, and
Crato 1997).

For estimation of «, the MLE enjoys great pop-
ularity. Indeed, for typical parametric models, the
MLE proves highly efficient; for large sample size
n, it attains, in its approximating normal distri-
bution, the minimum possible variance among a
large class of competing estimators. Typically,
however, it is nonrobust. In the presence of de-
partures of the actual data from the assumed
parametric model (for example, if the sample in-
cludes unrepresentative “outliers”), the perfor-
mance of the MLE degrades severely. One thus
should replace the MLE by an estimator that
maintains satisfactory high performance over a
specified range of departures from the ideal
model, while not being much less efficient than
the MLE when the ideal model is fully accurate.

In this paper we evaluate and compare a num-
ber of estimators for a, employing two criteria
representing efficiency and robustness. More spe-
cifically, for each estimator under consideration,
its asymptotic relative efficiency (ARE), taken
with respect to the MLE, and its breakdown point
(BP) are evaluated. These concepts, well-estab-
lished and widely used in the general statistical
literature, are defined and discussed precisely in
Section 2. We see how the MLE is nonrobust in
the present problem, leading us to seek compet-
ing estimators that are robust while retaining rel-
atively high ARE.

In Section 3, a new generalized median type of
estimator is introduced and its performance is
investigated with respect to our two-fold criteria.
In Section 4, we similarly assess several well-
established approaches in current use, namely
those estimators corresponding to the methods of

moments, trimming, least squares, quantiles, and
percentile matching. A comparison of all the es-
timators is presented in Section 5, with the pur-
pose of identifying not only the superior estima-
tors, but also the inferior ones that should be used
with caution, if not perhaps discarded from prac-
tical use. We arrive at the following general con-
clusions. The quantile, percentile matching, and
trimmed mean type estimators all tend to domi-
nate simultaneously, with respect to both effi-
ciency and robustness, the method of moments
and least squares type competitors to the MLE. In
particular, for the least squares type estimator,
which has enjoyed long popularity in the Pareto
problem literature, we arrive at a clarified per-
spective: It is both nonrobust and nonefficient.
Also, the method of moments estimator is nonro-
bust and, except for relatively large values of «,
nonefficient.

These two types of estimators should be used
with great caution. The quantile and percentile
matching type estimators are more favorable but
dominated by the trimmed mean type estimators,
which, in turn, are dominated by the new gener-
alized median type. Overall, it turns out that for
the problem of efficient and robust estimation of
a in P(o, «), the typically used maximum likeli-
hood, method of moments, least squares, quan-
tile, and percentile matching estimators can be
improved upon with respect to ARE and BP by the
trimmed mean and, especially, the new general-
ized median type estimators.

The trimmed mean estimator that we consider
here for estimation of a in P(o, a) is not well-
known for this purpose; rather, it is a simple
transformation of an estimator well-known for
estimation of 0 in the exponential distribution
E(w, 0) having cdf

G(z)=1—e w0

g =, (1.2)

for 8 > 0 and —o < p < . Note that a random

variable X has distribution F given by Equation
(1.1) if

d
4 Uk
X = ge"’,

(1.3)
where £ denotes “equal in distribution” and U
is “standard exponential,” that is, E(0, 1). Equiv-
alently, Z = log X has cdf in Equation (1.2) and
satisfies

Z<u+ U, (1.4)
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with w = log 0 and § = o~ *. Thus, the problem of
estimation of the scale and shape parameters o
and « in the model P(o, «) is equivalent, through
logarithmic transformation of the data, to that of
estimation of the location and scale parameters
and 0 in the model E(w, 6). In the latter problem,
certain trimmed mean type estimators of 6 have
become well-established as presenting a favorable
trade-off between efficiency and robustness (see
Kimber 1983a,b, Gather 1986, and Willemain et
al. 1992). The present study includes the estima-
tors & defined by taking the reciprocal of trimmed
mean type estimators  of 0. It is of interest that
estimators of a, defined through exploitation of
this equivalence, do not appear to have received
routine consideration in the literature on the Pa-
reto problem.

We can view the MLE as a special case of “op-
timization-based” estimators as described in
Klugman, Panjer, and Willmot (1998, sect. 2.5).
Among such estimators the MLE is the most effi-
cient and enjoys other advantages as well. As
such, the other members of this class become of
interest primarily because they offer more flexi-
bility in their mathematical treatment. Besides
being dominated by the MLE with respect to effi-
ciency, they typically are inadequate with respect
to robustness. Therefore, among optimization-
based estimators, we consider only the MLE.

Estimation for the “two-parameter” version of
Equation 1.1 (i.e., with o unknown), is included
in our treatment of least squares, quantile, and
percentile matching estimators in Sections 4.3—
4.5 and is discussed briefly in Section 7. A full
treatment of the two-parameter case is found in
Brazauskas and Serfling (1999), along with more
detailed statistical theory underlying the results
of the present paper.

The use of the new generalized median type of
estimator for other model distributions in actuar-
ial and other sciences is also of interest; however,
it is more complicated and will be explored in
separate investigations.

2. ErriciENcY VERsSUs ROBUSTNESS, AND
Two CRITERIA

Here we introduce the precise efficiency and ro-
bustness criteria to be employed.

2.1 Efficiency Criterion: Asymptotic
Relative Efficiency

In terms of its optimum asymptotic variance, the
MLE provides a quantitative benchmark for effi-
ciency considerations. In particular, for a sample
X, ..., X, from the model P(o, o) as described
by (1.1) with ¢ known, the MLE of « is readily
derived as in Arnold (1983),

1

ApL =

n! Y log X; — log o

i=1

Its exact distribution theory is described by the
statement that

2no 5
~— hascdf x3 ,
$5Y19

(2.1)

where x> denotes the chi-square distribution with
v degrees of freedom. This yields easily the as-
ymptotic distribution: &, is asymptotically nor-
mal with mean « and variance o°/n, denoted by
AN(a, a®/n), meaning

n"2(&y; — a) d
G o "4 N, 1,

where i denotes “converges in distribution”
and N(0, 1) denotes the “standard normal distri-
bution.”

For a competing estimator, efficiency is char-
acterized in terms of ARE with respect to the
MLE, defined as the limiting ratio of respective
sample sizes at which the two estimators perform
equivalently with respect to the variance crite-
rion. In particular, each estimator & for a consid-
ered here is AN(a, ca®/n) for some constant ¢ > 0,
from which it follows that

1
ARE(&, dy) = ¢

General treatment of ARE as a statistical tool are
available in Lehmann (1983) and Serfling (1980).

Note that the ARE provides a large-sample in-
dex of comparison whose numerical value is not
expected to apply precisely for any fixed small or
moderate sample size n. Such an index permits
estimators that perform relatively strongly when
an ample amount of data are provided, to be
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distinguished from those that do not perform as
strongly. The weaker estimators can then be
eliminated from further consideration, while the
stronger estimators can be further compared us-
ing additional criteria of choice and through sim-
ulation studies for selected fixed sample sizes.

2.2 Robustness Criterion:
Breakdown Point

A popular and effective criterion for robustness of
an estimator is its BP, loosely characterized as the
largest proportion of sample observations that
can be corrupted without the estimator itself be-
coming corrupted. When the BP is well-defined as
a quantity not depending on the particular sam-
ple values but depending only on the sample size
n, then we typically use as our criterion its limit
value as n — «. The BP of an estimator measures
the degree to which it remains uninfluenced by
the presence of outlying observations, which pos-
sibly (but not with certainty) could be due to
contamination of the dataset rather than being
properly representative of the target parametric
model. Depending on the context, protection
against upper and lower contamination can differ
in importance and impact, so we define separate
versions:

Lower (Upper) Breakdown Point (LBP, UBP): the
largest proportion of lower (upper) sample obser-
vations that can be taken to a lower (an upper)
limit without taking the estimator to a limit not
depending on the parameter being estimated.

Clearly, estimators are desired that have nonzero
breakdown points while possessing relatively high
efficiency.

In the present context of estimation of « in P(o,
o) with o known, the most extreme form of lower
corruption is to take observations to the lower
limit o, while the most extreme form of upper
contamination is to take observations to «. (If o is
unknown, however, lower contamination can in-
clude taking observations to 0.) As contamination
of the upper type is of greater concern in typical
applications, we emphasize UBP in the present
treatment.

More precisely, upper outliers are not necessar-
ily infinite but instead can consist of very high
layer data points, in cases where the model under
consideration has been truncated above by some

realistic upper bound. In the sense of small UBP,
robustness means that the sensitivity of the esti-
mator to upper data points is held within judi-
cious limits. Such a viewpoint has application, for
example, to commercial excess liability. Even
when the fraction of contamination is very small
and the model is truncated from above, a nonro-
bust estimator of a tail index parameter can still
err by a significant percentage, in the presence of
upper layer data points of dubious status. Thus,
we regard characterization of an estimator’s UBP
on the basis of performance in the presence of
contaminating data points at “infinity” to be ap-
ropos to the case of truncated models.

Let us now examine the MLE with respect to
LBP and UBP. By the classical law of large num-
bers of probability theory, we have, with proba-
bility 1, that as n —

n! Y logX, - E(logX) =a !+ log o,

i=1

whence follows the reassuring consistency prop-
erty that, with probability 1, &,;, — o asn — .
On the other hand, for any fixed n, if even a single
X, is taken to oo, then

n ! Y logX, —» =

i=1

and consequently &, — 0. That is, corruption of
a single data value by upper contamination can
render the MLE completely uninformative. Thus
&y, has UBP = 0 and hence is nonrobust against
upper outliers. Lower contamination is seen to
modify the MLE less severely, rendering it com-
pletely uninformative only when all observations
are taken to the lower limit o. Thus LBP = (n —
1)n — 1, which is optimal. On the basis of its
extremely poor UBP, however, the MLE should be
used with caution for estimation of o unless upper
outliers are of no concern.

The notion of breakdown point has antecedents
in Hodges (1967) and Hampel (1971), but it be-
came widely popularized beginning with Donoho
and Huber (1983). A related method for studying
robustness of an estimator is to evaluate its per-
formance when the data do not come from a
presupposed ideal model G but rather from a
specified contamination model; that is, the data
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are assumed to have distribution of form F = (1 —
€)G + eH, where H belongs to some specified class
of possible contaminating distributions, and e
represents the probability that a sample observa-
tion comes from the distribution H instead of G.
The special advantage of BP as the criterion, how-
ever, is that it provides a robustness index valid
over a broad and nonspecific range of possible
sources of contaminating data and levels e.

3. A GENERALIZED MEDIAN ESTIMATOR

Consider a sample X, ..., X,, from the model
P(o, o) as described by Equation (1.1). We intro-
duce and evaluate a new estimator that, in the
comparisons of Section 5, will be seen to improve
upon established estimators with respect to both
our efficiency and robustness criteria applied si-
multaneously.

For a given choice of integer k = 1, we intro-
duce a kernel

-1
k
ho(xy, ..., x) = k™" 2 log x; — log 0)

Jj=1

whose arguments are to be filled in with sample
values. In order to modify h,, to make any evalu-
ation with sample values median unbiased for
estimation of o, we use the fact that

(2ka)hy'(Xy, . .., Xi) has cdf X3,

which follows from Equation (2.1). Denoting the
median of x> by M, it follows that the kernel

h(xl, N

LX) = g ho(xn, - X0

is median unbiased for «; that is, the cdf Hj of
h(X,, ..., X,) satisfies
o = median ofHFZHEI(%), (3.1)

where H '(p), 0 < p < 1 denotes the quantile

function of a c¢df H. Then a natural estimator of «
is generated by taking the median of the evalua-
tions h(X;, ..., X, ) of the kernel h over all sub-
sets of observations taken k at a time, that is,
corresponding to all (;;) k-sets {i,, . . ., i, } of dis-
tinct indices from {1,..., n}. This yields the
generalized median (GM) statistic

&GM = Median{h(Xh, P 7Xik)}

(3.2)
for estimation of a. (For k = 1, this is just the
median of the transformed observations (log X, —
log 0)"', 1 =i = n, adjusted to be median-
unbiased for estimation of a.)

Values of M,,, and the multiplicative correction
factors M,,/(2k) needed in constructing &y, are
provided for kernel sizes k = 1: 10 in Table 1.

Although one can consider GM statistics for
other choices of kernel that are median-unbiased,
for a, the present choice has special appeal. Note
that each evaluation h(X; , . . . , X, ) is the MLE of
« based on just the observations X, , .. ., X; (for
k = n, the MLE is based on the full sample). This
endows h, and its modification h with the effi-
ciency of the MLE in extracting relevant informa-
tion about a from any given subsample.

3.1 Asymptotic Normality

The estimator &, is a special case of generalized
L-statistic (GL-statistic), for which asymptotic
normality has been established under broad con-
ditions by Serfling (1984) and Choudhury and
Serfling (1988). Therefore, &y, is asymptotically
normal with mean o« and variance k*{/hz(a)n,
where h, denotes the density of Hy,, ( =
Var(w, (X)), and w,(x) = P{h(x, X, . . . , Xp_1) =
a}. It turns out that this variance is of form y,a*/n
and thus 1/y, represents the ARE. Table 2 pro-
vides these AREs and the corresponding values of
v, for k = 1:10.

Table 1
M,, and M,,/(2k), for k =1:10

k
1 2 3 4 6 7 8 9 10
My 1.386 3.357 5.348 7.344 9.342 11.340 13.339 15.339 17.338 19.337
M, /(2k) 0.693 0.839 0.891 0.918 0.934 0.945 0.953 0.959 0.963 0.967
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Table 2
ARE(a&¢m, ) and vy, for k=1:10

k

1 2 3 4 5 6 7 8 9 10
ARE(Gcny Gpnt) 0.64 0.78 0.88 0.92 0.94 0.96 0.97 0.97 0.98 0.98
Vi 1.563 1.280 1.141 1.088 1.061 1.044 1.035 1.028 1.023 1.019

3.2 Breakdown Points

Regarding breakdown behavior of the statistic
Ay, it can be shown (see the Appendix) that

k 1
UBP=n"! max{m: ———-=

l=m=n n
k

n — o,

(3.4)

Values of the limits in Equations (3.3) and (3.4)
for k = 1:10 are given in Table 3.

From examination of Tables 2 and 3, we see
that ARE and LBP increase with k while UBP
decreases. From a practical standpoint, the case
k = 1 can be ignored. While it is included for
completeness, the low ARE of 0.64 is not compet-
itive, and UBP as high as 0.50 is not especially
needed. Serious interest begins with the case k =
2, with marginally competitive ARE of 0.78 and
very strong UBP of 0.293. While UBP decreases
with k to 0.067 at k = 10, this value is not too
small for practical application and the corre-
sponding ARE of 0.98 is excellent. Thus the cases

k = 2 : 10 represent a practical range of trade-offs
between robustness and efficiency.

3.3 Computational Considerations

The computational burden of computing &gy
srows with n as O(n*), which, for large n, could
become prohibitive. For example, for k = 5, the
number of kernel evaluations needed for n = 25 is
only (%) = 53,130, whereas for n = 500, the
number is 255,244,687,600. When the number of
evaluations needed exceeds N = 10° or 10%, one
can simply estimate the estimator Gy by using
only the evaluations h(X, , . . ., X; ) for a random
sample size N of the () possible k-sets {iq, . . .,
i,}. Such an approach renders the computational
burden negligible but maintains any desired de-
gree of numerical accuracy. For example, for k =
5 and n = 500, the computation of &, on a
Pentium II 400 MIz laptop computer with N =
10” evaluations requires only 350 seconds,
whereas the exact calculation using all evalua-
tions would require approximately 354 hours. For
k = 10 and n = 500, the computation with N =
10" evaluations requires 90 seconds. As n in-
creases for fixed k, these computation times do
not increase because N is held fixed.

4. ReviEw ofF EsTABLISHED ESTIMATORS

Continuing the setting of Section 3, we focus on
estimation of the parameter o, based on a sample

Table 3
Asymptotic LBP and UBP of agy, for k=1:10

k
1 2 3 4 6 7 8 9 10
LBP 0.500 0.707 0.794 0.841 0.871 0.891 0.906 0.917 0.926 0.933
UBP 0.500 0.293 0.206 0.159 0.129 0.109 0.094 0.083 0.074 0.067
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X4, .. .,X,, having cdf F corresponding to the P(o,
o) model. Denote the ordered sample values by

an an2 =--- S)(nn
and the sample mean by X, = n~ ' 3| X,. For
convenience we also use the notation

Z;=log X;and Z,; = log X,,;, for 1 =i =n,

and Z, = n ' 3, Z,. Here we review the prop-
erties of the methods of moments, trimmed
mean, least squares, percentile matching, and
quantile-based estimators.

4.1 The Method of Moments Estimator

In the classical method of moments approach to
estimation, estimators are produced by solving
equations formed by equating low order sample
and population moments of suitably chosen ran-
dom variables. In particular, for the model P(o,
a), we utilize the formula EX = co/(a — 1), which
is valid provided that a > 1. The corresponding
method of moments estimator is then obtained by
solving the equation X,, = o&/(& — 1), yielding

) X,
Qpmm = Xn -
By the law of large numbers, as n — % we have
X, — EX and thus &,,, — a. However, for any
fixed n, if even a single X, is taken to «, then X,, —
© and, consequently, &,,; — 1. That is, the esti-
mator can be rendered uninformative by upper
corruption of even a single observation. Thus,
Ay has UBP = 0 and is nonrobust against upper
outliers. This suffices for rejection of this estima-
tor, even though its behavior against lower outli-
ers is more stable.

For the sake of a more complete comparison
with the MLE, we also examine the ARE. Using
standard central limit theory and

0'20L

Varl) = (= - 2)

which is valid provided o > 2, we have &y, is
AN(a, a(a — 1)*/(a — 2)n). It follows that the
ARE of &y, with respect to &y, is a(a — 2)/(a —
1), which approaches 1 as a — ; however, for
typical values of a, it is poor. For example, for 2 =
a = 2.5, we have 0 = ARE = 0.56, and for 2.5 =
a = 3, we have 0.56 = ARE = 0.75.

In conclusion, the method of moments estima-
tor defined for a > 1 exhibits neither satisfactory
robustness nor satisfactory efficiency. While
method of moments estimators can also be de-
fined when a = 1, these fail to satisfy consistency
(convergence to «).

4.2 Trimmed Mean Estimators

For the problem of robust estimation of 0 in the
model E(w, 6), trimmed mean estimators have
been introduced and investigated by Kimber
(1983a,b), Gather (1986), and Willemain et al.
(1992), among others. Here we consider the cor-
responding estimators of a defined by & = 6.

For specified B; and B, satisfying 0 = 3; < 1
and 0 = B, < 1 — B4, a trimmed mean is formed
by discarding the proportion B, lowermost obser-
vations and proportion B, uppermost observa-
tions, and then averaging the remaining ones in
some sense. In particular, for estimation of 6 in
E(p, 0), Kimber (1983a,b) defines

éT = z cni(Zm' - M), (41)

i=1
withe¢,; = 0 for 1 =i = [nB,], = 0 forn — [npB,]
+1=i=n,and = /d(B,, B, n) for [nB;] + 1 =
i = n — [nB,], where [ - | denotes “greatest

integer part” and

n—[nB2] j

> XY nm—-i+ 1)L

ji=[np1l+1 i=1

d(By, B2, n) =

(This choice of ¢,;’s makes 6, mean unbiased.)
Robustness is gained against lower outliers if
[nB;] > 1 and against upper outliers if [n35] > 1.
Indeed, the trimmed mean estimator éT is com-
pletely unaffected by taking the proportion B,
lowermost observations to the lower limit p or by
taking the proportion B, uppermost observations
to +o, so that LBP = [nB;]/n — B; and UBP =
[nB,]/n — B5, n — . These BPs apply also to the
corresponding estimator of a given by & = AG{ L
(In the case of no trimming, that is, 3; = B, = 0,
note that d(0, 0, n) = n and thus & reduces to
the MLE discussed previously.)

To consider ARE, we utilize the fact that &, is
AN(a, DBHBQaZ/n), with Dg 5 computable follow-
ing general methods for L-statistics in Serfling
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(1980), Section 8.2.4, or Lehmann (1983), Sec-
tion 5.4. Thus,

ARE(Gr, dyy) = (4.2)

Dg, g,

In particular, for B; = B, or B; = 0, and B,
taking values 0.05, 0.10, 0.15, 0.20, and 0.25,
values of ARE(&r, &,), and thus through Equa-
tion (4.2) corresponding values of D, ; and Dg
are found from Table 1 of Kimber (1983a) dl’ld
Table II of Kimber (1983b). For each of these five
choices of B,, the AREs for the two cases B; = 0
and B; = B, agree (coincidentally) within two
decimal places. This leads to ARE and corre-
sponding D values as listed in Table 4.

4.3 Estimators Based on a
Regression Approach

The least squares, quantile-based, and percentile
matching estimators to be considered in Sections
4.4-4.5 can be viewed as special cases of a re-
gression approach based on linearization of the
model Equation (1.1) in terms of its parameters.
We describe this approach here, and, for compat-
ibility with existing literature, we consider esti-
mation of a with ¢ treated as an unknown nui-
sance parameter. Representing the model in
Equation (1.1) by its quantile function

Fl(p)=inflx : F(x) =p} =0o(1 —p)
0<p<1,

and then taking logarithms, we arrive at

log F~!(p) = log o + a~'(=log(1 = p)),

0<p<l1. (4.3

A sample analogue of Equation (4.3) based on
X, ..., X, is then obtained by introducing the

n

usual sample cdf for estimation of F, that is,

A 12
Pux) = 31X =x),

—o0 <l <o

and the corresponding sample quantile function

FAp) =Xpms 0<p<1, (44)

where [X[]denotes the least integer = x. Now
defining € = log F, '(p) — log F~'(p) and substi-
tuting ﬁ‘; Y(p) for F~'(p) into Equation (4.3), we
obtain an exact reexpression of model Equation
(1.1) as

log %, '(p) (4.5)

where u = —log(1 — p), 0 < p < 1. Taking n
choices of p, such thatF 1(p) generates the set of
order statistics {X,;, 1 =i =n} via Equation (4.4),
that is, for choices p, ..., p}, satisfying

celo 1 e (12
pnle 7n7pn2e n’'n S

(n—2 n—1 (n—l 1) 16
pn,n*lE n > n apnne Ta ) ( . )

=logoc+aut+e 0<p<l,

we obtain from Equation (4.5) a set of n equations
for the two unknowns o and « (equivalently, log o
and o™ '):

Zy=logo+a ul,+ei 1=i=n,

(4.7)

where u’, = —log(1l
logs F-'(p*),1=i=n.

- ph) and € = Z

nt

The equations in (4.7) can be utilized via inter-
pretation from the standpoint of the usual linear
regression model. Thus, estimates of w = log o
and ® = o ! result by fitting a straight line
through the scatterplot of points

(Zniy u;u)7 1 = 7’ = n,

and these, in turn, yield estimates of o and a. We
may select either the full set of all n points or a
strategic subset. In particular, in Section 4.4, we

Table 4
ARE(&y, Gy ) and D, for 3, = 0 or 3, = BB, and selected (3,

B2
0.05 0.10 0.15 0.20 0.25
ARE(Q+, Q) 0.92 0.85 0.78 0.72 0.67
Do,gy Dp, gy 1.09 1.18 1.28 1.39 1.49
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take the full set of points and apply ordinary least
squares to obtain a version of the least squares
estimator considered by Quandt (1966) and Ar-
nold (1983). In Section 4.5, we take just a spec-
ified number of k points and apply weighted least
squares to obtain “quantile” estimators, as con-
sidered by Quandt (1966) for k = 2 and Sarhan,
Greenberg, and Ogawa (1963), Saleh and Ali
(1966), and Koutrouvelis (1981) for arbitrary k =
2.

4.4 Least Squares Estimators

Applying the regression-based approach of Sec-
tion 4.3 using the full set of equations (4.7), with

the pl/’s given by p), = p,,, where
1 1 ) 1 d n
L= — < < —_ =
pnfl n ) - ,L - n b an pnn n + 1 b

the usual (ordinary) least squares regression esti-
mators yield least squares estimators of o and a.
Deﬁning Cni = _lOg(l - pni) and én = n_l 2?:1 Cni7
we thus arrive at

and hence

A

— -1 A s
aps = 015, OLg = ers,

Focusing on the estimator & g, it is readily seen
that its UBP is O, and hence, this estimator is
nonrobust. (Furthermore, for the case o un-
known, so that X; — 0 is a possible form of cor-
ruption, we have LBP = 0.)

Discussions of versions of this least squares
estimator by Quandt (1966, p. 60), and Arnold
(1983, p. 202) suggest that the corresponding
estimators are consistent as well as competitive
in efficiency with the maximum likelihood esti-
mators. A rigorous treatment of efficiency now
available in Brazauskas and Serfling (1999) estab-
lishes, however, that &,  is AN(«a, 2a°/n), clarify-
ing that &, 4 is actually poor in efficiency, having

ARE = 0.50. In sum, &, is both nonrobust and
nonefficient.

4.5 Estimators Based on k Selected
Quantiles

Here we consider the regression-based approach
of Section 4.3 using weighted least squares with a
selected subset of the equations (4.7). Choose
and fix integer k = 1, select values 0 <p, < - - - <
pr < 1, and suppose that n > k is large enough
that the p,;’s fall in k distinct members of the
subintervals in Equation (4.6). In this case, the k
equations from Equation (4.7) corresponding to

F, Y(p,) in (4.5),1 =i < k, are given by

=logo+a 'u;+e, 1=i=<k, (4.8

Zn,EhpiD

where u; = —log(1 — p,) and €,; = Z, 5,

log F~ (pl) 1 =1 = k. Thus, e@tlmateq of w = log
gand® = o ' can be obtdlned by fitting a straight
line to the scatterplot of points

(Znﬂnpi[b ui)7 l=i= k7 (49)

using weighted least squares based on the asymp-
totic covariance matrix of the €,,’s. This yields
b, = 05" (see Koutrouvelis 1981 and Saleh and
Ali 1966 for details) for estimation of a, where

kR
éQ: E 1 n,[hpiD (410)
with
1 u, —uy
b] - _Eeug — w1
1 U; Ui—1 Uity Uu;

and

and for o the estimator exp p,Q = exp{Z, mp,n—
GQu }. The estimators OQ and [, can be charac-
terized as the asymptotically best linear unbiased
estimates of 6 and W based on the selected k
quantiles.
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In the context of estimation of the P(o, o)
model with ¢ unknown, this quantile approach
was introduced for k = 2 by Quandt (1966) and
considered for arbitrary k = 2 by Koutrouvelis
(1981). See also Arnold (1983, p. 201), for a dis-
cussion. In the equivalent context of estimation
of the E(w, 6) model with p unknown, this ap-
proach was treated by Harter (1961) and Sarhan,
Greenberg, and Ogawa (1963) for k = 2 and by
Saleh and Ali (1966) for arbitrary k = 2. Also,
Sarhan, Greenberg, and Ogawa (1963) treated
E(w, 0) with w known for arbitrary k = 1. As will
be discussed below in Section 4.5.4, these latter
results yield a quantile approach to the P(o, «)
model with o known.

When the number k of quantiles is chosen to
equal the number of unknown parameters of the
model, the method corresponds to what is called
percentile matching by Klugman, Panjer, and
Willmot (1998). That is, equations for the k pa-
rameters are produced by equating k sample and
model quantiles, which is analogous to the
method of moments. In the present situation, this
corresponds to the case k = 2, for which the
weighted least squares solution of the equations
in (4.8) is given by setting the €,,’s equal to 0 and
solving the resulting linear system of two equa-
tions in two unknowns (see Section 4.5.2).
Choosing k larger than the number of parameters,
however, produces higher efficiency, as we shall
see in the following section.

We note that & is robust if p; and p, are
bounded away from 0 and 1. Namely, &, is com-
pletely unaffected by taking the proportion p, of
lower X,’s to a lower limit, or by taking the pro-
portion 1 — p, of upper X;’s to an upper limit, so
that LBP = p; and UBP = 1 — p,,.

Furthermore, &, is AN(a, L~ 'a?/n). Thus Qo
has ARE = L.

4.5.1 Optimal Choice of Quantiles

It is of interest, of course, to choose the quantile
levels pq, . . ., p, optimally, in the sense of min-
imizing the generalized variance of the asymp-
totic joint distribution of the estimators éQ and
L. Following Saleh and Ali (1966), an optimal
choice of p, is found to be

1

Pi=nso0s (4.11)

and optimal choices of the remaining p,’s are

obtained by minimizing the generalized variance
with respect to p,, ..., p,, subject to Equation
(4.11). Because Equation (4.11) results in
Z tiup,0 = Zn1 and the sum of the b/s is 0, the

optimal estimator can be expressed as
-1

(4.12)

k
&OthYk = ( E bi(Zn,Ehp,-D_ an)

i=2

As discussed in Brazauskas and Serfling (1999), it
follows that the optimal choices of p,, . . . , p, are
givenbyp, =N\,_,, 1,2 =1i=Rk,wherel,, ,,...,
\,...m are the asymptotically optimal quantiles for
estimation of 6 in the one-parameter exponential
model E(0, 6) by a linear function of m order
statistics. These values are derived by Sarhan,
Greenberg, and Ogawa (1963) and listed for m =
1 : 15 in their Table 3. For the cases m = 1 and 2,
fixed sample analogues of the \,, s for n =

m,i

1: 100 are provided by Harter (1961).

4.5.2 The Case k = 2

Formulas simplify nicely for the case k = 2. We
have

-1
” Zn,ﬁlpgD_ Zn,Dl;nD
a =
Q U, — Uq

and (with p,; and p, chosen optimally)

-1

A opt,2 Zn,l:hpzD_ an

g~ = u— .
2

Furthermore, we have

uz u1 2

\Kar(fxg):i(i2 —+0(n"?),

) n (4.13)

as n — o with p; fixed or tending to 0 at rate
O(n™ ') and p, fixed. Also, Var(&g’"z) satisfies
(4.13) with u, replaced by 0.

4.5.3 Examples
In particular,

e For k = 2, the optimal quantile levels are p; =
p9{ and p, = 0.80. For the corresponding esti-
mator, &%, we have LBP = 0, UBP = 0.20,
and ARE = 0.648.

e Another choice of p,; and p, for k = 2, used in
an example of percentile matching in Klugman,
Panjer, and Willmot (1998), p. 47 (in connec-
tion with a different version of Pareto distribu-
tion with two unknown parameters), is p; =
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0.40 and p, = 0.70. For the corresponding es-
timator, we have LBP = 0.40, UBP = 0.30, and
ARE = 0.288.

e For k = 5, the optimal p,’s are p; = p9, p, =
0.45,p; = 0.74, p, = 0.91, and p5s = 0.98, and
for 42> we have LBP = 0, UBP = 0.02, and
ARE = 0.926.

These and similar examples indicate that effi-
ciency can be increased by choosing the quantile
levels optimally and taking a larger k, but at the
expense of severe reduction in UBP. If one desires
relatively high UBP, then nonoptimal levels must
be selected. For example:

e For the k = 2 estimator based on p, = 0.10 and
p> = 0.90, we have LBP = UBP = 0.10 and
ARE = 0.543.

e For the k = 4 estimator based on p, = pJ, p, =
0.25, p5 = 0.50, and p, = 0.75, we have LBP =
0, UBP = 0.25, and ARE = 0.735.

e For the k = 5 estimator based on p; = 0.13,
p> = 0.32,p5; = 0.50,p, = 0.69, and p5 = 0.87,
we have LBP = UBP = 0.13 and ARE = 0.73. In
later references, we designate this estimator by
ag.

4.5.4 The Single-Parameter Model

As noted in Section 4.5.1, asymptotically optimal
quantiles for estimation of 6 in E(0, 6) have been
derived in Sarhan, Greenberg, and Ogawa (1963)
and are closely related to those for estimation of
0 in E(p, 6) with w unknown. Because the model
P(o, a), with o known, can equivalently be
treated via the model E(w, 6) with p known,
which, in turn, without loss of generality, can be
reduced to E(0, 0), it follows that in P(o, ), with
o known, the asymptotically optimal linear esti-
mator of o based on m quantiles is given by

-1
ayim =\ > wZ . 4.14
Q 4 n,lham,0 )

i=1

with w,’s given by the b;s fork = m + 1 viaw, =
b;+1, and the \,, s by the p;’s for k = m + 1 via
Npi = Piv1, for 1 =i = m. It follows also that
a@v* and a** "' have the same ARE and the
same UBP, but the LBPs = 0 and p,, respectively.
Thus, from the examples considered thus far, we
can state:

e For m = 1, the optimal quantile level is A ; =

0.80. For the corresponding estimator, &‘C’ft’l,

we have LBP = 0.80, UBP = 0.20, and ARE =
0.648.

e For m = 4, the optimal N's are A\,; = 0.45,
Ny =074\, 3=091,and \, , = 0.98, and for
ay“*, we have LBP = 0.45, UBP = 0.02, and
ARE = 0.926.

More generally, the estimator &, = %);21, with @Q
given in Equation (4.10) is equal in distribution to
that given by

-1
k—1
&Q = ( E bi+1Zn71,E{nfl)pi+1D . (415)

i=1

For example, in this single-parameter case, the
percentile matching approach with the single
quantile level p yields the estimator

6‘Q = (b2Z1171,E{n71)pE)71
with LBP = p, UBP = 1 — p, and through Equa-
tion (4.13), ARE = (1 — p)(los(1 — p))*/p.

In particular, for p = 0.7 (as selected in an
example of percentile matching in Klugman, Pan-
jer, and Willmot 1998, p. 47), for the one-param-
eter exponential distribution, we have LBP =
0.70, UBP = 0.30, and ARE = 0.621. (Compare
the optimal quantile level A, ; = 0.80 with ARE =
0.648, as previously shown.)

5. CompARISONS AND CONCLUSIONS

In Table 5, important cases of the estimators of «

Table 5
ARE and UBP for Selected Estimators of o

Estimator ARE UBP
MLE 1 0
Ay 2 < a=25) =0.56 0
Qs 0.50 0
&"th'z 0.65 0.20
dg (k =5) 0.73 0.13
&"th's 0.93 0.02
ar, B =B, = .25 0.67 0.25
ar, B =B, = .20 0.72 0.20
ar, B =B, = .15 0.78 0.15
ar, By =B, =.10 0.85 0.10
ar, B =B, = .05 0.92 0.05
ar, B, =B, = .04 0.93 0.04
Gem k = 2 0.78 0.29
Gom k = 3 0.88 0.21
dem kK = 4 0.92 0.16
Gowm k = 5 0.94 0.13
aem kK = 10 0.98 0.07




RoBuUsT AND EFFICIENT ESTIMATION OF THE TAIL INDEX OF A SINGLE-PARAMETER PARETO DISTRIBUTION 23

considered in Sections 3 and 4 are compared
from the standpoint of efficiency versus robust-
ness, with the latter represented by UBP. The
following conclusions are quite evident:

e The method of moments and least squares es-
timators are neither efficient nor robust and,
thus, are not competitive.

e The quantile type estimators are improved
upon by the trimmed type estimators. For ex-
ample, " for k = 2, with ARE = 0.65 and
UBP = 0.20, is dominated by &, for B; = B, =
0.20, with ARE = 0.72 and UBP = 0.20. Also,
oy for k = 5, with ARE = 0.93 and UBP =
0.02, is dominated by a; for B; = B> = 0.04,
with ARE = 0.93 and UBP = 0.04. Finally, the
quantile estimator &g, with ARE = 0.73 and
UBP = 0.13, is improved upon by &, for B; =
B, = 0.15, with ARE = 0.78 and UBP = 0.15.

e In turn, the trimmed type estimators and the
quantile estimators are improved upon by the
generalized median type estimators. For exam-
ple, & for B; = B, = 0.20, with ARE = 0.72 and
UBP = 0.20, is dominated by a,, for k = 3,
with ARE = 0.88 and UBP = 0.21. Likewise, &
for B; = B, = 0.05, with ARE = 0.92 and UBP =
0.05, is dominated by &gy for B = 10, with
ARE = 0.98 and UBP = 0.07. Finally, &, for
B, = B, = 0.15, with ARE = 0.78 and UBP =
0.15, is improved upon by &gy, for k = 4, with
ARE = 0.92 and UBP = 0.16.

Interpretive Conclusion

The superiority of the GM estimators can be ex-
plained by the following general principle:

Smoothing of the data, accomplished by evaluat-
ing a function of a few observations at a time over
all corresponding subsets of the data, followed by
medianing applied to these function evaluations,
yields a very favorable combination of efficiency
and robustness.

Practical Recommendations

The MLE is efficient but not robust with respect
to UBP and competitors should be considered.
Among competitors, the new generalized median
approach dominates the others simultaneously
with respect to ARE and UBP and should become
incorporated into practical use. Closely competi-
tive is the trimmed mean approach. The less com-

petitive quantile and percentile matching ap-
proaches should be wused perhaps more
cautiously, and the method of moments and least
squares approaches should be used with extreme
caution.

On the other hand, so as to avoid overstating
the case for the GM estimators, we note that ARE
and UBP are not the only criteria to consider. As
one referee stated:

I believe that this alternative, the generalized me-
dian estimator, should be among the estimators
that an actuary considers when estimating the
parameter of a single-parameter Pareto model. . . .
For a given problem, I believe the prudent actuary
should look at several estimators (including the
maximum likelihood estimator), keeping in mind
the strengths and weaknesses of each of them.

6. APPLICATIONS

Here we consider various applications utilizing
estimation of a in the model P(o, o). We find that
a small relative error in estimation of a can pro-
duce a large relative error in estimated quantities
based on a. Thus, even small improvements in
methods of estimation of the tail index o can yield
substantial impact in applications. Furthermore,
for robust estimation of quantities based on «,
robust estimation of « itself is crucial.

6.1 Estimation of an Upper Quantile

For estimation of the quantile g, corresponding to
upper tail probability e, it follows from Equation
(1.1) that

q.=oe o, (6.1)

Thus, for the estimator §., defined by putting &

for a in Equation (6.1), we have
qe .
L El/a—l/oc‘

o (6.2)

Consequently, for € = 0.001, underestimation of
a = 1 by only 5% produces overestimation of g
by 44%, and underestimation of a = 1.5 by 3%
produces overestimation of ¢ ,,, by 27%. Like-
wise, overestimation of « = 1 by 10% produces
underestimation of q ,; by 47%, and overestima-
tion of @ = 1.5 by 10% produces underestimation
of q o1 by 34% and underestimation of q (y,; by
43%.
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Tail probabilities in the range of € = 0.001 or
even € = 0.0001 are common in actuarial and
extreme value applications. For example, high
quantiles are used in the percentile principle of
reinsurance premium calculation as seen in Ger-
ber (1979). Also, after the 1953 flood disaster, the
Dutch government set a standard for sea dikes
that the sea level should not exceed the dike level
in any given year except with a probability less
than 0.0001 (see Dekkers and de Haan 1989 for
discussion).

6.2 Estimation of an Upper Tail
Probability

Reversing the previous illustration, for estimation
of the tail probability € above a specified thresh-
old g, it follows from Equations (1.1) or (6.1) that

-l

Thus, for the estimator &, defined by putting & for
a in Equation (6.3), we have

é o ad—a X
e () — e(OL/OL)*l.
e \q

Consequently, underestimation of any value of «
by 5% produces overestimation of the tail proba-
bilities € = 0.001 by 41% and € = 0.0001 by 58%.
Likewise, overestimation of any value of a by 10%
produces underestimation of € = 0.001 by 50%
and € = 0.0001 by 60%.

(6.3)

(6.4)

6.3 Solvency of Portfolios

For analysis of the solvency of a portfolio, some
methods (Ramlau-Hansen 1988) involve upper
quantiles of the total claims distribution as well as
of the individual claim distribution. In particular,
for determination of the premium for stop-loss
reinsurance, the reinsured amount of the total
claims is directly related to the tail of the total
claims distribution. Also, for determination of the
premium for excess-of-loss reinsurance, one
method requires rewriting the deductible as a
quantile of the individual claim distribution and
estimating the corresponding tail probability. See
Daykin, Pentikdinen, and Pesonen (1994, pp.
102-16), and Beirlant, Teugels, and Vynckier
(1996, pp. 122-6), for a detailed discussion.

A broad and effective assumption for semipara-

metric modeling of the tail of an individual claim
distribution or of an aggregate claims distribution
is a “Pareto type” distribution: a distribution H for
which the survival function 1 — H(d) tends to 0 at
a polynomial rate d”* as d — o, for some index a.
In such a case, we have

1 — H(dx)

1=H@) =x (6.5)

im

d—»
that is, the conditional distribution of an obser-
vation, given that it exceeds a threshold d, be-
comes for large d approximately a single-param-
eter Pareto distribution, P(1, a). See Beirlant,
Teugels, and Vynckier (1996, pp. 29 and 51), and
Brazauskas and Serfling (1999) for discussion. It
follows that, for estimation of «, one can apply
methods designed for P(1, a) samples to the up-
per-ordered values of a sample from H. In partic-
ular, for determination of reinsurance premiums
as discussed thus far, methods for estimation of
quantiles and tail probabilities of P(1, a) are rel-
evant, along with the considerations in Sections
6.1-6.2. By way of illustration, in an analysis of
n = 429 Norwegian fire insurance claims for
1981, Beirlant, Teugels, and Vynckier (1996) ar-
rive at k(n) = 94 as the suitable number of upper-
ordered values to employ in the estimation of «
and of the upper 0.001 quantile of the claim dis-
tribution.

In this semiparametric context, the MLE of «
based on treating the k(n) upper-order statistics
as a sample from P(1, a) is known as the Hill
estimator (introduced by Hill 1975). It is efficient
and provides the benchmark against which com-
peting estimators are compared, but it is nonro-
bust, being seriously influenced by any extreme
outliers that are not representative of the model
being estimated. See Beirlant, Teugels, and
Vynckier (1996, chap. 2), for a review of various
“excess values” estimators, including the Hill es-
timator and weighted least squares versions. Ad-
aptation of our generalized median estimator con-
sidered in Section 4 should yield a further
competitor to the Hill estimator that competes
well with respect to efficiency while also achiev-
ing a high degree of robustness.

A further quantity sometimes used as a princi-
ple for setting reinsurance premiums is the mean
excess function

e(d) = E(X — d|X > d),
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that is, the conditional expectation of the excess
above threshold d for an observation that exceeds
d. For P(o, o) with o > 1 we have

d
e(d)=———

a—1

independently of o, and for Pareto type distribu-
tions we have

e(d)_ 1
d a—1°

(6.6)

lim
d—>o
Thus robust estimation of e(d) becomes of in-
terest, and through Equation (6.6) this may be
carried out by robust estimation of a in P(o, ). In
this regard, we note that for « = 1.5 and large d,
underestimation of a by 10% produces overesti-
mation of e(d) by 43%, and overestimation of a by
10% produces underestimation of e(d) by 23%.
For such robust estimation through Equation
(6.6), estimators & (for example, &g, or &;), re-
stricted to just the excess values, can be used. We
also note an empirical trimmed mean excess val-
ues estimator for e(d) proposed by Beirlant, Teu-
gels, and Vynckier (1996, p. 45), for robust esti-
mation of e(d).

6.4 Empirical Versus Parametric Methods

Many important features of an underlying loss or
claim distribution H can be represented as func-
tionals of H, such as the mean, variance, standard
deviation, coefficient of variation, skewness, kur-
tosis, and k-th factorial moments. To this list we
can add such functionals as the mean-excess
function, the loss-elimination ratio, and various
types of reinsurance premiums.

One can consider nonparametric estimation, of
which “empirical estimation” represents a stan-
dard approach. Simply, one estimates a func-
tional T(H) by T(fIn), where ﬁln denotes a sample
analogue estimator of H, as introduced in Section
4.3 for estimation of F given by Equation (1.1).
While this has the advantage of not depending
directly upon parametric assumptions, which can
be of questionable validity, such estimators often
give up too much efficiency in return for too little
robustness.

In the case of parametric modeling of H, for
example, as P(o, o) through Equation (1.1), one
represents such functionals as explicit functions

of the parameters ¢ and o and obtains estimates
by substitution of & for a. Here disasters due to
lack of complete validity of parametric assump-
tions are avoided by employing robust methods.
Furthermore, parametric approaches are in keep-
ing with the principle of parsimony in modeling
while also permitting inferences to be made be-
yond the range of the actual observed data. For
more detailed discussion and illustration, see
Klugman, Panjer, and Willmot (1998, sec. 2.2 and
2.6).

In this paper we have emphasized robust para-
metric estimation over the empirical nonpara-
metric approach.

7. EsTIMATION OF « IN P(o, o)
WitH o UNKNOWN

In Section 4 we considered certain estimators of
a in P(o, o) with ¢ unknown. In this case, the
MLE of «a is the estimator produced by substitut-
ing the minimum sample observation X, ; for ¢ in
Q- Like Gy, this modified MLE satisfies UBP =
0 and is AN(a, a?/n); it also satisfies LBP = 0.
Similarly modified versions of the trimmed, gen-
eralized median, and least squares estimators are
treated in Brazauskas and Serfling (1999), where
it is found that, in this case, the method of mo-
ments and least squares estimators are least com-
petitive, while the quantile and trimmed-type es-
timators are competitive but dominated overall
by the generalized median estimators.

ACKNOWLEDGMENT

We are very appreciative of valuable insights and
comments provided by Dr. G. L. Thompson, two
referees, and the Associate Editor, leading to
many improvements in the paper. Also, support
of the second author by grants from the Casualty
Actuarial Society and Society of Actuaries, with
administrative support from the Actuarial Educa-
tion and Research Fund, and by NSF Grant DMS-
9705209, is gratefully acknowledged.

REFERENCES

ArNoLD, B.C. 1983. Pareto Distributions. Fairland, Md.: Interna-
tional Cooperative Publishing House.

BEIRLANT, J., TEUGELS, J.F., AND VYNCKIER, P. 1996. Practical Anal-
ysis of Extreme Values. Leuven, Belgium: Leuven Univer-
sity Press.



26

NORTH AMERICAN ACTUARIAL JoURNAL, VoLuME 4, NUMBER 4

Brazauskas, V., AND SERFLING, R. 1999. “Robust Estimation of Tail
Parameters for Two-Parameter Pareto and Exponential
Models via Generalized Quantile Statistics.” Submitted for
publication.

CHOUDHURY, J., AND SERFLING, R. 1988. “Generalized Order Statis-
tics, Bahadur Representations, and Sequential Nonpara-
metric Fixed-Width Confidence Intervals.” Journal of Sta-
tistical Planning and Inference 19:269—-82.

DavkiN, C.D., PENTIKAINEN, T., AND PESONEN, M. 1994. Practical Risk
Theory for Actuaries. London: Chapman & Hall.

Dexrkers, A.L.M., axp pE Haan, L. 1989. “On the Estimation of the
Extreme-Value Index and Large Quantile Estimation.” An-
nals of Statistics 17:1795-832.

Donono, D.L., axp Husger, P.J. 1983. “The Notion of Breakdown
Point.” In A Festschrift for Erich L. Lehmann, ed. by P.J.
Bickel, K.A. Doksum, and J.L. Hodges, Jr. Belmont, Calif.:
Wadsworth, pp. 157-84.

GATHER, U. 1986. “Robust Estimation of the Mean of the Expo-
nential Distribution in Outlier Situation.” Communica-
tions in Statistics, Part A—Theory and Methods 15:2323—
45.

GeRrBer, H.U. 1979. An Introduction to Mathematical Risk The-
ory. S.S. Huebner Foundation for Insurance Education,
University of Pennsylvania.

Gowmes, C.P., SELMAN, B., axp CraTO, N. 1997. “Heavy-Tailed Dis-
tributions in Combinatorial Search.” In Principles and
Practice of Constraint Programming CP-97, ed. G.
Smolka. Lecture Notes in Computer Science, New York:
Springer, 1330:121-35.

Hawrer, F.R. 1971. “A General Qualitative Definition of Robust-
ness.” Annals of Mathematical Statistics 42:1887-96.
HARTER, HL.L. 1961. “Estimating the Parameters of Negative Ex-
ponential Populations from One or Two Order Statistics.”

Annals of Mathematical Statistics 32:1078-90.

HiL, B.M. 1975. “A Simple General Approach to Inference
About the Tail of a Distribution.” Annals of Statistics
3:1163-74.

Hobaces, J.L., Jr. 1967. “Efficiency in Normal Samples and Tol-
erance of Extreme Values for Some Estimates of Location.”
Proceedings of Fifth Berkely Symposium on Mathematical
Statistics and Probability, Volume 1, 163-8.

Jonnson, N.L., Kotz, S., aND BaLakrisuNaN, N. 1994. Continuous
Univariate Distributions, Volume 1, 2nd edition. New
York: Wiley.

KnvBer, A.C. 1983a. “Trimming in Gamma Samples.” Applied
Statistics 32:7-14.

Kivper, A.C. 1983b. “Comparison of Some Robust Estimators of
Scale in Gamma Samples with Known Shape.” Journal of
Statistical Computation and Simulation 18:273-86.

Krueman, S.A., PaNjer, ILH., axp WiLLmor, G.E. 1998. Loss Mod-
els: From Data to Decisions. New York: Wiley.

KoutrouveLis, I.A. 1981. “Large-Sample Quantile Estimation in
Pareto Laws.” Communications in Statistics, Part A—The-
ory and Methods 10:189-201.

LenvanN, E.L. 1983. Theory of Point Estimation. New York:
Wiley, (transferred to Wadsworth, 1991).

Quannt, R.E. 1966. “Old and New Methods of Estimation and the
Pareto Distribution.” Metrika 10:55-82.

Sacen, A.K. Mp. E.; axp AL, MMM, 1966. “Asymptotic Optimum
Quantiles for the Estimation of the Parameters of the Neg-
ative Exponential Distribution.” Annals of Mathematical
Statistics 37:143-51.

SArRHAN, A.E., GREENBERG, B.G., AND Ocawa, J. 1963. “Simplified
Estimates for the Exponential Distribution.” Annals of
Mathematical Statistics 34:102-16.

SERFLING, R.J. 1980. Approximation Theorems of Mathematical
Statistics. New York: Wiley.

SERFLING, R. 1984. “Generalized L-, M- and R-statistics.” Annals
of Statistics 12:76-86.

WiLLemalN, T.R., ET AL. 1992. “Robust Estimation Methods for
Exponential Data: A Monte-Carlo Comparison.” Commu-
nications in Statistics, Part B—Simulation and Compu-
tation 21:1043-75.

APPENDIX

BREAKDOWN POINTS OF GENERALIZED
MEDIAN STATISTICS

Consider estimation of a parameter n by a GM
statistic gy corresponding to some Kkernel
h(xq, ..., ). The LBP of 15y is based on its
performance under the influence of lower con-
taminating observations in the sample and the
UBP on upper contamination. In each case, taken
separately, we consider breakdown to occur if
either

B1 The fraction of evaluations h(X;, ..., X;)
taken spuriously to a lower limit ¢, exceeds 0.5
(which results in the GM estimator taking the
value t)), or

B2 The fraction of evaluations h(X;, ..., X;)
taken spuriously to an upper limit ¢, exceeds
0.5 (which results in the GM estimator taking
the value t,).

For simplicity, less extreme forms of break-
down that can occur due to the influence of
contaminating values will not be considered.
Thus, for present purposes, the LBP of 1), is
defined as the largest proportion of the sample
values X, ..., X,,, which can be taken to a
lower limit L, without either B1 or B2 occur-
ring, and the UBP as the largest proportion,
which can be taken to an upper limit L, without
either B1 or B2 occurring.

In particular, we now treat the GM estimator of
a based on the kernel h, of Section 3, which, for
convenience, we write as h, = g~ ', where
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K
,x5) =k 2 log x; — log @

i=1

gy, ...

k
=k~ ' > (logx; —log 0) = 0.

Jj=1

Note that contamination causing the GM esti-
mator based on h,, to satisfy B1 or B2 causes the
GM estimator based on g to satisfy B2 or BI,
respectively, and conversely. It follows that the
GM estimators based on h, and g have the same
LBPs and the same UBPs.

For the kernel g, upper contamination does not
cause B1 but can cause B2 unless the number m
of upper contaminating observations satisfies

() - (")

=0.5.

Likewise, lower contaminating observations do
not take a kernel evaluation to + but can take it
to 0 if all k arguments are taken to log o; that is,
lower contamination does not cause B2 but can
cause B1 unless the number m of lower contam-
inating observations satisfies

This leads to the UBP and LBP given by Equations
(3.3) and (3.4), respectively.

Discussions on this paper can be submitted until
April 1, 2001. The author reserves the right to reply to
any discussion. Please see the Submission Guidelines
for Authors on the inside back cover for instructions
on the submission of discussions.
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used to calculate the required premium by selecting
“Tools,” “Goal Seek,” and then inputting L3;
100,000; and D2 in the “Set cell,” “To value,” and
“By changing cell” boxes, respectively.

As shown in Table 2, a premium of $567.71 per
year is required (see cell D2).

UL Policy

The spreadsheet application has been used as a
computer lab exercise in a risk management and
insurance course and a personal finance course.
Once an original sample policy is created and the
funding premium calculated, the intent of the
computer lab spreadsheet application is to enable
students to determine the premium on their in-
dividually generated policies. A conceptual peda-
gogic benefit is the premium determination pro-
cess demonstrates the inter-relationships between
mortality charges, expenses, fees, and interest
rate assumptions.

Table 3 illustrates the results of the above funding
premium solution in a policy year format. The
spreadsheet values are written to be self-explana-
tory. However, Mort. Chg may require one clarifi-
cation. It is equal to current mortality charge, or
60% of the 1980 CSO rate of $2.11 for a male age 35.
If Guar/Curr COI (E4) were set equal to 1 for guar-
anteed mortality charges, the Mort. Chg in Table 3
would be equal to the 1980 CSO rate of $2.11.

In conclusion, there are pedagogic benefits of
modeling life insurance funding in a spreadsheet
application, especially when class time is limited.
This spreadsheet application also provides an ad-
ditional intuitive understanding of the sophisti-
cated mathematical and statistical models com-
mon to actuarial science.
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1 — (d/x)*, x = d, defined for parameters a > 0
and d > 0. The parameter d representing a de-
ductible is assumed known. The transformation
7 = log(X) yields the scale model Z = p + 06U,
where U follows the standard exponential distri-
bution with pdf g(u) = exp(—u), u = 0. The
reparametrization is given by w = log(d) and 6 =
1/a. The problem is, thus, to estimate the scale
parameter 0 in this scale model. Subtraction of
known p to Z allows one to assume, without loss
of generality, that w = 0. Based on a sample &% =
{Z,,...,7,} the problem is, thus, to estimate 6 in
the scale model Z = 6U. This problem is treated
not only for the standard exponential distribu-
tion, but for variables U distributed on the inter-
val [0, ) satisfying weak assumptions.
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M and CM Estimators

An adaptation of the M-estimator of Huber (1981)

and of the constrained M-estimator of Kent and

Tyler (1996) is presented. Properties of these es-

timators can be found in Bilodeau (2001).
Define the function

3u—3u+ut,0=u=1
Pot) =19 4 > 1.

An M-estimate of scale v(%) is defined as a solu-
tion v of the equation

(D1)

ave[p(Z/v)] =€

for some given e in the interval (0, 1). The nota-
tion “ave” refers to the average taken over values
indexed by i = 1,..., n. The function p(:) is
defined as p(u) = py(u/\,), where A\, is the unique
solution \ of the equation

E[po(U/N)] = e.

A CM-estimator of scale v(%) is defined as a
solution to the problem:

min ave[p(Z/v)] + In(v)

v>0
subject to the constraint
ave[p(Z/v)] = ep().

The function p(-) is defined, for a given constant
C >0, as p(u) = Cpy(u/\y). The constant \, is the
unique solution of the optimization problem

min E[Cp,(U/\)] + In(N),

A=\

where A, is the unique solution \ to E[p,(U/N)] = €.

Global and Local Measures of Robustness

The breakdown point of an estimator is a criteria
for assessing the global robustness under contam-
ination of the sample. As in B&S, upper break-
down point (UBP) is used for contamination in
the upper tail, whereas lower breakdown point
(LBP) is used for contamination in the lower tail.
Estimators with a high UBP (LBP) remain
bounded away from infinity (zero) when a large
proportion of the sample is sent to infinity (zero).
Let v(%) be an estimate calculated from the orig-
inal sample #. The finite sample UBP is defined as
min{m : supy,,0(%(m)) = *}/n, where Z(m) is
obtained from % by sending at most m of the

points Z,, ..., Z, to infinity. It represents the
smallest fraction of the sample that, when sent to
infinity, can send the estimate beyond any given
bound. Similarly, finite sample LBP is defined as
the smallest fraction of the sample that, when
sent to zero, can send the estimate to zero.

Let [X[be the greatest integer smaller than or
equal to x. Similarly, [[will denote the smallest
integer greater than or equal to x. M-estimator
and CM-estimator have the same finite sample
breakdown points given by UBP = [fhelin and LBP
= [h(1 — €) + 1[n. Asymptotically, as n — oo,
UBP — e and LBP — 1 — e.

Whereas breakdown point is a measure of
global robustness, gross error sensitivity (GES) is
a measure of local robustness. GES is defined
with the influence function (IF). Each estimator
has a corresponding functional which defines
uniquely the parameter being estimated. For a
scale model, the parameter 6 being estimated is a
solution of an estimating equation of the form

E[6(Zk0)] = 0.

The influence function describes the effect of an
infinitesimal contamination at point g on the es-
timate. The influence function of the functional
o(-) at the cdf F, is defined pointwise by

1 W)F, + hd,) — o(F,
[F (s 0(F) = lim )Zh Jme)
hl o+

if this limit exists. The quantity 8, is the cdf of the
constant ¢ defined as

0,t<sg
5017022

If we replace F, by the empirical cdf F,,_,, which
puts a mass of 1/(n — 1) at each point Z,, . ..,
Z, _1, and h by 1/n, then the IF is approximately
n times the increase in the estimate when one
additional observation g is added to a large sam-
ple of size n — 1. A bounded influence function is,
thus, a desirable measure of local robustness.
Moreover, it is preferable that the absolute value
of the IF be as small as possible, which leads to
the GES measure defined by

GES = sup|IF(z; v(Fy))|.

=0

The scale model Z = 08U is invariant with re-
spect to the group of transformations Z, — aZ,,
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a > 0. It induces the parameter transformation
0 +— ab. Let a¥ = {aZ,, . .., aZ,}. An estimator
6(%) is said equivariant if it undergoes the same
transformation, that is, 0(a%) = ab(%). All esti-
mators studied by B&S including the generalized
median estimator, as well as the M-estimator and
CM-estimator studied here, are equivariant. As a
consequence, all these estimators have a GES of
the form GES = 6G for a certain constant G
independent of 6. Hence, G can be taken as a
measure of GES.

The maximum likelihood estimates (MLE) with
its smallest asymptotic variance provides a
quantitative measure of efficiency. The MLE,
6,, = ave(Z,), has the asymptotic distribution
n"?(6,, — 0) 4N (0, 67). All the asymptotically nor-
mal and equivariant estimators have an asymptotic
distribution of the form n”2(® — 0) <% N(0, c6?) for
some constant ¢ > (. Among such estimators, it has
become customary to use

A 1
ARE(G, eML) = E

as a measure of relative efficiency. The asymp-
totic relative efficiency (ARE) is a relative mea-
sure of the asymptotic variance of an estimator
when all the observations follow the scale model.

Comparison of Estimators

B&S investigated the performance of some robust
estimators: the generalized median, the trimmed
mean, and estimators based on selected quan-
tiles. The generalized median was found to out-
perform the other robust estimators with respect
to UBP and ARE. Such comparisons have a seri-
ous shortcoming. Namely, they do not measure
the effect of infinitesimal perturbations. For ex-
ample, a large enough tuning constant C of the
CM-estimator will bring the ARE close to 1, even
for an UBP = 0.5. However, such an estimator
could suffer a large increase when one spurious
observation is added to the data. In fact, when the
CM-estimator is tuned to have a very high ARE,
then the GES reaches an unacceptable level.
Table 1 contains a CM-estimator (e = 0.5 and
C = 20) with an ARE = 0.99 and GES = 8.51.
Compared to an M-estimator (e = 0.5), with the
same breakdown point, the ARE is 30% higher but

Table 1
UBP, ARE, and GES Index G
of Different Estimators

Estimator UBP ARE G
GM, k =1 0.50 0.64 1.44
GM, k = 2 0.29 0.78 1.90
GM, k = 3 0.21 0.88 2.27
GM, k = 4 0.16 0.92 2.60
GM, k =5 0.13 0.94 2.88
GM, k = 10 0.07 0.98 4.02
M, € = 0.50 0.50 0.76 1.85
M, e = 0.29 0.29 0.93 3.21
M, e = 0.21 0.21 0.97 4.49
M, e =0.16 0.16 0.98 5.96
M, e =0.13 0.13 0.99 7.39
M, e = 0.07 0.07 0.997 13.97
CM, e = 0.50, C = 20 0.50 0.99 8.51
CM, e =029, C = 20 0.29 0.99 8.51
M, e =029, C = 7.8 0.29 0.94 3.17
CM,e =029, C = 4.0 0.29 0.93 3.21
CM, e =0.21, C = 10.5 0.21 0.97 4.33

Note: The py(-) function is given by (1) and U is a standard exponen-
tial variable.

the GES is 360% higher. Sometimes, for example,
when € = .29 or .21, a suitable choice of the tuning
constant C will improve both values. However, the
improvements are slight. In other cases, for exam-
ple € = .4, a CM-estimator cannot improve ARE and
GES simultaneously. Note that, for small values of
C, the CM-estimator (¢ = .29 and C = 4) corre-
sponds to an M-estimator with the same e.

The M-estimator and CM-estimator are now
compared to the generalized median. The order of
the kernel of the generalized median is denoted
by k as in B&S. At every level of UBP, the M-
estimator is more efficient than the generalized
median. However, the generalized median is more
B-robust (HHampel et al. 1986, p. 87) in the sense
of having lower GES. This should not come as a
surprise as it is well known (Hampel et al. 1986, p.
133) that the ordinary median (k = 1) is the
optimal B-robust estimator of the location of a
symmetric distribution. Strictly speaking, how-
ever, this result does not apply here since the x3,
density is not symmetric. Values of G for gener-
alized median were obtained from Serfling (1984,
Equation 2.12),

k

G M = AL s (AL )
oM 2M2k£2k(M2k)

where g,,(x) is the X3, density and M., is the
median of x3.
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The computational burden of an M-estimator
does not depend on UBP. It grows with n as O(n)
compared to O(n*) for the generalized median. Ex-
act evaluation of an M-estimator for e = .07 andn =
500 requires only five seconds with the S-PLUS
2000 software on a Pentium III 500 MHz computer.

In conclusion, M, CM, and GM estimators are
globally robust; they can all reach a high break-
down point. For a given UBP; M and, to a larger
extent, CM estimators are more efficient than the
GM estimator. However, the GM estimator is
more locally robust.
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Authors’ Reply

We heartily thank Dr. Bilodeau for joining our
effort to emphasize robustness and improve upon
conventional estimators in the problem of esti-
mating the tail index a of the Pareto distribution
F(x) =1 — (o/x)*, x = o, with ¢ known. In our
paper we introduced a new estimator of the gen-
eralized median (GM) type and found it to dom-
inate conventional estimators by offering better
trade-offs between asymptotic relative efficiency
(ARE) as an efficiency criterion and upper break-
down point (UBP) as a robustness criterion.

Dr. Bilodeau’s discussion very nicely augments
our paper by considering further estimators (M and
CM) and suggesting the use of a further robustness
criterion, the gross error sensitivity (GES), which is
the maximum magnitude of the influence curve.
For extensive treatment and discussion of influence
curves and the robustness measures based on them,
see Hampel (1974), Serfling (1980), and Hampel et
al. (1986). In particular, we note that the average of
the evaluations of the influence curve at the sample
values may be interpreted as a first-order approxi-

mation to the estimation error. Then the GES rep-
resents the maximum possible contribution any ob-
servation can make in this average. On the other
hand, the UBP represents the largest fraction of
upper observations which may be corrupted with-
out destroying the stability of the estimator. It is
desirable to have high UBP and low GES combined
with high ARE.

In Dr. Bilodeau’s Table 1, the GM, M, and CM
estimators are compared using ARE, UBP, and G =
GES/a together. It also is of interest to compare
with trimmed mean (TM) estimators, which in our
paper were found to be the ones most closely com-
petitive with the GM estimators. Also, just as we
introduced upper breakdown point in order to con-
fine attention to upper outliers, we follow Kimber
(1983a,b) and use the notion of upper gross error
sensitivity (GES™) given by the maximum of the
influence curve over upper values of x.

As before, our TM estimator for o is § !, where 6
is the TM estimator of 6 in the equivalent problem of
estimation of 6 in the exponential model E(p, 60)
with edf F(x) = 1 — e "W x = . It is readily
seen that G = GES"/« for the Pareto problem is
identical with GES™/0 as computed for the model
E(p, 6). Without loss of generality we set o = 0 and
compute G under the model E(0, 6). Denoting by
B, the lower proportion of observations trimmed
and by B, the upper proportion trimmed, the rele-
vant TM functional for 6 is defined by

1-B2
T(F) =d(B:, B) " J F~'(p) dp,

B1

where d(By, B2) =1 — By — B2 + (1 — By) log(1 —
B1) + B> log B, a factor making the sample ana-
logue 6 of T(F) a consistent estimator of 8. A calcu-
lation of the influence curve (as in Kimber 1983b)
then yields the following formula for GES™/6:

G* =d(B,, B2) "[log(1 — By)
- IOg(l - |32) - ([32 - Bl)]

For 3, taking values 0.05, 0.10, 0.15, 0.20, and 0.25,
we consider two cases, (i) B; = B, and (ii) B, = 0.
For these choices of B,, the G* values in cases (i)
and (ii) differ but the UBPs are the same and (as
noted in our paper) the AREs agree within two
decimal places. In Table A, we provide UBP, ARE,
and G values for these TM estimators, paralleling
Dr. Bilodeau’s Table 1 which covers the GM, M, and
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CM estimators. Also, the selection of GM estimators
in his Table 1 can be slightly improved, and, in
Table B, we provide an updated version of the part
of his table concerning the GM estimators.

For the choices of GM, M, and CM estimators
considered in Table B and in Dr. Bilodeau’s Table
1, GES = GES™. Thus, from consideration of all
three tables together, we conclude:

e The GM and TM estimators offer the best trade-
offs between ARE and GES™, while the M and
CM estimators offer the best trade-offs between
ARE and UBP.

e For any given level of trade-off between ARE
and GES™, the GM estimators dominate the TM
estimators by virtue of better UBP.

We hope that these perspectives will assist practi-
tioners in comparing GM, M, CM, and TM estimators.

We note for the TM estimators that, as might be
expected, increased trimming yields improved G™.
It is of interest, however, that this is not so for the
GES measure. For example, for case (ii) above, for
B, = 0.05,0.10,0.15, and 0.20, we have GES = G,
and these values decrease, whereas for B, = 0.21,
we have GES = 1.68 # 1.71 = G*, and the GES
values (now equal to G™) begin increasing with [3,.
This is because, for B, = 0.21, the associated influ-
ence curve in case (ii) has maximum magnitude for
x at the origin w = 0 rather than for x — . Thus,
in the case of a distribution with support on an
interval of form [A, «) for finite A, a TM estimator
with upper trimming but no lower trimming ulti-
mately becomes more influenced by inliers than by
outliers, as the trimming level increases. In such
cases, if only upper outliers are of concern, the GES
measure can be misleading and GES™ should be
used instead.

In addition to comparing estimators via numer-
ical efficiency and robustness measures, it is also

Table A
UBP, ARE, and G* for TM Estimators,
for Selected 3,

B, UBP ARE G*, Case (i) G*, Case (ii)
0.25 0.25 0.67 1.62 1.58
0.20 0.20 0.72 1.72 1.69
0.15 0.15 0.78 1.87 1.85
0.10 0.10 0.85 2.10 2.09
0.05 0.05 0.92 2.56 2.56

Table B
UBP, ARE, and G* for Selected GM Estimators

Estimator UBP ARE G*
GM, k = 1 0.50 0.64 1.44
GM, k = 2 0.29 0.78 1.90
GM, k = 3 0.21 0.88 2.27
GM, k = 4 0.16 0.92 2.60
GM, k = 5 0.13 0.94 2.88
GM, k = 7 0.09 0.97 3.38
GM, k = 9 0.07 0.98 3.82

of value to consider what the estimators actually
do with the data. Within a multiplicative factor,
the GM estimator is the median of all the maxi-
mum likelihood estimators based on subsamples
of a given size k. The TM estimators simply aver-
age the observations with zero weight to outlying
observations and constant weight to inner obser-
vations. The M and CM estimators are produced
by solving specified equations or optimization
problems based on the function p,(-) given by Dr.
Bilodeau’s Equation (D1). Thus, operationally,
the GM, M, CM, and TM estimators have very
different intuitive interpretations.

Finally, we briefly mention further work that has
been carried out in connection with our paper un-
der discussion. In Brazauskas and Serfling (2001)
we perform a small sample simulation study of the
same collection of estimators, using as criteria UBP
and exact instead of asymptotic relative efficiency.
In addition, we employ a specific contamination
model for outliers and evaluate efficiency-robust-
ness trade-offs corresponding to the absence or
presence of contamination. The results again favor
the GM estimators over conventional ones.

In Brazauskas and Serfling (2000) we treat the
related problem of estimation of o with ¢ unknown.
Again the GM estimators dominate the conven-
tional ones with respect to ARE and UBP. Further-
more, it can be shown that the ARE and GES™
values in this case agree exactly with corresponding
values for the case of o known, so that the trade-offs
between ARE and GES™ are identical in the two cases.
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“Valuing Equity-Indexed
Annuities,” Serena Tiong,
October 2000

YA-CHuUN HuANG*

Equity-indexed annuities (EIAs) have been the
fastest growing annuity products since 1995. This
product line is successful because it provides to
the policyholder the upside market potential
without a downside market risk. The most popu-
lar product designs, such as the point-to-point,
the cliquet, and the lookback have been pre-
sented in Dr. Tiong’s informative paper. She suc-
cessfully applied the method of Esscher trans-
forms to evaluate these EIA products and also
discussed several important issues for pricing.

As will become clear, although the feature of
the lookback design is attractive to the clients,
the fact that its higher cost ends up with a lower
participation rate is of great concern for insurers.
Whereas the focus of this discussion is mainly on
the valuation of a guarantee embedded in a look-
back EIA contract, the response to changes in
various economic factors is also examined
through several sensitivity tests.

A Continuous Lookback
(High-Water-Mark) Design

In practice, the high-water-mark design credits
interest as a portion of the percentage growth in

*Ya-Chun Huang is a Ph.D. Student, Program in Applied Mathemat-
ical and Computational Sciences, The University of lowa, lowa City,
IA 52242, yhuang@math.uiowa.edu.

the underlying index value from the initial index
value to the highest value the index has attained
over the measurement period. The measurement
can be daily, monthly, or annually. Here, we con-
sider a lookback design in a continuous setting. At
the maturity time T, a customer is promised the
maximum of a fixed value K or the highest return
during the term of the policy, subject to a partic-
ipation rate «. The participation rate « deter-
mines a portion of return credited to the custom-
er’s account.

To derive a closed-form solution for the value of
this lookback contract, further assume that the
risk-free interest rate is constant, no death and no
surrender occur before time T, and the market is
frictionless. The problem is formulated as follows:
Assume that we are given a filtered probability
space (), &, F, P). The filtration F specifies how
the information is revealed in time and is a family
{#,} of increasing o-algebras on (Q, &), ¥, C F.
We denote &, the o-algebra generated by the
Brownian motion up to time t. Let S(t) denote the
time-t value of an index, which pays dividends
dS(t)dt between t and t + dt. It is assumed that
the index follows a geometric Brownian motion,
S(t) = S(0)e*?, where {X(t)} is a Brownian mo-
tion with instantaneous drift w, and instanta-
neous variance o-.

Suppose that a customer invested in an equity-
indexed deferred annuity for a single premium f
at the inception of the contract. In practice, the
insurer promises the total value to a customer’s
account at time T as

max{f + fo O (SO()S> -S5O }

Using S(s) = S(0)e*™ and maxgepor S(s) =
S(0)emaxs=0nXe) the formula becomes

max{ f(1 + a(em™<onX© — 1)) K},

In a continuous setting, use the following approx-
imation instead:

(enlaXse[ﬂ,TjX(S))Dl ~ (1 + a(enlaXsE{(],TjX(S) _ 1))

The guaranteed payoff to the customer at time T
is now determined by the formula:

max{ fer meon ¥ K} (D1)



	Discussions

