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Abstract. Robust estimation of tail index parameters is treated for (equivalent) two-parameter Pareto and
exponential models. These distributions arise as parametric models in actuarial science, economics,
telecommunications, and reliability, for example, as well as in semiparametric modeling of upper observations in
samples from distributions which are regularly varying or in the domain of attraction of extreme value distributions.
New estimators of ‘‘generalized quantile’’ type are introduced and compared with several well-established
estimators, for the purpose of identifying which estimators provide favorable trade-offs between efficiency and
robustness. Specifically, we examine asymptotic relative efficiency with respect to the (efficient but nonrobust)
maximum likelihood estimator, and breakdown point. The new estimators, in particular the generalized median
types, are found to dominate well-established and popular estimators corresponding to methods of trimming, least
squares, and quantiles. Further, we establish that the least squares estimator is actually deficient with respect to both
criteria and should become disfavored. The generalized median estimators manifest a general principle:
““smoothing’’ followed by ‘‘medianing’” produces a favorable trade-off between efficiency and robustness.
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1. Introduction and preliminaries

We treat robust estimation of the tail index of a two-parameter Pareto distribution, or,
equivalently, of the scale of a two-parameter exponential distribution. New estimators of
generalized quantile type are introduced and compared with several well-established
types, for the purpose of identifying those estimators providing favorable trade-offs
between efficiency and robustness.
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Specifically, for the Pareto distribution P (o, o) having cdf

%
a
F(x):lf<—) ,X >0, (1.1)
X
where « >0 and ¢ >0, we emphasize estimation of the shape parameter « characterizing
the tail of the distribution, leaving as an unknown ‘‘nuisance parameter’’ the
scale parameter ¢. Equivalently, we consider the exponential distribution E(u, 6) having
cdf

zZ)=1—-e" 7" aZZ:ua .
G(iz)=1 (z=m)/0 (1.2)

for >0 and —oo < < 00. Since X has distribution F given by (1.1) if x< oeV’”, where
‘="’ denotes ‘‘equal in distribution”” and U is ‘‘standard exponential’’ E(0, 1),
equivalently Z = log X has cdf (1.2) and satisfies

z4 410U, (1.3)

with  =1loga and 0 = o~ '. Thus estimation of scale and shape in the model P(q, o)
is equivalent to estimation of location and scale in E(u, ). Corresponding to (1.3), a
useful linearization of (1.2) results by putting for z the quantile function
G~ p)={z:G(z) > p},0<p<], yielding

G '(p) = u+0(—log(1 —p)),0<p<l. (1.4)

The model P(o,o) and variants are tractable and effective in many applications
involving parametric modeling with high probability in the upper tail, including
economics, finance, actuarial science, teletraffic, hydrology, reliability, structural
engineering, and, recently, combinatorial search. See Arnold (1983), Johnson, Kotz,
and Balakrishnan (1994, Chapter 20), Resnick (1997), Adler, Feldman and Taqqu (1997),
and Gomes, Selman and Crato (1997). Likewise, the model E(u, 0) has a wide domain of
importance. For G a ‘‘lifetime’’ distribution, 0 represents the mean life measured from
the ‘“‘minimum lifetime’” u as a starting point. In fatigue failure problems, u represents a
“‘sensitivity limit”’. See Johnson, Kotz and Balakrishnan (1994, Chapter 19), for broad
discussion.

Further, the models P(o,a) and E(u,0) arise in semiparametric contexts. For ¥
having cdf H with regularly varying tail, the conditional distribution of Y given ¥ >t
converges to a cdf of form (1.1) as #— o0, so that the upper ordered observations of a
sample from H may be treated approximately as a Pareto sample. Similarly, for Y
having cdf in the domain of attraction of an extreme value distribution and satisfying
certain von Mises conditions, a suitable transformation of the data not depending upon
parameters produces a sample whose upper ordered values behave as a sample from an
exponential model. For details, see Galambos (1978), Bingham, Goldie and Teugels
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(1987), Reiss (1989), Falk and Marohn (1993), and Falk (1994). In these cases, the
model (1.1) applies with the parameter ¢ known. See Brazauskas and Serfling (2000)
for a treatment under this assumption, with special emphasis on applications in
actuarial science.

The present treatment will be carried out in terms of the model E(u, 0), focusing on
estimation of 6 and treating p as an unknown nuisance parameter. Estimators under
consideration will be evaluated on the basis of two competing criteria, efficiency and
robustness, more specifically, asymptotic relative efficiency (ARE) with respect to the
maximum likelihood estimator (MLE), and breakdown point (BP). The MLE being
efficient but not robust, we seek to identify competitors having BP >0 along with high
ARE. New generalized quantile estimators for this problem are introduced and evaluated
in Section 2, and in Section 3 they are compared with several well-established and popular
estimators corresponding to methods of trimming, least squares, and quantiles. Excluded
from consideration are the popular, but nonrobust, method of moments estimators. Nor
need we consider the robust M-estimators that have been developed for this problem, as
they do not improve upon the more directly formulated trimmed mean estimators that we
shall consider (see Kimber, 1983b).

Our findings are as follows. For the relatively popular least squares type estimator
we obtain a clarified perspective: it is both nonrobust and nonefficient and may
reasonably be discarded from practice. The quantile and trimmed mean type estimators
offer favorable trade-offs between efficiency and robustness, with the most efficient
trimmed types outperforming the most efficient quantile types. (This corroborates
studies by Kimber, 1983a,b; Gather, 1986, and Willemain et al., 1992, in which
trimmed means fared well among competitors for efficient and robust estimation of 6
in E(0,0).) The new generalized quantile type estimators, however, in particular the
generalized median types, dominate all the other competitors. Overall, the trimmed
mean and generalized median statistics stand apart from the others as offering the most
competitive trade-offs between efficiency and robustness, and these we recommend for
practical use.

The above findings are based on large-sample efficiency and robustness criteria, ARE
and BP, for n—oo. It turns out that the favorable performance of generalized median
estimators holds also for small sample sizes, as shown by Brazauskas and Serfling
(2001) in a simulation study with emphasis on sample sizes n = 10 and 25. Exact
relative efficiency and exact breakdown points are used as criteria, and premium-
protection plots based on outlier contamination models are developed to exhibit
favorable efficiency—robustness trade-offs for the above collection of competing
estimators.

The overall superiority of the generalized median estimators appears to be explained by
a simple principle: ‘‘Smoothing’’ followed by ‘‘medianing’’ produces estimators
possessing relatively high robustness at relatively small sacrifice of efficiency. (This
also serves as an interpretation of the excellent performance of the Hodges-Lehmann
location estimator in the classical nonparametric location problem.)

In the remainder of this introduction, we discuss the impact of errors in Pareto tail index
estimation and formulate precisely our efficiency and robustness criteria.
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1.1. Impact of errors

A small relative error in estimation of « in P(o,a) can produce a large relative error in
estimated quantiles or tail probabilities based on o«. Even small improvements in
estimation methods thus can yield significant improvements in applications.

For estimation of the quantile g, corresponding to upper tail probability e, it follows
from (1.1) that g, = ge~'/*. Thus, for §, defined by putting & for «, we have
4./9; = g!/2=1/%  Similarly, for estimation of the tail probability & above a specified
threshold g, it follows from (1.1) that ¢ = (/q)". Thus, for ¢ defined by putting & for o, we
have &/e = (d/q)** = £®/*)~1. For example, for ¢ = 0.001, underestimation of « = 1 by
only 5% thus produces overestimation of g oo; by 44% and underestimation of « = 1.5 by
5% produces overestimation of g oo; by 27%. Also, underestimation of any value of o by
5% produces overestimation of ¢ = 0.001 by 41% and of ¢ = 0.0001 by 58%. Likewise,
for ¢ = 0.001, overestimation of @ = 1 by 10% produces underestimation of g o, by 47%
and overestimation of « = 1.5 by 10% produces underestimation of g oy, by 34%. Also,
overestimation of any value of « by 10% produces underestimation of ¢ = 0.001 by 50%
and of ¢ = 0.0001 by 60%.

Tail probabilities and quantiles in the range of ¢ = 0.001 or ¢ = 0.0001 are common in
actuarial and extreme value applications. For example, the Dutch government’s standard
for sea dikes is that the sea level not exceed the dike level in a given year with probability
at least 0.9999 (see Dekkers and de Haan, 1989, for discussion).

1.2.  Efficiency criterion: Asymptotic relative efficiency

In terms of its optimum asymptotic variance, the MLE provides a quantitative benchmark
for efficiency considerations. In particular, for a sample Z,, . .., Z, from E(g, §), the MLE
of 6 (for u unknown) is readily derived:

0ML = Zn - Zr1l7

where Z, denotes the sample mean and Z,; the minimum sample value. The exact
distribution of 0, is given (e.g. Lehmann, 1983, Problem 1.5.18) by the statement

2néML

0

has cdf x%(nfl), (1.5)

where 72 denotes the chi-square distribution with v degrees of freedom. This yields easily
the asymptotic distribution: 6, is asymptotically normal with mean @ and variance ¢° /n,
denoted AN(0, 6 /n).

For a competing estimator, efficiency is characterized in terms of its asymptotic relative
efficiency (ARE) with respect to the MLE, defined as the limiting ratio of respective
sample sizes at which the two estimators perform equivalently with respect to the variance
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criterion. All competing estimators 0 considered here will be AN(0, c6? /n) for some
constant ¢ >0, yielding ARE(0,0,,,) = ¢~ .

By standard asymptotic theory for transformations (Serfling, 1980, Chapter 3), for (9,,
AN(0, c6%/n) it follows that &, = 1/6, is AN(a, co? /n) with the same constant ¢. Thus
comparison of estimators with respect to ARE is the same whichever parameterization we
use, that based on P (o, o) or that based on E(y, 0).

1.3.  Robustness criterion: Breakdown point

A popular and effective criterion for robustness of an estimator is its (finite-sample)
breakdown point (BP), loosely characterized as the largest proportion of sample
observations which may be corrupted without corrupting the estimator beyond any
usefulness. It provides an index valid over a broad and nonspecific range of possible
sources of contaminating data. In the present context, protection against upper
contamination is sometimes more important than against lower contamination, so we
define separate versions:

Lower (Upper) Breakdown Point: The largest proportion of lower (upper) sample
observations which may be taken to a lower (an upper) limit without taking the
estimator to a limit not depending on the parameter being estimated.

We seek estimators possessing favorable ARE while also having UBP >0 and LBP >0 as
well. In particular, @ML is readily seen to have LBP = UBP =0 and thus is nonrobust and
rejected as a contender for robust estimation of 6.

An estimator 0 and its reciprocal & = 1/0 for estimation of o possess numerically
identical breakdown points, and so comparison of estimators with respect to BP is the
same whether the parameterization based on P(c,o) or that based on E(u, 0) is used.

2. Generalized quantile statistics

We introduce and study two estimators of ‘‘generalized quantile’” (GQ) type for
estimation of 0 in E(u, 0), based on a sample Z,, ..., Z, having distribution (1.2).

2.1. General formulation of GQ statistics

For a “‘kernel’” h(z;, . .., z;) invariant under permutations of its k arguments, denote by H
the cdf of h(Z,, ..., Z;) induced by the cdf G of the Z;’s. If & is designed to make the target
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parameter 6 the median of the cdf H;, then a natural estimator is given by the ‘‘generalized

median statistic’’ GGM = Median{i(Z; ,...,Z; )}. More generally, for any 0<p <1, if
0=H;'(p) (= pth quantile of H,) (2.1)

is satisfied, then an estimator of 0 is generated by taking the pth quantile of a
suitable sample cdf for estimation of H;. For this we define

-1
ﬁ,@):(}j) > Yh(z,,....2,) <y}yeR,

where the sum is over all k-sets of distinct indices {i,, ...,i,} from {1,..., n}. Since H,
estimates H, the corresponding *‘generalized quantile statistic’’

tz)GQ,p =H,'(p) (2.2)

estimates 0 = H;'(p). The estimator éGQ,p being a special case of ‘‘generalized L-
statistic’’, as treated by Serfling (1984) and Choudhury and Serfling (1988), we have: 05, ,
is asymptotically normal with mean 6 and variance

k%
hZ(0)n’

(2.3)

where A is the density of Hg,{ = Var(w,(Z)), and w),(z) = P{h(z,Z,...,Z;_,) < 0}.
For the kernels selected below, (2.3) will have the form y /n for some choice of y. For n
so large that the O(n ) computational complexity of 0o, becomes prohibitive, one
simply estimates GFQ » using only the evaluations A(Z; , .. .,Z; ) for a random sample of
size N of the ( ) subsets {ij,...,i}, where N is quite la:rge say 10° or 10®. This renders
the computational burden neghglble while nevertheless maintaining any desired
computational accuracy.

2.2. Estimator 1

We start with the kernel hy(z;,...,z;) = k! IILI zj —min{zy, ...,z }, which evaluated
atZ;,...,Z; givesthe MLE of 0 based on just those observations. In order to modify %, to

become pth quantile unbiased for estimation of 0, i.e. to satisfy condition (2.1), we use the
fact that (2k)hy(Z,, . ..,Z;)/0 has cdf Yz(k it which follows by (1 .5). Denoting by M, ,
the pth quantile of y2, it follows that (2.1) is satisfied by cdf H( ?) based on the kernel

2k
/’l(l’p)(Zl, . 72,{) = mho(zl, .. '7Zk)'
—1)p
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Table 1. ARE(HGQF HML) and ,L;,fork 2:10 and p = 0.10,0.25,0.50,0.75,0.90.

k

A(RE(@GEQOIO, 0y) 075 064 065 068 072 075 077 079 081

70 1335 1553 1536 1460 1390 1335 1293 1260 1233
ARE((J%OOS, by) 074 070 074 078 081 08 08 087 089
o 1343 1436 1360 1286 1232 1194 1166 1145  1.128
ARE(H%O o O) 072 074 080 085 088 090 091 092 093
s 1388 1349 1247 1182 1142 1115 109  1.083 1072
ARE(@GQ075, 0y) 064 072 079 083 08 08 090 091 092
7o 1561 1395 1268  1.199 1158 1131 1112 1098 1087
ARE(OGQOW Oy) 049 059 067 073 076 079 081 083 087
50 2037 168 1486 1378 1311 1266 1233 1207 1151

The correspondmg estimator 9 is AN(6, y D2 /n) with y,i 13 determined via (2.3).
Values of y,({ ) and the correspondmg ARE =1/ yE ) for selected k and p are prov1ded in
Table 1 above Regarding breakdown behavior, it is established in Lemma B.1 that 0 Gop
has (asymptotic) LBP = UBP given by h(p) = min{p'/¥,1 — p'/¥}, for which values for
selected k and p are pr0v1ded in Table 2 below. The funcmon b(p) attains maximum
value 1/2 at p.. = (1/ 2) for which values are provided for k = 2 : 10 in Table 3.

Examination of Tables 1-3 indicates the following. For fixed p, ARE increases with k
while BP decreases. For fixed k£ > 3, ARE is favorable for middle values of p but decreases
as p tends to O or 1, whereas BP is favorable for low values of p. The price of the optimal
BPof 1/2 is thus a serious degradation of ARE. The anomalous case & = 2, in which both
ARE and BP improve as p—0, is outperformed by the k > 4 cases. Overall, the choice
p = 0.50 offers a favorable trade-off: very strong ARE values combined with relatively
high BP values. (Among the values of p in Table 1 the ARE is best uniformly over k > 3
for p = 0.50, but with a more refined range of p one finds that p = 0.50 is only nearly
optimal.)

On the basis of these considerations, and for simplicity, we recommend the case
p = 0.50 as suitable in practice. The estimator 9(}3,, = 90& 050 has ARE included in Table
1 and LBP = UBP given by b(1/2) =1 — (1/2)1 / these values included in Table 2.

Table 2. b(p) for k =2:10 and p = 0.10, 0.25, 0.50, 0.75, 0.90.

k

0.10 0.316 0.464 0.438 0.369 0.319 0.280 0.250 0.226 0.206
0.25 0.500 0.370 0.293 0.242 0.206 0.180 0.159 0.143 0.129
0.50 0.293 0.206 0.159 0.129 0.109 0.094 0.083 0.074 0.067
0.75 0.134 0.091 0.069 0.056 0.047 0.040 0.035 0.032 0.028
0.90 0.051 0.035 0.026 0.021 0.017 0.015 0.013 0.012 0.011
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Table 3. Values of p,.., for k =2:10.

2 3 4 5 6 7 8 9 10

0.250 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001

Writing M, for M, 59, the values My(;_) and multiplicative correction factors 2k / My
needed to construct OGM for k =2 : 10 are included in Table 4.

2.3. Estimator 2

An alternative to 0 6o, that possesses greater ARE at the cost of LBP =0 is developed as
follows. We start with the kernel Ay (z,, ...,z u) = k= Z,—l z; — p1, which involves the
unknown nuisance parameter p as well as arguments z,, . . ., z; to be filled in with sample
Values Using the well-known and easily proved result that (2/<)h0 (Zy,...,Z; 1)/ 0 has cdf
/Zk’ we see that (2.1) is satisfied by the cdf H(G ) based on the kernel

2k -~
ho(z1s- -z ).

W) (zy,. Lz ) =
2k,p

The corresponding statistic égé , cannot, however, serve as an actual estimator since it
involves the unknown y in its definition. We therefore put for p its classical MLE Z,; based
on the full sample, thus producing the strictly data-based kernel

h(21p)(zla"'7zk;znl): ﬁO(zl"""Zk;Z”l)'

Table 4. My 1y, My, 2k/Myy. 1y, and 2k /My, for k =2 : 10.

k Mgy 2k/ My _yy 2k/ Mo,
2 1.3863* 2.88538 1.19165
3 3.3567 1.78747 1.12189
4 5.3481 1.49585 1.08931
5 7.3441 1.36163 1.07046
6 9.3418 1.28455 1.05187
7 11.3403 1.23453 1.04953
8 13.3393 1.19947 1.04313
9 15.3385 1.17352 1.03819

10 17.3379 1.15354 1.03427

11 19.3374 — —

Note. *21og2 = 1.3863.
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Table 5. ARE(D5, Oyy) and 75 0, for k =2 : 10.

2 3 4 5 6 7 8 9 10

ARE(6%),,0,,)  0.78 088 092 094 0.96 097 097 0.98 0.98
135 1280 1141 1088 1061 1044 1035 1028 1.023 1019

The presence of Z,; in each kernel evaluation makes the corresponding estlmator OGQ »
nonrobust against lower outliers, i.e. LBP=0. By Lemma B.2, however, BGQ is robust
against upper outliers, having (asymptotic) UBP given by ¢(p) =1 — p/k.

Since 0/ , involves a kernel with an estimated pa:rameter the asymptotlc normahty
result glven m (2.3) does not apply directly. But HGQ can be approximated by HGép
sufﬁc1ent]y well to share the asymptotic normallty of the latter. Noting that
\GGQ » HgQ | < 1Z,1 — pf and using the easily established result

Zy—u= Op(nil)vn—”)oa (24)
we obtain nl/z(ég&p — égéyp)i»o. By Slutsky’s theorem follows that H(GzQ , like GG% )i

AN(0, y,((_zp)92/n), with /,&2[3 determined via (2.3).

From considerations similar to those for Estimator 1, we find that p = 0.50 again yields
a favorable trade-off between efficiency and robustness and we henceforth focus on this
case, using the kernel 2 (z,,...,z;; 1) = M7 K ho(zy, ..., z; 1) with Z,, for p. For kernel
sizes k = 2:10, values of My, and multlplléatlve correction factors 2k/M2k needed to
construct the desired estimator HGZM appear in Table 4 above. Smce the BP functions b( - )
and c(+) agree for p = 0.50, i.e. ¢(0.50) = b(0.50), 9(}\),, and 0 4, have the same UBP,

given by the p = 0.50 row of Table 2 above. Values of y,(( 3 5o and the ARE = 1/yk 050 of
62.,3,, for k = 2:10 are given in Table 5

The above results show that 9(‘M significantly outperforms HFM with respect to
asymptotic efficiency, and simulation studies confirm this comparison for small » as well.
We recommend Estimator 1 if protection against both upper and lower outliers is desired,
but Estimator 2 if protection against lower outliers is not of concern.

2.3.1. A further modification. Unlike Estimator 1, which is exactly pth quantile
unbiased for 6, Estimator 2 is only asymptotically pth quantile unbiased. For small
sample size applications, it can be made exactly pth quantile unbiased by replacing
My, in the definition of its kernel by the pth quantile of the cdf of
(2k)hy(Zy, - .., Z4;Z,,)/6- By (1.3) and Corollary A.1, the relevant cdf is the mixture

k k
1—= )3 +-r3k—1).
< n)sz“‘an( )
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3. Comparisons and conclusions

We evaluate three popular types of estimator for 6 in E(u, 6) with respect to our joint
criteria of efficiency and robustness and then compare these and the GQ estimators, in
order to arrive at an overall perspective.

3.1. Trimmed mean estimators

A trimmed mean for specified o and f satisfying 0 < a<1and 0 < f<1 — a is formed by
discarding the proportion o lowermost observations and proportion 5 uppermost
observations and then averaging the remaining ones in some sense. In particular, by
analogy with the case of x known treated by Kimber (1983a,b), but replacing p by Z,; (as
in Section 2.3), we introduce the estimator

éT = chi(zni - Zml)? (31)
i=2

with ¢, =0 for 2<i<[(n—1)a]+1 and n—[(n—1)p]+1<i<n, and
c,i=1/d(a,p,n—1) for [(n—1)a]+2<i<n—[(n—1)p], where [-] denotes
““greatest integer part”” and d(«, f,n) = Z;;[[’;@H Y_,(n—i+1)"". (This choice of
¢, s makes 6, mean-unbiased.) Due to the presence of Z,;, robustness is gained only
against upper outliers, i.e. LBP =0 and UBP = [(n — 1)f]/n—f, n—oc0. To obtain the
ARE of 9T, we use the fact that éT has the same distribution as

A 0 n
6;') = chi(znfl,i - ,U), (32)
i=2

which is AN(G,D%/;B2 /n) with D, computable by standard results for L-statistics (e.g.
Serfling (1980), Section 8.2.4, or Lehmann (1983), Section 5.4). It follows that existing
ARE results for Q(TO) in comparison with the MLE of 6 when u is known apply unchanged
for O in comparison with 0,,,, with ARE = D;ﬁ'. In particular, therefore, for o« = 0 or
o =, and f taking values 0.05, 0.10, 0.15, 0.20, and 0.25, the values of ARE and
corresponding values of Dyg and Dgp may be taken from Table 1 of Kimber (1983a) and
Table II of Kimber (1983b). For each of these five choices of 5 the ARE’s for the two cases

Table 6. ARE(O, Oy ) and D, for o= 0 or o = f, and selected f.

I

0.05 0.10 0.15 0.20 0.25

ARE(0y, Oyy1) 0.92 0.85 0.78 0.72 0.67
Dy, Dyy 1.09 1.18 1.28 1.39 1.49
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o = 0 and o = f3 happen to agree within two decimal places. Table 6 provides ARE and D
values for comparison of BT with GML

3.2.  Estimators based on the linearized model

Certain estimators popular in the present problem are motivated by the linear model (1.4).

With the usual sample cdf G, (z) = n""! > 1{Z,; < z},z€R, and corresponding sample
quantile function

é\;l(p) :Zn,]'np]’0<p<17 (33)
where Z,; < Z,, < --- < Z,, denote the ordered sample values and [x] denotes the least

integer > x, and defining ¢ = G, ' (p) — G~ (p), we obtain an exact reexpression of (1.4)
as

Gy '(p) = u+0u+e0<p<l, (34)
where u = —log(1 — p), 0<p < 1. Choosing n values of p such that G, ' (p) generates the

set of order statistics {Z,;, 1 <i < n} as per relation (3.3), i.e. for choices p},,...,ps,
satisfying

. 1 12 . n—2n—-1 . n—1
Pm € O an n }’l ) "-’pn,nfle n 7Tapnne Tal I

we obtain from (3.4) a set of n equations for the two unknowns y and 6:

(3.5)

Zy=p+0buy;+e,; 1<i<n, (3.6)

. o =Zy — G 1(ph), 1 < i< n. These equations may be
1nterpreted from the standpoint of the usual linear regression model, yielding estimates of
wand 0 by fitting a straight line through the scatterplot of points {(Z,;, u};), 1 <i < n},or
through a strategically selected subset, applying either ordinary or weighted least squares.
Two well-established scenarios are discussed below.

where u}; = —log(l — p};) and &,

3.2.1. Least squares estimators. Using the full set of equations (3.6), with p;, =p,,;,
where p,; =i/n, 1 <i<n-—1, and p,, = n/(n+ 1), ordinary least squares regression
yields a so-called ‘‘least squares’’ estimator of 6,

é ! Zl =1 Chi m CnZn
LS — 71 2
Zl*l ni ( )

bl
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where c¢,; = —log(1 — p,;) and &, = n=' 3, ¢,;. Clearly, LBP = UBP = 0 for 0,5 and
hence it is nonrobust.

In the context of the Pareto model, some discussions in the literature suggest that the
LS estimator is competitive in efficiency with the MLE. We clarify, therefore,
the performance of 0;¢ by establishing (in Appendix C) the following result on its
asymptotic normality, which indicates that it is actually poor in efficiency, having
ARE = 0.50.

Theorem 3.1:  The estimator 0,5 is AN(6,26%/n).

3.2.2. Estimators based on k selected quantiles. Here we use a selected subset of
the equations (3.6). For given integer k, let values 0 <p; < --- <p, <1 be chosen and
suppose that n>k is sufficiently large that the p;’s fall in k distinct members of the
subintervals in (3.5). In this case the k equations from (3.6) corresponding to G, !(p;)
in (3.4), 1 <i <k, are given by

Zﬂ,]'npﬂ =p+ Gui + &4 1<i< k7 (37)

where u; = —log(1 —p;) and ¢,; = Z,, [, — G~ (p;), 1 <i < k. Thus estimates of u and
0 result from fitting a straight line to the scatterplot of points {(Z, 1,1, #;), 1 <i < k}.In
particular (see Saleh and Ali, 1966, for details), weighted least squares regression yields

k
b0 = >_bZu

i=1

where by = — L™ (uy — uy) /(" — "), by = L' [(; — u_y) /(" — €"=1) — (1 — ;)
/(e —e4)], 2<i<k—1, by=L""u —u_,)/(e" —e"-1), and L=
Zfzz(u,- —u_ 1)2 /(e —e"-1). In the equivalent context of estimation of o« in
Pareto(o, o), this is the ‘‘quantile’’ approach introduced for k =2 by Quandt (1966)
and considered for arbitrary k£ > 2 by Koutrouvelis (1981). See also Arnold (1983, p. 201),
for discussion.

We see that @)Q has LBP = p, and UBP = 1 — p; and is robust if p; and p; are bounded
away from 0 and 1. Further, 0, is AN(0, L™ 0?/n) and thus has ARE = L. The asymptotic
normality holds not only for fixed p,, ..., p, but also for p; tending to 0 at rate O(n~!)
and/or for p,,...,p, having limits in (0, 1).

As argued in Saleh and Ali (1966) (see also Koutrouvelis, 1981), the optimal choice of
Py 18

1
° = 3.8
Pr=0s (3.8)
and optimal choices of p,,...,p, are then obtained by minimization of the generalized

variance of the joint estimators of x and 6, subject to (3.8). Alternatively, however, the
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optimal p,, ..., p; can be found directly by reduction to the case of ; known; i.e. making
use of (3.8) and noting that the sum of the b;’s is 0, we may express the optimal estimator
as

k
Soptk
00th = Zbi(zn,(npﬂ - Zn,])v
i=2

for which it follows by (2.4) that the optimal choices of p,,...,p, are those derived by
Sarhan, Greenberg and Ogawa (1963) and listed for k =2(1)16 in their Table 3, for
asymptotically optimal estimation of 6 in the model E(0, 6) by a linear function of k — 1
order statistics. In particular,

o For k = 2 the optimal p,’s are p; = p] and p, = 0.80, and for %””2 we have LBP = 0,
UBP = 0.20, and ARE = 0.649.

e For k =5 the optimal p;’s are p; = p{, p, = 0.45, p; = 0.74, p, = 0.91, and ps = 0.98,
and for 9"” "3 we have LBP = 0, UBP = 0.02, and ARE = 0.926.

These examples indicate that the increase in ARE of 9Q by choosing optimal levels and
taking k larger is accompanied by severe reduction in BP. If one desires to maintain
relatively high BP, then nonoptimal quantile levels must be selected. For example:

e With k=2, p, =0.10, and p, = 0.90, for ég we have LBP = UBP = 0.10 and
ARE = 0.543.

e With k =4, p; =p7, p, = 0.25, p; = 0.50, and p, = 0.75, for éQ we have LBP = 0,
UBP = 0.25, and ARE = 0.735.

e With k=5, p; =0.13, p, =0.32, p; =0.50, p, =0.69, and ps = 0.87, we have
LBP = UBP = 0.13 and ARE = 0.73. For later reference, we designate this estimator
by 0.

3.3. Comparisons and conclusions

In Table 7 below we examine together the ML, LS, Q, T, and GM estimators with respect to
our joint criteria of efficiency and robustness.
The following conclusions emerge:

e The ‘‘least squares’’ estimator is neither robust nor efficient and thus is not competitive.

e Optimal ‘“‘quantile’’ type estimators are improved upon by the “‘trimmed’’ types. For
example, 9"1] " for k = 2 with ARE = 0.65, LBP = 0, and UBP = 0.20 is dominated by
OT fora = ﬁ 0.20 with ARE = 0.72, LBP = 0, and UBP = 0.20. Also, 0”” fork=>5
with ARE = 0.93, LBP = 0, and UBP = 0.02 is dominated by GT for o« = f =0.04
with ARE = 0.93, LBP = 0, and UBP = 0.04.
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Table 7. ARE and BP for selected estimators of 6.

Estimator ARE LBP UBP
Mle 1 0 0

O, 0.50 0 0

0% 0.65 0 0.20
i 0.93 0 0.02
0 (k=5) 0.73 0.13 0.13
bp, 0= =025 0.67 0 0.25
O, 0= =020 0.72 0 0.20
Op, 0= =0.15 0.78 0 0.15
O, 00 =p=0.10 0.85 0 0.10
07, 0 =p =005 0.92 0 0.05
O, =B =004 0.93 0 0.04
00, k=2 0.72 0.29 0.29
00, k=3 0.74 021 021
00, k=4 0.80 0.16 0.16
0 k=5 0.85 0.13 0.13
04, k=10 0.93 0.07 0.07
0%, k=2 0.78 0 0.29
0%, k=3 0.88 0 021
0%, k=4 0.92 0 0.16
02, k=5 0.94 0 0.13
02, k=10 0.98 0 0.07

e In turn, the “‘trimmed’’ types (and thus also the optimal quantile types) are improved
upon by the ‘‘generalized median’’ types. For example, GT for o = f = 0.20 with
ARE =0.72, LBP =0, and UBP = 0.20 1s dommated by 00134 for k =2 with
ARE =0.72 and LBP = UBP = 029 by GGM for k=3 with ARE =0.74 and
LBP = UBP =0.21, and by 0 for k=3 with ARE = 0.88, LBP =0, and
UBP = 0.21. Likewise, GT for oc = =0.05 with ARE=0.92, LBP =0, and
UBP=0.05 is dominated by 0), for k=10 with ARE =093
and LBP = UBP = 0.07, and by QGM for k =10 with ARE = 0.98 and LBP =0,
UBP = 0.07.

e Further, the nonoptimal quantile estimators are improved upon by the *‘generalized
median’’ types. For example BQ with ARE =0.73 and LBP =UBP =0.13 is
1mpr0ved upon by 9(M for k = 5 with ARE = 0.85, and LBP = UBP = 0.13, as well
as by OGM for k = 3 with ARE = 0.74, and LBP = UBP = 0.21.

Interpretive conclusion:
Smoothing the data by evaluating a function over subsets of a few observations at a
time, followed by medianing applied to these function evaluations, yields a very
favorable combination of efficiency and robustness.
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Practical Recommendations:
The maximum likelihood estimator is efficient but not robust and should be replaced by
a competitor. The new generalized median approach dominates the other competitors
and should become incorporated into practice. The trimmed mean approach remains
competitive, however, and should remain in practical use. The less competitive quantile
approach should be used more cautiously if not dropped, and the standard least squares
approach should be dropped from practical use.

Appendix A: A result for standard exponential

For a sample U,,...,U, from E(0,1), denote the ordered sample values by
U,<U,<---<U, A simple but productive distributional result is the

nl nn-
following.

Lemma A.1: Forn>1and 1 <k < n,the joint cdf of Uy —U,y,..., Uy — U, is

Fy v, v—u, (s ti)

k k
:% Yo Il a=e+m-b]Ja-e], (A.1)

J=11<i<ki#j i=1

fort; >0,...,t,>0.
Proof: From
P{Ul - Unl < I, .. -7U/1 - Unl < tn}

n
:ZP{UI _Unl Stla"'aUn_Unl StnaUnl :Uj}
j=1

=Y POSU; - U<tz 1 <i<ni#j}
j=1

n o0 u+1
- / H / eiulimiu"dul "'dl,{”,
=0 \1<i<niizj /i =1

j=171

we have (A.1) with £ = n, from which we obtain (A.1) for 1 <k < n — 1 by integrating
out the variables #; , |,...,1,. ]
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In terms of the cdf Gy(u) =1 —e~", u>0, of E(0,1), we may reexpress (A.l) in the
form

-U, (tla - -atk)

FU] —Upn,-oes Uy

=Gt - Golt) + - Go()Golr) -Gt

1 n—k
+ot ZGO(tl) - Golte—y) +TG0(H) - Go(te), (A.2)
fort; > 0,...,# > 0. The representation in (A.2) is a mixture of products, each involving
either k — 1 or k factors G.
Corollary A.1:
k k k
23 Uy Uphas cdf(l —;)x%w;x%(m (A3)

Proof: By (A.2) the random variable in (A.3) is a sum of independent standard
exponentials with the number of summands equal to k with probability (n — k)/n and
k — 1 with probability /n. Since a standard exponential variate U may be expressed as 1/2
times a y3 random variable, we have for any integer m > 1 that 2" | U, has cdf z3,.
Thus (A.3) follows. O

Appendix B: Breakdown points of GQ statistics

For a GQ statistic @GQ‘p = H,'(p), corresponding to some kernel A(z,, . . ., z;) and choice
of 0 <p <1, we define breakdown to occur if either

B1 The fraction of evaluations 4(Z; , ..., Z; ) taken spuriously to a lower limit #, exceeds
p (resulting in the estimator taking the value ¢#;), or
B2 The fraction of evaluations h(Zil"”7Zik) taken spuriously to an upper limit ¢,

exceeds 1 — p (resulting in the estimator taking the value ¢).

The LBP (UBP) of éGQ’D is then given by the largest fraction of sample values Z,, . .. , Z,
which may be taken to a lower (an upper) limit L without either of B1 or B2
occurring.

In particular, for the estimator é(Gg » considered in Section 2.2 we obtain
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Lemma B.1: The estimator é(Glép has LBP = UBP given by

b )

n~ max {m: <p< - min{p"/*,1 —p'/*}, n-co. (B.1)
1<m<n n n

Proof: Writing the relevant kernel as Ay (zy,...,z;,) = k! ij: 1lz; = min{zy, ...z, }]
> 0, we note that h(zy, . ..,z;,)— + oo if and only if at least one summand — + co. Now,
if j<k arguments — + oo while the others remain fixed, then clearly
hy(zy, ..., z;)— + oo. Also, if all k arguments — + oo and

max{z,...,z;} —min{z,...,z}— + o0, (B.2)
then again hy(zy,...,z;)— + co. Consequently, in order to avoid B2 through upper

contamination, the number m of upper contaminating observations must satisfy

(1) ()
()

Further, if all £ arguments — + oo and

—p. (B.3)

max{zy,...,z;} —min{zy,...,z,}—0, (B.4)

then hy(zy, . . ., z;)—0. Consequently, in order to avoid B1 through upper contamination,
the number m must also satisfy

<p. (B.5)

Finally, if all k£ arguments — + oo but neither (B.2) nor (B.4) holds, then Ay(z,,...,z;)
neither — + oo nor — 0. It follows that the UBP is given by the quantity in (B.1),
and a similar argument covers the LBP. Simple combinatorics yield the convergence in

(B.1). 0
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For the GQ estimator 9 Gop con31dered in Section 2.3, the relevant kernel may be
expressed as /g (zq, . . ., 2; ”1) =k~ EJ 1(z; = Z,1) > 0.Ttis readily seen that if a single
observation — — o0, thus causing Z,—» — oo, then all evaluatlons
ﬂO(Z,-17 -++»Z; )= + oo, resulting in B2. Consequently, LBP = 0 for the estimator HGQ >
Also, upper contamination does not cause B1 but can cause B2 unless the number m of
upper contaminating observations satisfies (B.3). We thus arrive at

Lemma B.3: For the statistic @(Gz )Qﬁp, LBP =0 and

n—m
UBP_n_llr<r}1£11)<£n{m: ((I;)) Zp}—'lpl/k,n—)oo. (B6)
- k

Appendix C: Proof of Theorem 3.1

Proof: From interpretation of the terms ¢, and n~! Z” , ¢2; as Riemann approximations
to —fo log(1 —x)dx = 1, and fo log? l—x)dx— 2, respecnvely, it is seen that the
denominator of 9Ls converges to 1 as n— co. Denoting the numerator of 9Ls by T, it thus
suffices to show that T, is AN(6,26%/n). Using (1.3) and U = 0,(1) along with
c, =1+ O(k’g &) n— o0, which follows readily by a refinement of Stirling’s formula due

to Robbins (1965), we obtain

=n ! Xn: Cni(Zni - Zn) i On~ : Xn: C,“-(U,“' N U)

i=1 i=1

‘IZJ i/mU, +0, (log”) (C.1)

i=1

where J,(t) =1—c, for (i—1)/n<t<i/n, 1<i<n. Since J,()—>J()=1+
log(1 —¢), n— o0, and E|U|"< oo for r>0, the conditions of Theorem 7. 5 1 of Sen
(1981) for L-statistics of form (C. 1) are satisfied and we obtain that 7, f9+0n’]

S AU + o, (), where A(w) = — [, [1{y > u} Gy (Go(y))dy with G
the standard exponential cdf deﬁned in Appendix A. Tt follows that A(u) =
—u+u?/2, EA(U) = 0, and EA?(U) = 2, completing the proof. O
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