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SUMMARY

This work is a theoretical and numerical study of the stability properties and scaling laws associated with an
idealized radiative—convective model. We find that the linear-stability threshold in the model can be described by
aradiative Rayleigh number, a parameter that incorporates radiative effects but otherwise resembles the classical
Rayleigh number. The energy method is used to find a nonlinear-stability threshold below which all perturbations,
whether infinitesimal or finite-amplitude, decay. The model behaviour when weakly nonlinear convection occurs
is studied via the mean-field equations. We find that changing the values of viscosity, thermal diffusivity, and
radiative damping has only weak effects on the vertical convective heat flux, in contrast to the case for weakly
nonlinear Rayleigh-Bénard convection. Finally, we propose scaling laws for the vertical convective heat flux,
vertical velocity, and temperature perturbations.

KEYWORDS: Linear stability = Mean-field approximation  Radiative—convective model Radiative
Rayleigh number Scaling laws  Subcritical instability

1. INTRODUCTION

This paper uses an idealized model to advance understanding of atmospheres in
radiative—convective equilibrium. Models that are idealized but that are derived from
first principles have a special place in meteorology. For instance, the Eady model of
baroclinic instability (Eady 1949), while artificial in some respects, has proved to be
a valuable tool for understanding large-scale dynamics. Formulating equally simple
models for radiative—convective atmospheres might also prove useful. Rayleigh-Bénard
convection, in which a fluid layer is confined between upper and lower plates at
fixed temperatures, does not suffice as a model of a radiative—convective atmosphere
because it does not include radiation. Goody (1956) put forth a convective model
that includes thermal radiation but also specifies the temperature on the boundaries.
Although Goody’s model is an instructive laboratory model, the atmosphere does not
have an analogue to an upper lid at which temperature is fixed. Here we study a
dry (cloud-free) model of atmospheric convection that includes radiative transfer, and
specifies the radiative flux, rather than the temperature, at the top of the atmosphere. The
goal is to move one step away from the Rayleigh—Bénard system and one step closer to
atmospheric convection.

Since atmospheric convection is a response to instability (Emanuel 1994, p. 527),
it is instructive to study the stability properties of radiative-equilibrium states. We find
that the linear-stability properties of our model are similar to those of Rayleigh-Bénard
convection. In particular, the threshold for marginal stability can be described in terms
of a single parameter, a radiative Rayleigh number, which is similar to the classical
Rayleigh number but incorporates effects of radiation.

The weakly nonlinear convecting properties of our radiative—convective system dif-
fer markedly from those of weakly nonlinear Rayleigh—-Bénard convection. Specifically,
the molecular viscosity and thermal diffusivity have little influence on the convective
heat flux in the radiative—convective system, whereas they have a strong influence on
weakly nonlinear Rayleigh—Bénard convection.
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We propose buoyancy, velocity, and heat-flux scales for dry atmospheres in radiative—
convective equilibrium. Recently, several authors have proposed bulk buoyancy and
velocity scales for moist atmospheres (Craig 1996; Emanuel and Bister 1996; Rennd
and Ingersoll 1996). These scales do not predict the vertical variation of buoyancy and
velocity. For the simpler dry case, however, the vertical dependence of these quantities
can be estimated.

2. LINEAR-STABILITY EQUATIONS

The set-up of our idealized radiative—convective model is summarized here. The
atmosphere in our model consists of an infinite horizontal slab of fluid, bounded above
and below by solid, free-slip boundaries at z = 1 and z = 0. Solar radiation illuminates
the top of the atmosphere, passes through the atmosphere unimpeded, and is absorbed
entirely at the ground. Its only effect is to establish the proper ground temperature;
solar radiation does not appear in the model equations. The model does not include
clouds. The albedo of clouds is crudely taken into account by adjusting the solar constant
appropriately. One of the effects of latent heating is crudely simulated by setting the
model’s ‘adiabatic’ lapse rate to the approximate climatological average (6.5 K km™1),
as has been done in many convective adjustment calculations, instead of using the dry
adiabatic lapse rate. An advantage of using a 6.5 K km™! adiabatic lapse rate is that it
yields a reasonable tropopause height in the weakly nonlinear calculations below. For
simplicity, the two-stream, grey approximation of Goody (1995) is used to represent
radiative transfer, despite the fact that real atmospheric gases are non-grey. The profile
of the radiative absorption coefficient, which depends on the profiles of radiatively active
gases such as water vapour, is specified. Therefore, the model contains no water vapour
feedback. We use the Boussinesq approximation (Spiegel and Veronis 1960), strictly
valid only for a shallow atmosphere, despite the fact that the atmosphere we model is
deep.

The governing equations may be non-dimensionalized as follows. (In this paper,
subscript asterisks shall denote dimensional quantities.) We use a length scale h,,
where h, is the height of the domain, an as yet unspecified temperature scale 7, a
radiative time scale 174 = 304h4Cps/ (160 'J'*3), a radiative-flux scale 160*7'*4 /3, and a
pressure scale p.h4 g1« 7. Here py is the (constant) density, ¢px« the heat capacity at
constant pressure, o, the Stefan—Boltzmann constant, g, the acceleration due to gravity,
and o, the thermal expansion coefficient. With the above non-dimensionalization, the
momentum, heat, continuity, and radiative-transfer equations become, respectively,

v / 2 2
x-a—t—+xv'VV=—VVp +yT'k+ V7, (1)
aT )
¥+V-VT—|-wF:—V-F+KV T, (2)
V.-v=0, 3)
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Here v denotes the velocity vector, w the vertical component of velocity, T’ the
temperature perturbation from the basic state temperature, T the full temperature, F
the (thermal) radiative flux, p’ the perturbation pressure, ¢ the time, « the specified non-
dimensionalized radiative absorptivity field, and k the vertical unit vector. In addition,
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the following non-dimensional parameters have been defined:

y = g>|<05T=s<T>z<h§= = Kx r= [yhs X = hi/v*
Vi (h2/174) h2/t7 Tu 7%

Here T, is the adiabatic lapse rate, v, the kinematic viscosity, and « the thermal
diffusivity. We may interpret y as a non-dimensional inverse viscosity, ¥ as a non-
dimensional thermal diffusivity, and I' as a non-dimensional adiabatic lapse rate. x turns
out not to enter the stability threshold.

The basic states whose stability properties we wish to investigate are motionless and
horizontally uniform. Therefore v =0, T =T(z),F = F,(2)k, and & = «(z). Substitut-
ing these forms into the heat equation (2) yields

dF, d°T
@ ez ©)

When « = 0, as in all stability calculations we perform, the basic state is a radiative

equilibrium state in which heat is transported solely by radiation. Substituting 7, F, and
« into the radiative-transfer equation (4) yields

0=-

d 1dF, — _3dT
——— —3aF, =3T"—. 6
dza dz *fz dz ©
Linear-stability equations, for perturbations about the basic-state equations (5)
and (6), can be formulated as follows. We apply the operator k- V x Vx to the
momentum equation (1). This yields

9 2 2! 22
XEV w=yViT +VVw+{Kk VXV X (v Vv)}, (7)

where Vﬁ' = (32/9x% + 9%/ dy?) is the horizontal Laplacian. Next we subtract the basic
state heat equation (5) from the full heat equation (2) and replace the divergence of the
perturbation radiative flux with the Newtonian approximation,
17y
r=-—

V.-F=rT ®)

IR ’
where Ry = pxhCps/ (0« Te3*) is the radiative time-scale of the atmosphere and Te, is
the emission temperature of the atmosphere. These manipulations yield

T’ dT ’ 2t !
—-t——l-w d_z+F =—rT ' +«VT +{-V.(T)}. )
The first term on the right-hand side shows that radiation causes the ‘radiative damping’
of temperature perturbations, with a strength given by r.

For grey atmospheres, the Newtonian approximation is strictly valid only when the
atmosphere is optically thin. However, we shall use the Newtonian approximation even
for moderately thick atmospheres. We do so because, given its simplicity, the Newtonian
approximation is remarkably accurate for the earth’s (non-grey) clear-sky atmosphere,
when temperature perturbations about the horizontal mean are small (Goody 1995,
pp. 115-117). Our use of the Newtonian approximation should be viewed as a modelling
assumption that enables us to better represent the earth’s non-grey atmosphere with a
grey radiative-transfer model.
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To find the vertical velocity, W, and temperature, @', linear modes, we assume the
following forms for the perturbations:

w=Re{W@)f(x,y)e"}  T'=Re{®()f(x, y)e) (10)

where f(x, y), which describes the horizontal planform, satisfies

Vi f(x, y)=—d>f(x, y),

and a is a real, non-dimensionalized horizontal wave number. In general, s = o + iw
can be complex. Substituting the modal forms, Eq. (10), into linearized versions of the
equations for w, Eq. (7), and T, Eq. (9), yields, respectively,

xs(D? —aHW = —ya?® + (D? — a®)°W (11)
and
dT
§O = —W (d_ + r) —r® +k(D? - a?®, (12)
Z

where the operator D = d/dz. Setting ¥ = 0 and eliminating ®’, we find an equation for
W alone:

(s +r){sx — (D* = a)}(D? — aHW = ya? (i—fﬂ*) w. (13)

Larson (1999b) has shown, following the method of Spiegel (1962), that our
radiative~convective system satisfies the principle of exchange of stabilities. Exchange
of stabilities holds if the linear modes arise as steadily growing, overturning cells and
not as an oscillatory instability. More precisely, exchange of stabilities is valid if, for
any linear mode, the imaginary part of the growth rate, w, is zero whenever the real part
of the growth rate, 0, is zero (Drazin and Reid 1981, p. 12). Exchange of stabilities has
also been proven for Rayleigh-Bénard convection (Pellew and Southwell 1940) and for
various radiative—convective systems which specify the temperature on both boundaries,
thereby departing from the radiative—convective system considered here (Spiegel 1960;
Murgai and Khosla 1962; Davis 1969; Arpaci and G6zim 1973). However, it is not ob-
vious, a priori, that exchange of stabilities also holds in our radiative—convective system,
In the aforementioned systems, the basic-state lapse rate is everywhere unstably strati-
fied. In an atmospheric radiative-convective system, however, the stratosphere is stably
stratified. It thereby provides a restoring force for vertical motions and hence raises the
possibility of oscillatory instability (Spiegel 1960). The fact that exchange of stabilities
does hold demonstrates that this mechanism cannot lead to oscillatory instability in our
model. The proof of Larson (1999b) is valid for both free-slip boundaries and no-slip
boundaries, but is restricted to the case of zero thermal diffusivity.

3. AN ANALYTIC LINEAR-STABILITY PROBLEM

The purpose of this section is to pose and analytically solve an idealized radiative—
convective linear-stability problem which retains the simplicity of the Rayleigh—Bénard
problem but is a somewhat more realistic model of the atmosphere. To construct a model
of this simplicity requires several rather extreme modelling assumptions. The first is to
linearize the thermal source function in the basic-state radiative-transfer equation about
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Fhe ground temperature Tg«, an approximation which introduces errors of roughly 40%
into the radiative equilibrium state. Since, in this section, we choose the temperature

scale 7 = Ty, linearizing the thermal source function amounts to setting the _f3 factor
in Eq. (6) equal to unity. Second, we set the radiative absorption coefficient, o = o, to
be a constant with altitude, whereas the concentration of the atmosphere’s main radiative
absorber, water vapour, diminishes rapidly with altitude. Third, we place the solid, upper
lid at the tropopause. Fourth, we set the thermal diffusivity, «, to zero. In the atmosphere,
the thermal diffusive damping is much smaller than radiative damping, and hence the
« = 0 results constitute an important limiting case. In the next section, we keep k =0
but relax the other assumptions. Some of the qualitative features of the present analytical
model are preserved in the more sophisticated model.

First we write down the form of the basic state for the linear-stability analysis,
leaving some constants undetermined. When « = 0, the radiative—diffusive equilibrium,
Eq. (5), reduces to a radiative equilibrium:

F, = Fr = constant

where Fr is the net outgoing thermal radiation at the top of the atmosphere, which equals
the net incoming solar radiation. Inserting a constant radiative flux into the basic-state
radiation equation (6), linearized about T= T, = 1, yields the basic-state temperature
gradient

dT

— =—oFr=—(1 — Tw). (14)

dz
A temperature discontinuity appears at the ground because thermal diffusivity is absent.
T; denotes the air temperature adjacent the ground, and T denotes the temperature at
the top of the domain. The basic-state temperature decreases linearly with altitude.

Next we formulate radiative boundary conditions appropriate to the atmosphere. We

stipulate that there is no incoming thermal radiation at the top of the domain. Then,
following Goody (1995, pp. 114-115), we may show that the upper radiative boundary
condition becomes

=1-4(01-Ty. (15)

z=1

The far right-hand side has been obtained by linearization about T = T = 1. In a similar
fashion, the bottom radiative boundary condition may be derived from the assumption
that the upwelling radiance near the ground is that due to a black body. We find

Spr=1-T"| =40-T). (16)

7=0

We may now solve for the basic-state temperature gradient and radiative flux.
Equations (14), (15), and (16) yield

daT (3/8)ac 3/8

iz 2+ 3/ T= 27 3/

With the basic state in hand, we proceed to solve for the linear-stability eigenmodes
and eigenvalues. The eigenvalue problem consists of Eq. (13) with s set equal to
zero because of exchange of stabilities, free-slip boundary conditions, and the basic-
state temperature gradient, Eq. (17). By inspection, we see that the eigenfunctions are

amn
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Figure 1. The basic state and eigenmodes plotted versus altitude for the analytic stability problem discussed
right-hand panel displays the tempe

plays the basic-state temperature profile 7', as computed from Eq. (17) (see
ground. The middle panel displays the vertical-velocity eigenmode, and the
rature-perturbation eigenmode. The eigenmodes are simple sinusoids, as in
Rayleigh-Bénard convection, because 7 is linear in the interior. See text for further explanation.

sinusoidal and fill the depth of the layer, as in Rayleigh-Bénard convection. They are
plotted, along with the basic-state temperature profile for «c =4, in Fig. 1.

Our system has a critical wave number of ¢ = 7, similar to the critical wave number

a = 1 /+/2 for the Rayleigh-Bénard system. The critical threshold for marginal stability
can be written in terms of a single parameter, a radiative Rayleigh number Ra,. If we
define a radiative diffusivity kg, = hi / R+, a lapse-rate difference from adiabatic
dT
,3* = = —

3/4
_ 3200 (g r (18)
dze "8 h 2+ (3/De "
and a radiative Rayleigh number
dT X ht
Rar=—-|—+T Y _ 80Py
dz r

VKR«
_ 8B/ (Frs/20,) 4/ o}l

C

/2 + (3/Dac}P/* — Tkt
V*(hi/tR*)

then the system is linearly unstable when Ra, exceeds the critical value Rac = 4n2.

, (19)
Because of the simplifications we have introduced, the critical condition depends on
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only one parameter, as in Rayleigh-Bénard convection. This parameter, Ray, resembles
the classical Rayleigh number, except that «r, is a radiative diffusivity instead of
the thermal diffusivity, and there is a temperature jump at the ground which is not
included in B,. The mathematics (and relatedly the mechanism) of this instability are
similar to that for Rayleigh—Bénard convection, except that in our radiative—convective
model, it is radiation, rather than thermal diffusivity, that causes thermal damping
and largely determines the basic-state temperature profile. Spiegel (1960) and Larson
(1999a) discuss similar radiative Rayleigh numbers for a system that resembles ours
except that the temperatures of the boundaries are specified.

4. A LINEAR-STABILITY PROBLEM WITH AN EXPONENTIAL RADIATIVE ABSORPTION
COEFFICIENT

We now perform a linear-stability analysis for a more realistic basic-state tempera-
ture profile. To produce a more realistic basic state, we relax some of the assumptions
made in the analytical linear-stability problem (but retain the assumption of zero thermal
diffusivity). First, the profile of the radiative absorption coefficient is no longer constant,
but falls off exponentially with increasing altitude: a(z) = b exp (—Sz), where S is a
non-dimensional inverse scale height of absorption and b is a non-dimensional coef-
ficient which sets the radiative absorptivity at the ground. This profile is intended to
reflect the climatological profile of water vapour, the main radiative absorber. Second,
the thermal source function in the radiative-transfer equation (6) is no longer linearized.
Third, the upper lid is lifted to the lower stratosphere, so that the eigenmodes may freely
penetrate the stable portion of the temperature profile. Also, in this section we choose
the temperature scale to be 7, = I',h,.

The basic state is a slight modification of that obtained by Goody (1995, pp. 126—
127). The basic-state radiative flux is still constant, and a temperature discontinuity still
appears at the ground. To obtain the temperature profile above the discontinuity, it is
sufficient to solve Eq. (6) subject to the boundary condition, Eq. (15), where we no
longer use the linearized approximation on the far right-hand side. We find

. 8 1/4 31 1/4
T = <§FT) (1 +550- be—S)> , (20)
and, taking the derivative,
ar 3 (8 \'/* 31 —3/4
— =—Za|=F 1+ >—(a—be™S . 21
dz 8“(3 T) ( tas@be )> @b

The linear-stability problem consists of Eq. (13) with s =0 and d7/dz given by
Eq. (21), plus free-slip boundary conditions. We solve this eigenvalue equation with
a pseudo-spectral Chebyshev numerical method, following Boyd (1989). Using linear
combinations of Chebyshev polynomials, we construct a set of basis functions, each of
which satisfies free-slip boundary conditions. We keep 102 basis functions. We expand
W in terms of these basis functions and, given a choice of a?, solve the eigenvalue
problem for the coefficients. We compute all eigenvalues and select the smallest one. To
find the critical value of y, yc, we minimize the eigenvalue numerically with respect to
a? using the golden section search (Press et al. 1992). Details of the numerical method
are described in Larson (1999a).

We now compute the linear modes for a control run with Fr =2.75, b =40, and
S = 10. If we assume the domain height is 4, = 20 km and the ‘adiabatic’ lapse rate
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Figure 2. The basic state and critical linear eigenmodes of the radiative-equilibrium state discussed in section 4,
for a control run with Fp = 2.75, b = 40, § = 10. The left-hand panel displays the basic-state temperature profile,
Eq. (20), (dashed line) and, for comparison, the profile from Fig. 4 of Manabe and Strickler (1964) (solid line),
divided by the temperature scale, 'y, = 130 K. Manabe and Strickler’s calculation includes solar radiation,
using annual-mean hemispheric values of the solar constant and zenith angle. The x-mark locates zy, the top of
the unstable portion of the dashed temperature profile. The middle panel shows the vertical-velocity eigenmode,
and the right-hand panel shows the temperature-perturbation eigenmode multiplied by the radiative-damping
parameter, .

is Ty = 6.5 K km™!, these values of the input parameters correspond roughly to the
current globally averaged climate: net incoming solar radiation 240 W m?, optical depth
4, and absorber scale height 2 km. Figure 2 depicts the basic-state temperature profile, T,
Eq. (20), along with the vertical velocity, W, and temperature, @', linear modes. Plotted
along with T is a non-grey radiative-equilibrium profile from Manabe and Strickler
(1964), calculated using climatological mid-latitude absorber profiles. The two basic
states agree qualitatively except for the fact that Manabe and Strickler’s temperature
profile increases with height in the stratosphere. This is because they have included
absorption of solar radiation by ozone, whereas we have not. The W mode exhibits a
single, broad maximum, similar in shape to the sinusoidal W mode found in the analytic
stability model. A notable feature of the W mode is that it penetrates far into the stably
stratified portion of the basic state. The top of the unstably stratified portion of the basic
state, z, = Zn«/ B4, has been denoted by an x-mark in Fig. 2. z,, is the altitude at which
—dT, /dz« = I'x. Whereas z, corresponds to an altitude of about 6 km, W becomes
small only at about 12 km and completely vanishes only at about 15 km. The W profile
extends to (or above) the climatological tropopause, despite the fact that a linear mode
is infinitesimal in amplitude and therefore has no inertia. Extensive overshooting of
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linear modes into a stably stratified region was also found for non-radiative cases by
Whitehead and Chen (1970) and Sun (1976). The ®' mode is not sinusoidal, as in the
analytical stability model, but instead has a large region of negative ® which arises
because the mode penetrates into the stably stratified region.

We now seek the dependencies of the critical value, yc/r, on the governing param-
eters Fr, b, S. One could study how yc/r varies as the other parameters are varied
individually, as depicted later in Fig. 4. The study of a three-dimensional parameter
space, however, is unwieldy. Instead, prompted by the analytic stability problem, we
characterize the stability properties in terms of a single parameter, another radiative
Rayleigh number Rags. Both Whitehead and Chen (1970) and Sun (1976) used modi-
fied Rayleigh numbers to characterize the stability of curved temperature profiles, but
they did not include radiative damping or calculate their basic-state temperature profiles
from radiative-equilibrium equations. To construct a useful Rayleigh number, we need to
choose appropriate length, temperature-gradient, and heat-diffusivity scales. As alength
scale, we choose Znx, the depth of the unstably stratified portion of the basic state. (In
contrast to Rayleigh-Bénard convection, /., is not an appropriate length scale, since here
convection does not penetrate to the top of the domain.) As a temperature-gradient scale
B, we choose the average potential-temperature gradient across the unstably stratified
portion of the basic state, excluding the discontinuity at the ground. Finally, as a diffu-
sivity scale, we choose the radiative diffusivity zﬁ* / trx. Our radiative Rayleigh number
is then defined as

4
AT
Raﬁgﬂgﬂ@:z<__l) 2 @)
Vi (Zn*/tR*) r Zn
where AT
ﬂ* = x - F*.
Znx

AT is the (non-dimensionalized) temperature drop across the unstably stratified portion
of the basic state, excluding the temperature discontinuity at the ground. Note that Rag
is independent of the height of the domain, /.

One cannot expect a single number to exactly encapsulate the stability properties of
a curved basic-state temperature profile and, indeed, Rag serves only as an approximate
measure of linear stability. Rag is inexact in large part because it contains no informa-
tion about the temperature profile above zy«. To determine the accuracy with which Rag
indicates marginal stability, we start with the control-run values, Fr = 2.75, b = 40, and
S = 10, vary each of these parameters one at a time over wide ranges, and then calculate
Ragc and the critical wave number scaled by the depth of the unstable portion of the
sounding aczy. The results are summarized in Table 1. If Rag were a perfect measure
of stability, the critical values of Rag in the fourth column would all be equal. In fact
the values vary by roughly 12%. Hence it appears that Rag is an approximate, but still
useful, measure of stability. The greatest deviations occur when S is varied, because
varying S greatly alters the shape of the profile, and Rag contains little information
about the shape. Values of the scaled critical wave number, acza, vary little. Therefore,
the preferred wave length for linear instability remains approximately proportional to
the depth of the unstable layer, zy, as Fr, b, and S are varied.

The advantage of writing the stability threshold approximately in terms of the
single parameter Rag is that one needs merely to inspect Rag in order to ascertain
the approximate effects of the governing parameters on the stability threshold. For
instance, inspection of Rag shows that increasing the radiative-damping time-scale, fr«,
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TABLE 1. CRITICAL RADIATIVE RAYLEIGH
NUMBERS AND WAVE NUMBERS

Fr b S Ragc aCZn
2.75 40 10 30.50 2.24

0.6875 40 10 30.11 221
1.375 40 10 30.28 2.25

5.5 40 10 30.75 223
11.0 40 10 31.05 2.21
2175 10 10 30.56 2.30
2.75 20 10 30.63 227
2.75 55 10 30.42 223
275 80 10 30.31 2.21
275 40 7 30.03 2.26
275 40 20 31.94 223
275 40 30 33.00 223
275 40 40 33.77 2.24

The radiative Rayleigh number, Eq. (22), eval-
uated at marginal stability, Ragc, for various
values of Fr (net outgoing thermal radiation at
the top of the atmosphere), b (a non-dimensional
coefficient which sets the radiative absorptivity
at the ground), and S (inverse scale height of
absorption). The critical wave number ac times
the depth of the unstable layer z, is also listed.
The first row contains the control-run values.
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o
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N
~
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10° 10' 10’ 10 10'
Fr b s

Figure 3. These panels illustrate the effect of Fr, b, and S on (AT /z, — 1)zﬁ and hence their effect on the

radiative Rayleigh number, Rag = (y/r)(AT /zn — l)zﬁ. Fr, b, and S are each varied individually while the
other two parameters are held fixed at the control-run values Fr =2.75, b =40, and S = 10. Increasing Fy or b
destabilizes the basic state, whereas increasing S stabilizes the basic state. See text for further explanation.

destabilizes the radiative-equilibrium state, with an approximately linear dependence.
The parameters which influence the basic state — Fr, b, and S — enter Rag only
through the factor (AT /z, — l)zﬁ. This factor’s dependence on Fr, b, and S is plotted
in Fig. 3. Increasing the net incoming solar radiation, Fr, destabilizes the radiative-
equilibrium basic state. Similarly, increasing b, which corresponds to increasing the
optical depth of the atmosphere while the shape of the absorber profile is held fixed,
destabilizes the basic state. In both cases, it turns out that the destabilizations occur
both because the depth of the unstable layer, zj, increases and because the average lapse
rate across z, increases. Increasing S, which corresponds to decreasing the absorber
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scale height, stabilizes the fluid by decreasing z,. The present radiative Rayleigh
number, Rag, resembles the radiative Rayleigh number, Ray, for the constant absorption
coefficient case. This, together with the similarity in W modes, indicates that the analytic
solution for the constant absorption coefficient has qualitative relevance to the case when
the absorption coefficient decreases with altitude.

Rag, like Ra, or the classical Rayleigh number Ra, may be interpreted as a
measure of the relative strength of various dynamical terms (Tritton 1988, pp. 173—
174). In particular, Rag may be regarded as the product of two ratios: the ratio of
the buoyancy force over the viscous force, times the ratio of the advection of basic-
state potential temperature over the radiative damping. The fact that instability in both
the radiative—convective and Rayleigh-Bénard models can be described by types of
Rayleigh numbers reflects the fundamental mechanistic similarity of linear instability
in these models: what generates instability is hot fluid lying underneath cold fluid, and
what suppresses instability is viscous and thermal damping. However, in the radiative—
convective models, thermal damping is caused by radiative damping, not thermal
diffusion, and the basic state is determined by radiation, not an imposed temperature
difference across two plates and thermal diffusion. The value of our radiative—convective
models is that they are almost as simple as the Rayleigh—-Bénard model, but they
illustrate how changes in radiative properties influence the stability of the system.

5. ENERGY-STABILITY THEORY

Linear-stability theory states that above a certain critical threshold — defined in
the above models by either Ra,c or Ragc — there exists a mode which grows, even
if excited only infinitesimally. Linear-stability analysis does not establish, however,
that beneath the critical threshold, the system is stable to large perturbations. Hence it
does not establish whether or not subcritical instability can exist. In many atmospheric
soundings, there are parcels of air that do not become positively buoyant until they
are lifted to their level of free convection. Therefore, in some cases, moist convection
arises as a subcritical instability (Emanuel 1994, pp. 168-169). However, even in a dry
radiative—convective atmosphere, subcritical instability may still be possible if the basic-
state temperature profile is curved.

The energy method is a nonlinear-stability method which provides information
about whether or not subcritical instability can occur. The energy method determines
a critical threshold below which any small or finite-amplitude perturbation, regardless
of magnitude, decays. Beneath this threshold, the system is said to be monotonically
stable. In the method, we define an ‘energy’ and derive an energy equation which
contains generation and dissipation terms. Beneath the monotonic stability threshold, the
dissipation terms are guaranteed to outweigh the generation terms, causing the energy
to decay with time and rendering the system stable.

The threshold for monotonic stability either coincides with or lies below the critical
threshold for linear stability. Beneath the monotonic-stability threshold, all disturbances
decay; above the linear-stability threshold, at least one mode grows; but between
the two thresholds, there is a region of indeterminate stability properties in which
finite-amplitude subcritical instabilities may or may not exist. To reduce the region of
indeterminacy, we seek to narrow the gap between the thresholds as much as possible.

For Rayleigh—Bénard convection, the basic-state temperature profile is linear, and
Joseph (1965) was able to show that the thresholds coincide exactly, thereby proving
that in this system no subcritical instabilities can occur. For the analytic problem of
section 3, the basic-state temperature profile is also linear and one can prove in a similar
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Figure 4. The critical threshold for linear stability, yc/r (asterisks), and the critical threshold for monotonic

stability (circles) as computed from the energy method. One parameter at a time is varied, while the other

parameters are held fixed at the control-run values, Fy = 2.75, b = 40, and § = 10. In (a), Fy is varied. In (b), b
is varied. In (c), § is varied. See text for further explanation.
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Figure 4. Continued.

manner that no subcritical instabilities exist (Larson 1999b). This is a strong result. The
mathematics, which follow the methodology of Straughan (1992), are given in Larson
(1999b) and will not be repeated here. Similar mathematics are also given in Larson
(1999a) for a system which is like ours except that the temperatures on the boundaries
are specified.

For the problem of section 4, the radiative-equilibrium temperature profile is nonlin-
ear, and hence the result of the energy-method analysis differs from that for Rayleigh—
Bénard convection. Namely, in the radiative problem, the monotonic-stability threshold
lies somewhat below the linear-stability threshold (Larson 1999b). This is illustrated in
Fig. 4, which shows plots of the monotonic-stability threshold (circles) superimposed on
plots of the critical threshold, y¢/r, for linear stability (asterisks). The linear-stability
threshold is typically about 1.5 times greater than the monotonic-stability threshold. In
the areas of parameter space between the monotonic- and linear-stability curves, there is
the possibility of subcritical instability, although the analysis we have performed cannot
confirm or deny this.

6. DEVELOPMENT OF THE MEAN-FIELD EQUATIONS

We now examine the behaviour of our radiative—convective system when weakly
nonlinear convection occurs. To do so, we have chosen to use an approximation to
the Boussinesq equations known as the mean-field approximation (Herring 1963, 1964,
Musman 1968; Spiegel 1971). This approximation yields a set of equations which is
one-dimensional and whose solutions, therefore, may be rapidly computed. Unlike many
convective parametrizations, however, the mean-field equations are derived directly
from the Boussinesq equations and do not rely on modelling assumptions like convective
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adjustment. Furthermore, the mean-field equations provide individual profiles of the
vertical velocity field, w, and the temperature perturbation field, 7', in addition to their

correlation, the heat flux, wT’™ , where () denotes the horizontal mean. However, the
mean-field equations are valid only for weakly nonlinear, high-Prandtl-number flows,
whereas the atmosphere is strongly nonlinear and has a moderate Prandtl number.

We now outline a derivation of the mean-field equations. (For a more complete
derivation, see Herring (1963), (1964).) Horizontal averages (means) can be taken
over fields in the convecting state, and the mean fields are distinct from basic-state
fields, which have been denoted by an overbar. An equation for the mean radiative flux
an may be derived as follows. We assume that the radiative absorption coefficient,
o = b exp (—Sz), decreases exponentially with height, where b and S are specified
parameters. To a good approximation, the non-dimensionalized thermal source function
in the radiative-flux equation (4) may be linearized about the local horizontal mean:

T4=T™ +4TT".
Then, since « is a function of z alone, horizontally averaging the radiative-flux equa-
tion (4) yields Eq. (6), except that basic-state quantltles are replaced by mean quantities.

To find an equation for T, we substitute T =T (z) + T into the heat equation (2)
and average over the horlzontal

T dF, 2 "
S L 23)
o1 dz 2 dz

We have assumed that w™ = 0. To form an equation for the temperature perturbation
from the mean, we subtract the mean-temperature equation (23) from the heat equa-
tion (2) and use the Newtonian approximation, Eq. (8). This yields Eq. (9), except that
basic-state quantities are replaced by mean quantities, and the bracketed term becomes

=V - (vT) +d(wT’ m) /dz}. For the mean-field calculations, we shall choose the tem-
perature scale 7, = ['wh,. Then the non-dimensionalized adiabatic lapse rate I' is unity.
Our equation for w is (7).

Now we neglect the fluctuating self-interaction terms (i.e. the bracketed terms)
in the equations for w and 7’. The neglect of these terms restricts the scope of the
system to weakly nonlinear, high-Prandtl-number flows. With the neglect of the self-
interaction terms, the mean-field equations for w and T’ become identical to linear-
stability equations for the mean temperature field T" (Howard 1964). However, the
mean-field equations do retain some nonlinearity: namely, they retain the d(wT”’ m) /dz
term in the mean heat-flux equation (23) and the wdT " /dz term in the temperature-
perturbation equation (9). Convective heating is permitted to alter T", whose modified
profile can then affect the other fields.

Only one horizontal mode is retained, whose horizontal planform is described
by the function f(x, y) as in the linear-stability analysis (Eq. (10), with s = 0; this
assumes perfect horizontal correlation between w and T'). Now, however, we also

impose the normalization condition f 2™ — 1. In the mean-field equations, the horizontal
wave number, a, is a free parameter. We choose the value of a used in a mean-field
calculation to be the critical wave number obtained from a linear-stability calculation
for the same system with the same or similar values of the governing parameters. We
focus exclusively on steady-state solutions. Assuming a steady state and substituting the
modal forms, Eq. (10), with s = 0 into the equations for w and T’ yields, respectively,

Eq. (11) and Eq. (12), but with s =0,I" =1, and T replaced by T
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We impose the following boundary conditions. The upper and lower boundaries
are located at z =0 and z =1 and are taken to be free-slip. Since we permit non-
zero thermal diffusivity, we must impose boundary conditions on temperature. At the
top of the domain, we set d7'/dz|;=1 = 0 so that the temperature at the top boundary
can vary freely. At the bottom boundary, we specify the temperature, T'|;~¢ = Tg, and
then compute the outgoing radiative flux at the top of the domain, Fr. Conceptually,
however, it is simpler to regard Fr as an external parameter and Ty as an internally
determined one. Therefore, in the experiments described herein we shall specify Fr and
then perform a numerical search to find the ground temperature, Ty, which yields the
desired radiative flux at the top. We derive the boundary conditions on radiative flux
following the procedure of Goody (1956, 1995). We find

=1
1dF, —o, 24)
a dz ‘ z=0
which assumes a black lower surface, and
1 dF 3—my
= - , 25
o dz =1 4 \Fl 25)

which states that there is no incoming thermal radiation into the top of the domain.

The mean-field equations are solved numerically, following Boyd (1989). To resolve
the thin boundary layers which form in T" and ®', we expand all fields in Chebyshev
polynomials, modified to span the interval z = (0, 1). For most runs, we retain 100
polynomials, but when necessary we use 200 polynomials. The boundary conditions
are imposed with the ‘boundary-bordering” method described by Boyd (1989). To
compute the solutions, we choose a first-guess solution, linearize the equations about
this solution, and then solve for the perturbations iteratively, using Newton’s method
(Press et al. 1992). Newton’s method converges only if a sufficiently close first-guess
solution is postulated. When y is just supercritical, we use the radiative-equilibrium
solution as a first guess for T" and 'f;n, and the linear modes as a first guess for W and
©'. To find highly supercritical solutions, we use the continuation method. That is, we
use the mean-field solution for a low value of y as a first-guess solution for a slightly
higher value of y. We continue to march in this way to higher and higher values of y.

We illustrate the solutions of the mean-field equations with the output of a control
run based on the following parameter values: Fr=2.75, r =17, b =40, § =10,
a?=452,y=7x 10°, and « = 1/30. If we take the height of the domain to be A,
= 20 km and the ‘adiabatic’ lapse rate to be I'y =6.5 K km™!, then these parameter
values correspond approximately to the following dimensional quantities, assuming
reasonable values for the air density, heat capacity, and so forth: net incoming solar
radiation 238 W m~2, Newtonian cooling time-scale of 10 days, optical depth of 4,
and scale height of radiative absorber (i.e. water vapour) 2 km. Because the mean-field
equations are valid only for weakly nonlinear flows and because very fine resolution is
required for highly nonlinear flows, we cannot reach the values of y and « appropriate
to the atmosphere, if molecular values of v, and «, are assumed.

T, W, ©, and components of the heat flux are plotted in Fig. 5. The T" profile
corresponds to a tropopause height of about 11.5 km and a nearly isothermal lower
stratosphere with temperature 209 K. The tropospheric lapse rate is nearly the adiabatic
lapse rate. The nearly neutral troposphere has not been specified a priori, as in convec-
tive adjustment calculations, but emerges from the calculation instead. This indicates
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Figure 5. The mean temperature, Tm, vertical velocity, W, temperature perturbation €', and components of the

heat flux obtained from the mean-field equations. In the far right-hand panel, the radiative flux, _F;n, is denoted

by a solid line, convective heat flux, w_T_’m, by a dashed line, and diffusive heat flux, —tedT™ /dz, by a dotted

line. The vertical velocity and temperature-perturbation fields are periodic in the horizontal; the ascending branch

is displayed here. This is a control run with parameter values Fr =275, b=40, $=10, r =17, k =1 /30,

y =7 x 10%, and a? = 45.2. The mean lapse rate is nearly adiabatic in the troposphere, and W has a single, broad
maximum, as in the linear-stability calculations. See text for further explanation.

that although the convection is weakly nonlinear, it is strong enough to lead to a nearly
neutral tropospheric lapse rate. Although the aforementioned features are in reasonable
agreement with the current average climate, there is a very large and unrealistic (~29K)

jump in T at the lower boundary. This jump, we believe, results primarily from the
absence of evaporation in this dry model (although turbulent mixing may also reduce
the size of the jump). Large temperature jumps do exist in the earth’s climate over dry
regions such as the Sahara desert, due to a lack of evaporative cooling at the surface
(Pierrehumbert 1995). The temperature (279 K) just above the jump and the earth’s
average surface temperature (about 288 K) are fairly close.

Comparing Figs. 2 and 5, we see that the linear-stability W mode has turned
out to resemble the mean-field W profile in several respects. The linear W mode
penetrates roughly as high as (but actually slightly higher than) the mean-field W profile.
Therefore, convection does not penetrate further upwards as viscosity decreases, at least
not while the convection is still weakly nonlinear. Both the linear W mode and the mean-
field W exhibit a single, broad maximum in the mid troposphere. Both W profiles also
qualitatively resemble the atmospheric boundary-layer data of Stull (1988, Figure 4.2)
compiled from observations and numerical computations. In these data, the variance of
vertical velocity has a single, broad maximum.

The shape of the mean-field ®' profile can be rationalized once T and W are
known. For example, the positive spike in ®' near the ground is a consequence of
upward motion in the presence of the super-adiabatic region near the ground. There
are also some small wiggles in ®' near the tropopause. The negative bump in ©’ is due
to rising motion in the stably stratified region near the tropopause. A very weak reverse
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cell in W, almost invisible on the plot, begins just above the tropopause. The positive

bump in @' above the tropopause arises from subsidence warming in this reverse cell.
The far right-hand panel of Fig. 5 depicts the mean-field conductive, convective, and

radiative vertical heat fluxes. In a steady state, these three fluxes must sum to a constant

with altitude (see Eq. (23)). The sharp increase in wT™™ near the ground is balanced
by sharp decreases in the conductlve and radiative fluxes. Above this boundary layer,

Fy . increases roughly llnearly, wI”" decreases roughly linearly, and the diffusive heat

flux is negligible. wT wT is mostly positive, but does contain a vertically extensive region
near the tropopause of weak negative heat flux.

Following Musman (1968), we have performed an a posteriori check of the validity
of neglecting the self-fluctuating interaction terms in the equations for 7’ and w. The
nonlinear term in the equation for w may be made as small as desired by choosing a
sufficiently large Prandtl number. Hence the mean-field approximation restricts us to
the high-Prandtl-number limit. The neglected terms in the equation for 7’ appear to
affect the solution quantitatively, but not qualitatively, for typical parameter values in
this study.

7. DEPENDENCE OF THE CONVECTIVE HEAT FLUX ON THE GOVERNING PARAMETERS

The six external parameters in our radiative—convective problem may be placed into
two groups. One group consists of the three ‘basic-state parameters’ — b, S, and Fr
— that help determine the radiative-equilibrium state. The other group consists of three
‘damping parameters’ — ¥, k, and r — that do not affect the radiative-equilibrium
basic state. The numerical calculations show that the basic-state parameters have a
strong effect on (w7”), but the damping parameters have only a weak influence on
(wT"). (Angled brackets, (), denote a spatial average over the entire fluid domain.)
In the latter respect, the radiative—convective system differs markedly from weakly

nonlinear Rayleigh—Bénard convection. An explanation for the weak effect of the
damping parameters is offered in this section.

An example of the strong effect of the basic-state parameters on (w7”) is shown
in Fig. 6. In this figure, all parameters except Fr are fixed at the control run values.
To a crude approximation, (wT’) ~ Fr, as might have been anticipated on dimensional
grounds The other basic-state parameters also strongly influence (w7”). Specifically,
(wT’) increases with increasing b (for typical values of b) and increases with decreasing
S (not shown). The increases in (wT’) occur because either an increase in b or a decrease
in S leads to an increase in optical depth and tropopause height.

However, the damping parameters have little effect on (wT’), for sufficiently weak
damping. This is illustrated for the thermal diffusivity « in Fig. 7. Here all parameters
are fixed at the control-run values except «. If the three points in Fig. 7 with the highest
values of (wT’) are fitted to a power law, the exponent is about —0.018. This may be
compared with the order-unity exponent for Fr. Similarly, y (which goes as 1/v,) and
the radiative damping parameter, r, have little effect on (w7”) (not shown). (It is only the
radiative damping of temperature perturbations which has little 1mportance the radiative
cooling due to the mean-temperature profile strongly constrains (wT"’).) However, the
values of the damping parameters, even when small, do influence the individual profiles
of w and T”. For instance, when viscosity is small, decreasing viscosity, while holding
all other parameters fixed, increases w and decreases 7" but keeps (w7") approximately
constant.

In contrast, the values of the molecular viscosity, v«, and thermal diffusivity, «, have
a strong influence on the heat flux in weakly to moderately nonlinear Rayleigh-Bénard
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Figure 7. The domain-averaged convective heat flux, (wT’), versus the thermal diffusivity, «. The other
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convection. Several early experiments and theories (Malkus 1954; Chan 1971; Herring
1963; Spiegel 1971), including mean-field theory, suggested that the heat flux scales as
Ra!/3. Other experiments found a Ra?'7 scaling (Castaing et al. (1989); see also Siggia
(1994)). Both exponents imply that the dimensional heat flux depends on the values of v,
and k.. (However, Kraichnan (1962) has theorized that at very high Rayleigh numbers
(roughly > 10%*), a Ral/ 2 scaling with logarithmic corrections should result; this is the
exponent which implies no dependence on a change in v, and iy, if the Prandtl number
is held fixed.)

The issue of whether or not atmospheric flows depend on the values of the damp-
ing parameters is an important one. If the damping parameters were to matter, then
meteorological theory would be complicated by, for instance, the introduction of ex-
tra parameters into dimensional analyses. Furthermore, molecular effects on atmos-
pheric turbulence cannot be studied by explicit numerical computation, since atmos-
pheric models cannot resolve the smallest fluid scales. Prior work has suggested various
reasons why atmospheric convection might not depend on molecular quantities. For
instance, the ground is invariably rough, and an externally induced mean wind usually
blows over the surface (Emanuel 1994, pp. 88-91). Also, atmospheric convection it-
self may generate significant mechanical turbulence near the ground, as suggested by
the mixing-length argument of Kraichnan (1962). All these factors might sufficiently
disrupt the micro-layer near the earth’s surface to destroy the bottleneck in heat flux
near the surface that gives rise to the dependence on molecular quantities. The sys-
tem we study has neither a rough lower surface nor a mean wind nor a high degree
of turbulence, and yet the convective heat flux still depends only weakly on viscosity
and thermal diffusivity. Therefore, our model results suggest that there exists an in-
dependent mechanism which renders viscosity and thermal diffusivity unimportant for
atmospheres in radiative—convective equilibrium. An advantage of this latter mechanism
is that, unlike the others, it can be easily investigated via simple numerical calcula-
tions.

The mechanism may be understood as follows. First, we note that in the interior
of the troposphere, convective heating is almost entirely balanced by radiative cooling.
Mathematically, this may be expressed by assuming a steady state, integrating the mean
heat-flux equation (23) vertically, and neglecting thermal diffusivity:

wl™ =Fr—F,. (26)
Therefore, if the net incoming solar radiation, Fr, and the radiative flux, f;n, are
independent of the damping parameters, so is the convective heat flux. In our model,
Fr is fixed. (In the real atmosphere, Fr would depend on the damping parameters if, for

example, the cloud albedo were to do so.) Furthermore, fgl is determined entirely by
the radiative absorption coefficient, ¢, and T (see Egs. (6), (24) and (25)). Therefore,
the convective heat flux is independent of the damping parameters if o and T are.
But « is fixed in our model. (In the real atmosphere, « would depend on the damping
parameters if the water-vapour profile were to do so.) T" is strongly constrained to
follow an adiabatic lapse rate in the troposphere and a radiative-equilibrium profile in the
stratosphere. Thus, for sufficiently weak damping, a change in the damping parameters
is unlikely to alter T appreciably. We conclude that the damping parameters have
only a weak influence on (w7’), for sufficiently weak damping. It is worth noting
that the mechanism depends in part on the fact that it is the flux, Fr, that is specified
at the top of the atmosphere, not the temperature. The residual weak dependence is
caused partly by the fact that ¥ and y do affect T near the ground, specifically in
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the magnitude of the sharp jump there. The effect is weak because the atmosphere
is optically thick and hence the mean temperature near the surface is only loosely
coupled to temperatures aloft. (Since real atmospheric gases are non-grey, the ground
temperature can be communicated to higher altitudes through relatively transparent
regions in the spectrum. However, over most of the earth’s surface, there is strong
evaporation, which tends to eliminate any temperature jump at the surface. Hence for
the real atmosphere we would again expect « and y to have little importance.) Spiegel
(1971) has invoked similar reasoning to suggest that convection in stars does not depend
on viscosity or thermal diffusivity.

In our model, as the damping decreases, the convective heat flux slowly increases.
However, even when the damping becomes infinitesimally small, one can still place
an upper bound on the magnitude of the convective heat flux. Specifically, Larson

(1999b) has proved that for our idealized, steady-state system, wI’ = < Fr everywhere,
if a7 /dz < 0 everywhere. The proof is by construction: using the Green’s function
for the radiative-transfer equation (6), one finds an expression for f;n in terms of
the temperature profile; inspection of this expression reveals that f;n > (. Then the
conclusion follows easily from the mean vertical heat-flux equation. Larson (1999b)

also extends the proof to write (loose, but rigorous) upper and lower bounds on (wT"’).
Namely, in our steady-state radiative—convective model, the integrated convective heat
flux must fall within the range 0 < (w7’ y < Fr, if dTm/dz < 0 everywhere. Because
of the constraints imposed by radiation, deriving an upper bound on heat flux turns out
to be straightforward, given that the temperature everywhere decreases with altitude.

Establishing an upper bound on heat flux in Rayleigh—Bénard convection requires much
more effort (Malkus 1954; Howard 1963).

8. SCALING LAWS
We now derive two scalings for (wT’), a sophisticated one and a simpler one. We
begin by noting that Fig. 5 shows that in the middle troposphere, thermal diffusion
is negligible, and w7’ decreases roughly linearly with altitude. Then dimensional
reasoning and mixing-length theory applied to the mean heat-flux equation (23) both
suggest the following expression for the convective heat flux:
=1

wT’mNd—z(zn—z) 0<z<z,
Z

12

0 72 Zn. 27)

The depth of the radiative-equilibrium unstable layer, z,, may be regarded as an external
parameter, since an approximation to z, for small ¥ can be expressed in terms of the
external parameters b, S, and Fr via Eq. (21). (Although in our model b and S are
external parameters, in the earth’s atmosphere they are not.)

We still need to express df?/dz in terms of external parameters. To do so, we
rearrange the radiative-transfer equation (6) as follows

3adza dz

Fo=— o (28)

N =
— (_deT ) 11d 1dF,
o
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and apply d/dz to both sides. The derivative of the first term on the right-hand side can
be crudely approximated as

d1 [ mydT" [ GV L e
<_Tm3 ) ~ g (_Tm3d—-> = SF?1 ~ SFr. (29)

dz o dz o Z

The first equality holds because the radiative absorptlon coefficient, @ = b exp (—Sz),

varies more rapldly with altitude than 7" >dT /dz. The second equality holds because
it turns out that, in our numerical calculations for low to moderate S, the second term on
the right-hand side of Eq. (28) is the smallest.

The derivative of the second term on the right-hand side of Eq. (28) can be crudely
scaled using the standard mixing-length procedure of replacing derivatives by length
scales. We find

1d<1d1d‘ﬁj‘>~ 15 1dFy G0,

3dz \adza dz __555—2_ dz

In this problem, mixing-length theory has two length scales at its disposal: 1/ and
zn. We have used both length scales because doing so yields a better fit. The minus sign

arises because of the curvature in F . We need to choose an altitude at which to evaluate
«. This altitude is effectively a ﬁttmg coefficient, which we choose to be z =z,/2.

Combining Egs. (28), (29), and (30), and solving for dF. . /dz, we find

—=In

dr, N FrS
dz 1+ (1/3)(S/za)(1/b2)eSn’

(31)

This scale for the radiative cooling, dF /dz, may be interpreted as a radiative scale,
Fy, divided by a length scale, 1/, modlﬁed by the correction factor in the denominator.
Substituting this radiative-cooling scale into Eq. (27) yields the scaling:

wl’" =c FrS (Zn — 2) O0<z<z
~ T (1/3)(S/zn) (1/b2)eSen " "
=0 72 Zn, (32)
where ¢ is a constant. Integrating over the domain,
FrS
(wT’) = 0.5¢; T 2 33)

1+ (1/3)(8/z) (1/6%)e5n

The most important features of this scale are that it has an explicit linear dependence on
Fr and no explicit dependence on the damping parameters. A simpler scaling may be
derived by neglecting the second term on the right-hand side of Eq. (28). This results in
the same scalings as Egs. (31), (32), and (33), except that the denominator in these scales
is set to unity. Hence the simpler radiative-cooling scale can be directly interpreted as a
radiative-flux scale divided by a length scale.

In Fig. 8, we test the scaling, Eq. (33), and its simpler variant against mean-field
solutions. In this figure, we vary a single parameter while fixing all others at their
control-run values. We do this for variables Fr, b, y, k, and r. When we vary S, however,
we also vary a2. As S is varied, the depth z, of the unstable portion of the basic state
varies markedly, and hence the wavelength of the most unstable linear mode also varies
greatly. For each value of S in Fig. 8, we choose a to be the critical wave number of the
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Figure 8. The domain-averaged convective heat flux, (wT’), versus the scale, Eq. (33), (+) with ¢; =0.333 and

its simpler variant in which the denominator in Eq. (33) is set to unity (0) and ¢; = ¢ = 0.296. The points plotted

have moderate to small values of radiative, viscous, and diffusive damping. The scale, Eq. (33), fits the mean-field
output better than the simpler variant, particularly at small (wT" ). See text for further explanation.

most unstable mode. This keeps the aspect ratio of the convective cells approximately
constant. When the other external parameters are varied, z, does not vary strongly, and
so a? is kept at the control-run value (a? = 45.2). This figure only plots points with
moderate to small damping, thatis, y > 7 x 10°, x < 1/30,and r < 17.

Figure 8 shows that the scaling, Eq. (33), has less scatter than its simpler variant.
A least-squares fit of the coefficient ¢; in Eq. (33) yields ¢; = 0.333 & 0.001, whereas
a least-squares fit for the coefficient c; = ¢, of the simpler scaling yields ¢, = 0.296 +
0.0025. The uncertainty of both parameter values is small, but the simpler scaling has
a greater uncertainty than the more sophisticated scaling. However, an improved fit for
the sophisticated scaling is expected, because this scaling has effectively two fitting
coefficients — ¢y, and the altitude at which « is evaluated — whereas the simpler scaling
has only one fitting coefficient, c;.

We have obtained scales for the correlation of w and T’ (i.e. Wm), but it is also
of interest to develop individual scales for w and 7. To do so, we use mixing-length
theory (e.g. Kraichnan 1962). We find a relationship between w and 7" from the vertical
component of the momentum equation (1). In the steady-state mean-field equations, the
inertia terms vanish, leaving only the pressure-perturbation force, the buoyancy force,
and the viscous force. Ignoring the pressure-perturbation force in the manner typical of
mixing-length theory, we balance the viscous and buoyancy forces, as appropriate for a
weakly nonlinear flow, to obtain

N A (34)
Z
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Figure 9. The control-run output from the mean-field equatlons (.), plus the scahngs Eq. (32), with denominator

set to unity and ¢; = ¢, = 0.296 , (37), and (38) for Wi (w2 )1/ 2, and (T’2 )1/ 2 (solid). In these equations,
=0.217. See text for further explanatlon

where c3 is a constant. Multiplying both sides of Eq. (34) by w, averaging over the
horizontal, and taking the square root of both sides, we find a vertical-velocity scale:

W2 V2 = (csywT'™H 2z for  wl’ >0. (35)
Similarly, to find a temperature-perturbation scale, we multiply both sides of Eq. (34)
by T, average horizontally, and take the square root of both sides:

. - 1 -
(szm)lﬂ={wa“’/(C3y)}1/2— for  wI" >0. (36)

The scales Eqs. (35) and (36), are not closed because they express w and T’ 1n

terms of w1 . To obtain closed scales, we may substitute the simple scaling for W’
(Eq. (32) with the denominator set to unity and ¢ = ¢2) into Egs. (35) and (36), yielding,
respectively:

@2 V2 = (caycrFrS) P (zn — )2 O<z<za (37)

and

L FoS\'/2 (2 — )12
(Tﬂyﬂ:<q'f) i (38)
cy <
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These scales and the numerical output from the control run are displayed in Fig. 9, along

with the simple scale for w7’ ™. The scales agree reasonably well with the numerical
output in the mid troposphere. The fit turns out to be poorest for low S; in this case
the maximum of the w scale occurs 1-2 km higher than in the numerical output (not
shown).

Although the scales, Egs. (37) and (38), adequately approximate the weakly non-
linear mean-field profiles for w and 7’ respectively, they would not be expected to
describe the highly nonlinear convection characteristic of the atmosphere. The scales,
Egs. (37) and (38), assume a balance between buoyancy and viscous forces, whereas in
atmospheric convection we expect a balance between buoyancy and inertia terms. With
the latter balance, mixing-length theory then leads to the following relationship, written
using dimensional quantities:

2
%~ guor T (39)
Lx

Assuming that w, and 7, are well correlated, we may obtain scales for w, and T in
terms of w*T*’m:

we ~ (Guarwy T} 203 for  w,T]" >0, (40)
w, T __
/o (_;% for  we ™ >0. @1)
* K&k

These scales are similar to those obtained by Prandtl (1932), Priestley (1959), and
Deardorff (1970), except that here w, T*fm is not a constant kinematic heat-flux scale,
but a function of z, determined largely by f;n. Leaving w, T,.{m as a function of z, leads

to a more realistic prediction for w, in the upper troposphere. When w, T] is taken
to be a constant, the w, scale increases monotonically with increasing altitude. In a
radiative—convective atmosphere, however, w, T ™ is expected to become small near the
tropopause and remain small in the stratosphere. Hence the expression, Eq. (40), for w,
would be expected to reach a maximum in the mid troposphere and decrease from there
upwards. The scales, Egs. (40) and (41), for w, and T have no explicit dependence on
viscosity, as one might expect for strongly nonlinear atmospheric convection.

We may close the scales, Eqs. (40) and (41), via the simple scaling for wl’™
obtained by setting the denominator of Eq. (32) to unity. Although the scales, Eqgs. (37)
and (38), for the individual fields w and T’ fail for strongly nonlinear flows, it is
reasonable to suppose that the scale, Eq. (32), for wl’" and its simpler variant are
adequate for dry, strongly nonlinear, radiative—convective flows. In both weakly and
strongly nonlinear flows, the convective heat flux is strongly constrained by the radiative
flux, and the radiative flux, in turn, is constrained by the temperature profile. But even
the weakly nonlinear flows that we have modelled here produce an adiabatic troposphere
and a stratosphere in radiative equilibrium. This temperature profile is not likely to

change in a strongly nonlinear flow. Therefore, we may expect that the w7’ profile
remains similar in weakly nonlinear and strongly nonlinear systems, even if the scalings

of w and T" differ in the two systems. Rewriting the simple scale for wT ™ in terms of
dimensional parameters and substituting it into Egs. (40) and (41) yields, respectively,

FT*

1/3
Wy (g*aT* Su(Znx — Z*)Z*) O<z<zp (42)

PxCpx
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and

F 2/3 1 _ 2/3
T, ~ ( = ) (ne — 20) 0 <z <z (43)

PxCpx * (g*(xT*)l/3 zi/3

The scale, Eq. (42), predicts that w, has a single, broad maximum in the mid
troposphere. Substituting reasonable numbers into Eqs. (42) and (43) yields wy ~
3ms~! and T/ ~ 0.1 K at z, = 3 km. Nearer to the ground, wy is smaller and T is
larger. These values are orders of magnitude closer to atmospheric values than those
that would be obtained from the scales, Egs. (37) and (38).

9. CONCLUSIONS

The linear-stability properties of our radiative—convective model turn out to be
similar to those of Rayleigh-Bénard convection. In both systems, instability arises as
overturning cells rather than an oscillatory instability, and the mechanism of instability is
similar. However, radiation does introduce two new effects: it causes thermal damping,
and it largely determines the basic-state lapse rate. These effects can be incorporated into
a stability analysis by constructing a radiative Rayleigh number. The effects of radiation
on the stability can then be ascertained by inspection of this single parameter. Although
the energy method can rule out the possibility of subcritical instability in Rayleigh—
Bénard convection, it cannot do so for our radiative—convective model when radiative
absorptivity varies with height, because then the radiative-equilibrium temperature
profile is curved.

The radiative—convective and Rayleigh-Bénard systems differ fundamentally when
weakly nonlinear convection occurs. Specifically, the damping parameters have only
a weak effect on the convective heat flux in the radiative—convective model but a
strong effect in the Rayleigh-Bénard system. The difference arises because of the
strong constraints imposed by radiation. The damping parameters have a weak effect
on convective heat flux in the radiative—convective model in part because convective
heating must balance radiative cooling, and the radiative cooling, in turn, is strongly
constrained by the requirements that the tropospheric lapse rate be adiabatic and that the
stratosphere be in radiative equilibrium. Also important is the fact that it is the total heat
flux at the top of the atmosphere, not the temperature, that is fixed by the net incoming
solar radiation.

We have constructed dry radiative—convective scalings for buoyancy, velocity, and
convective heat flux. Unlike the bulk buoyancy and velocity scales that have been
proposed for moist systems, the dry scales predict the vertical variations of these
quantities. The dry case is simpler because closed scales can be constructed from the
momentum and heat equations alone. In the moist case, moisture effects contribute
strongly to the heat equation, and closing the moisture terms is not trivial.

The result from our dry radiative—convective analyses that is most likely to carry
over to a moist system is the result that the values of the damping parameters have little
influence on convective heat flux. This result followed from simple and robust properties
of the radiative flux and temperature profiles. However, it is possible that the values of
the damping parameters may re-enter the moist problem if they significantly influence
cloud cover or the water-vapour profile.
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