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Abstract

This paper describes the application of a genetic algorithm for the cost optimization of a modified multi-component binder

(MMCB). An MMCB comprised of Portland cement (NPC), finely ground mineral additives (fly ash, ponded ash or granulated

blast furnace slag), and a highly reactive powder component (usually silica fume, SF) was modified by a superplasticizer (SP).

Strength models based on the experimental results were developed. The present work is oriented to the minimization of the MMCB

cost for specific strength levels with the help of a changing range genetic algorithm (CRGA) to handle the nonlinear constraints

imposed by the MMCB models. The developed CRGA is based on an approach that adaptively shifts and shrinks the size of the

search space to the feasible region. The application of CRGA helps to minimize the cost of MMCB with a low resolution of the

binary representation scheme and without additional computational efforts.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The application of chemical admixtures and mineral
additives has become one of the most important
developments in modern concrete technology. Added
to the concrete mixture, relatively small amounts of
chemical admixtures radically alter the behavior of fresh
and hardened concrete [1–3]. The performance of
concrete can be significantly improved by the applica-
tion of selected mineral additives, especially industrial
by-products like granulated blast furnace slag (GBFS),
fly ash (FA), and silica fume (SF) [4–12]. The replace-
ment of Portland cement (NPC) with mineral additives
brings considerable economical savings and also helps to
conserve natural resources. The relatively large number
of components makes the problem of concrete mixture
design more complicated than ever before; and the
significant differences in the cost of the components
makes the problem more complicated. As discussed by
e front matter r 2005 Elsevier Ltd. All rights reserved.
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de Larrard [13], Dewar [14], Gutierrez and Canovas
et al. [15] and Sobolev [12], full-scale research of the
behavior of chemical admixtures and mineral additives
in concrete is time-consuming and expensive, therefore
the application of an expert system based on existing
knowledge and research data is essential for the
proportioning of a competitive concrete mixture.
Complete models (or expert systems) trying to predict

the behavior and properties of ‘‘contemporary’’ concrete
involving a large number of components and, therefore
a large range of variables, are under development
[14,16–18]. Just one recent example is the ‘‘The Virtual
Cement and Concrete Testing Laboratory’’ developed
by NIST [7,8]. The realization of these systems needs
comprehensive computer models based on extensive
experimental data and also on new design approaches
which could predict the behavior of material, saving
time and research resources.
It was demonstrated that reliable models in the form

of second-order polynomial equations can be obtained
using factorial experiment [1,12,16,17]. In general, cost
optimization is a numerical optimization problem with a
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nonlinear objective function and nonlinear constraints.
Usually, this kind of nonlinear programming problem
cannot be solved by developing a deterministic method
in the global optimization category [19]. Therefore, the
present work adopted the specially developed Genetic
Algorithm (GA) that does not require consideration of
the landscape of a search space nor the shape of an
optimized function for the solution cost optimization
problem [20].
2. Background on modified multi-component binders

The properties of concrete with GBFS, FA and SF
including ternary mixtures of NPC–FA–SF or
NPC–GBFS–SF have been discussed in the literature
[4,5,9–12]. Less information is available regarding the
performance of ponded fly ash (PA) in concrete. It is
suggested that the behavior of this type of concrete can
be significantly affected by the fineness of the mineral
additive and also by the application of an effective
superplasticizer (SP) [1]. The concept of a modified
multi-component binder (MMCB) was proposed to
describe this system. MMCB includes a binder com-
posed of NPC, finely ground mineral additive (FA, PA
or GBFS), and a highly reactive powder component
(usually SF or metakaolin), modified by a SP. The main
idea of MMCB is to improve the reaction ability of the
mineral additives by fine grinding. Consequently, the
mineral additives react quicker, avoiding the delay of
the development of concrete strength at an early age. It
was hypothesized that the application of finely ground
mineral additives (FGMA), as a component of the
binder, provides better packing in the NPC–FGMA
system, especially in combination with SF and SP. As
demonstrated by Sobolev [1], better packing of MMCB
results in low water demand and also provides better
fluidity of the cement paste.
An express method was developed for the evaluation

of compressive and flexural strength of MMCB [1].
It involves the preparation of the mortars according
to ASTM C349/C109, but with a sand-to-cement ratio
(S/C) of 1.0. These mortars are produced at a reduced
W/C adjusted to obtain a flow range of 105–115mm.
According to Sobolev [1], an S/C equal to 1.0 is the best
value for the optimization of mortars with a SP and
mineral additives. Because of extremely dense compac-
tion and a very low water demand, an S/C of 1.0
corresponds to its minimum limit in high strength
concrete at the maximum strength level. The compres-
sive strength of mortar specimens (40� 40� 160mm)
cured for 8 h at 80 1C in a steam chamber was used as a
control value of cement strength. Tested by this method,
reference NPC demonstrated a compressive strength of
68.0MPa (higher than the standard 28-day compressive
strength of 55.2MPa).
The resulting MMCB demonstrates a compressive
strength (which is considered as one of the most
important parameters of application) in a range of
75–135MPa, a significant increase over reference NPC.
The improved range of strength and especially the
increased number of components constituting MMCB
led to the development of a special procedure for the
proportioning of the MMCB-based concrete mixtures
[12]. An effective optimization of the performance
characteristics at the level of MMCB (involving fewer
components) was proposed to minimize the associated
tests of concrete.
3. Models of MMCB: strength and cost optimization

problem

In materials research, the development and explora-
tion of the models is very important. Unlike actual tests,
mathematical models describing concrete give a quick
and inexpensive evaluation of the material. However,
because of the typical inconsistency in the properties of
the component materials, there is the risk of a possible
discrepancy between the actual tests and the results of
the model. Nevertheless, these results are important
estimates which save the time and resources needed for
research. It was demonstrated that second-order poly-
nomial equations are appropriate for modeling the
strength and rheological properties of MMCB systems
[1,12]. Models were developed as a function of the
composition for various MMCB systems including:
�
 NPC–SF–SP system;

�
 NPC–SF–FGPA–SP system;

�
 NPC–SF–FGBFS–SP system.
The models of MMCB compressive strength (fc) were
processed as second-order polynomial equations whose
coefficients were computed by specially designed com-
puter software. The basic equation of these models is

f c ¼
Xn

i¼0

Xn

i¼0

bijxixj,

where n is the total amount of variable factors (n ¼ 2 for
NPC–SF–SP system and n ¼ 3 for NPC–SF–FGPA–SP
or NPC–SF–FGBFS–SP systems); bij the coefficients of
polynomial equation; xi , xj the values of variable
factors; and x0 ¼ 1:
The coefficients of polynomial equations representing

the developed models of compressive strength are
presented in Appendix A. The graphical representation
of the strength of the NPC–SF–SP system is given in
Fig. 1. Importantly, the SP parameter is taken as a
percentage of SF (on a dry basis); therefore SP–SF
parameters are dependent. All the other parameters are
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Fig. 1. The compressive strength and cost of the NPC–SF–SP binder.

Table 1

The input characteristics of MMCB components

Component Units Bounds Cost ($)

Lower Upper

NPC % 20 95 100

SF % 5 20 350

FGPA % 5 60 40

FGBFS % 5 60 80

SP % SF 1 15 2500

5000
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considered as a percentage of the total content of
MMCB; the remaining part is made up of NPC. The
range of the variable factors used in the models is
summarized in Table 1.
Cost optimization is another important application

for the developed models (Fig. 1): it helps to estimate the
proportions of the concrete and minimizes the costs
associated with an actual test program, by omitting non-
feasible compositions.
The design of the MMCB mixture of a specific

strength and at a minimal cost comprises the global
optimization problem (GOP) which could be resolved
by finding an optimizer x* such that

jðx�Þ ¼ minjðX Þ; where X ¼ ½X 1; . . . ;X n� 2 Rn.

The objective function j is defined for the search
space S 
 Rn; which is the finite interval region in n-
dimensional Euclidean space. The lower and upper
bounds define the domains of variables:

lipxipui; where 1pipn.

The search space in GOP is restricted to a feasible
region (F, where F 
 S) by a set of constraints:
giðX Þp0; where 1pjpp,

f rðX Þ ¼ 0; where 1prpq.

Usually the equality constraints can be substituted by
pair of inequalities such as

f rðX ÞX� d and f rðX Þpd,

where d is a small value to cover a tiny region. This
case was considered in the research program and,
consequently, the set of constraints consisted only of
inequalities.
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The cost of MMCB, C (as a function for optimiza-
tion) is calculated by using the general formula

C ¼ 1
100

Xm

i¼1

xici,

where m is the total amount of components (m ¼ 3 for
NPC–SF–SP system and m ¼ 4 for NPC–SF–FGPA–SP
or NPC–SF–FGBFS–SP systems); xi the the dosage/
proportioning of the i-component (NPC, SF, SP, and
FGPA or FGBFS); ci the cost of the i-component.
The non-linearity of this equation is based on the

dependency of the SP parameter from SF; therefore the
dosage of the SP component (to be used in this formula
as percent of MMCB) was calculated using the
following expression:

XSP ¼ SF � SP=100.

The polynomial equation describing the strength of
the MMCB mixture represents the single equality
constraint for the specific design that is substituted by
a pair of inequality constraints as mentioned before.
4. Development of a changing range genetic algorithm

GAs have a major application for global numerical
optimization problems [21,22]. The advantage of a GA
is that it does not require consideration of the landscape
of a search space nor the shape of an optimized function
[21]. Therefore GA is a universal tool for many
optimization problems. There are numerous examples
of GA applications to problems of civil engineering:
optimization of water recourses [23–25], aerodynamic
modeling [26,27] and optimization of structures [28–30].
Wu et al. [25] developed the self-adaptive boundary

search strategy for the selection of penalty factor within a
GA and the optimization for water distribution systems
with the objective of obtaining the least cost solution of pipe
sizes subject to the minimum allowable pressure require-
ments at the demand nodes. Poloni [26] used a hybrid GA
for multi-objective aerodynamic shape optimization, where
conventional GA was combined with the elitism method for
selection of individuals. Adeli and Cheng [29] proposed the
hybrid GA for structural optimization that integrated the
penalty function method with the primal dual method. This
approach evaluates the penalty function coefficient by using
the Lagrangian method. Sarma et al. [30] applied an
evolutionary algorithm to the design of steel space
structures. A discrete multicriteria cost optimization model
was presented by considering three design criteria: minimum
material cost, minimum weight, and minimum number of
different section types.
The optimization of the composition of construction

materials is mainly limited to laminated composite
panels [31–34]. Potgieter et al. [31] presented the stiffness
optimization model of laminated plates by using GA.
Park et al. [32] applied GA to optimize the design of
composite laminates for maximum strength. Only
Grosset et al. [33] described the optimization of a
composite laminate with multi-objective to minimize the
cost and weight of a composition subjected to the
constraint of allowable stiffness properties. Their
approach is based on a conventional GA that has been
adapted to optimization of composites.
Only a few researches deal with the optimization of

concrete and MMCBs by using GA [35,36]. Eduardo et al.
[35] presented the procedure for the optimization of
construction of a concrete block wall using the fitness
function. This considers the total cost of the construction
and the decision variables for the optimization process: the
material characterized by its hydration properties; the
thickness of the lifts (layers); the placing frequency and
the placing temperature. A conventional GA was used
with elitism of the best individuals, tournament selection
scheme, single point crossover and mutation genetic
operators. Maruyama et al. [36] presented a method for
the optimization of the proportions of a concrete mixture
according to the required performance and described the
solution of two proportioning problems by using GA—
one of delayed setting time and high flowability in hot
weather conditions and the other of accelerated setting and
high flowability in cold weather conditions.
Still, the applications of GA to optimize the

composition of construction materials are very limited.
Even fewer papers deal with the cost-tailoring problem.
Therefore the cost-composition problem of newly
developed construction materials like MMCB needs
further attention.
Various constraint-handling methods using GA were

proposed for solving GOP. These methods can be
grouped as follows [19,37,38]:
�
 methods based on penalty functions;

�
 methods based on repair algorithms;

�
 methods that use special representations and opera-
tors;
�
 hybrid methods.

The main idea of these methods is to produce a
population of individuals only in a feasible region and
then use the power of GA to search a feasible region for
a global optimum. The developed method, named
Changing Range GA (CRGA) also generates a popula-
tion of individuals in a feasible region by converging
(shrinking and shifting) the range of variables towards
the feasible region [20]. The proposed method over-
comes the drawbacks of a conventional GA applied to
numerical optimization problems, when GA cannot
provide high accuracy because a binary representation
scheme for variables is used [38].
It is suggested that the method of shifting

and shrinking the range of variables improves the
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conventional GA [20]. According to this method, as
generation trials progress, the range of every variable is
reduced when compared with the previous one. Then,
the new range is centered on a reference point. For the
cost optimization of an MMCB mixture for a certain
strength the best individual in the feasible region is used
as a reference point [20].
Therefore, the proposed method contains two proce-

dures:
�
 shifting the region to the reference point so that the
center of the new region coincides with the reference
point;
�
 shrinking the size of region compared to its previous
size.

As a result, the proposed strategy:
�
 increases accuracy without changing the resolution of
a binary representation scheme;
�
 adaptively changes the probability of mutation to
protect against convergence pressure which would
otherwise result in a homogenous population;
�
 does not require additional computational effort.

The developed method is based on the following
principles:
�
 Shifting: shifting is used to map the center of the next
search space to the center of attraction. The center of
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�
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GA and provide a diversity of population.
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embrace the new search space with equal distances to
the left side (lower bound) and the right side (upper
bound) according to values x1, x2, x3 (where x1, x2, x3
are the value of variables designated by 1, 2, 3,
respectively, at reference point). Then the new values
of the lower and upper bounds of variable X1, X2, X3 are
limited to the lower and upper bounds of the domain of
the variables (the dotted vertical lines in Fig. 2).
As generations progress, the density of vertical lines

inside the rectangles is increased; this means that the
optimal solution is obtained with better precision. The
changing range of the variables can be considered as an
additional mutation rate that explores more precisely
the search space and speeds up convergence towards the
optimal solution. The right side of Fig. 2 shows
diagrammatically the changing jðx�Þ at reference point
versus set of generations in progress. It is predicted that
the fluctuation of the jðx�Þ will be significantly reduced
as more sets of generations are developed [20].
5. The application of CRGA to the cost-optimization of

MMCB

A software package utilizing a CRGA was developed
and applied to the optimization of MMCB. The target
Table 2

The effect of SP cost on optimum composition of MMCB

Cost of SP ($) Compressive strength (MPa)

2500 130.0

120.0

110.5

5000 130.0

120.0

110.5

Table 3

The effect of FGMA type on optimum composition of MMCB

Type of FGMA Compressive strength (MPa) SF (%

FGPA 120.0 7.9

110.0 6.1

100.0 5.0

90.0 5.0

80.0 5.0

70.0 5.0

60.0 5.0

FGBFS 120.0 9.0

110.0 5.9

100.0 5.0

90.0 5.0

80.0 5.0

70.0 5.0

60.0 5.0
compressive strength levels fell in the range of
60–130MPa with 10MPa increment. The margin of
accuracy was considered at the level of up to +1MPa
(that corresponds to d ¼ 1) for all the strength levels.
Thus the equality constraint was converted to inequal-
ities as

f cX0 and f cpd.

These limitations are applied because the cost
function has a convex shape depending on strength;
and the minimum cost is targeted by the optimization
procedure. Tables 2 and 3 and Figs. 3–5 summarize the
research results which are based on the best values
obtained from 10 program runs with a standard
deviation of less than 1%.
Two test cases were considered for cost optimization:
�

)

the effect of SP cost (using NPC-SF-SP system);

�
 the effect of FGMA type (i.e. comparison of
NPC–SF–FGPA–SP and NPC–SF–FGBFS–SP sys-
tems).

Prior to its full-scale application in the research
program, the performance of the developed CRGA was
compared with the conventional GA for selected
compositions. The example of the trial runs evaluating
SF (%) SP (% SF) Cost ($)

12.7 10.2 162.7

7.0 4.7 125.2

5.0 1.0 113.7

12.6 10.3 195.2

6.7 5.3 133.7

5.0 1.0 115.0

SP (%SF) FGMA (%) Cost ($)

6.1 5.1 128.7

4.6 11.9 115.9

3.7 20.7 106.6

2.6 31.9 99.6

1.6 41.1 93.9

1.0 49.5 89.0

1.0 58.1 84.6

7.3 5.0 137.0

5.2 5.0 120.5

1.2 5.1 112.4

1.0 17.3 108.5

1.0 28.8 105.1

1.0 39.2 101.9

1.0 48.8 99.1
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the performance of CRGA and GA is presented for
NPC–SF–FGPA–SP in Fig. 3. The obtained results
clearly illustrate the advantage of CRGA over a
conventional GA in finding the global optimum for
the MMCB cost problem. A comparison of both curves
shows that the SSMs lead to the global optimum.
Otherwise, the GA population becomes homogenous
and an additional mutation is needed to explore a more
feasible region. This role is performed by the ‘‘shifting
and shrinking’’ mechanism.
The effect of SP cost on the optimum composition of

MMCB is presented in Table 2. Indeed, the SP cost has
little effect on the composition of MMCB: the propor-
tioning of components at the minimum cost is virtually
the same for specified strength levels. The MMCB with a
compressive strength of 110MPa represents the compo-
sition with the lowest possible content of SF and SP.
Increasing strength to 130MPa required a rise in SF and
SP dosage by 7.6% and 9.3%, respectively, at a
subsequent 43% increase in cost (for SP cost of $2500;
Fig. 4). The effect of FGMA type on the optimum
compositions of MMCB is summarized in Table 3 and
Figs. 4–5. For this research SP cost was fixed at $2500. It
is clear that the application of FGPA in MMCB is more
effective when compared with FGBFS.
This is due to the better strength properties of MMCB

containing FGPA and also because of the lower cost of
FGPA. For example, a MMCB with a compressive
strength of 120MPa was designed with almost the same
volume of FGMA at its minimum level of 5% (actually,
5.1% and 5% for FGPA and FGBFS, respectively, as
per Table 3).
MMCB containing FGBFS requires an increased

dosage of SF and SP (by more than 1% each) adding up
to about 5% of additional costs above the already more
expensive compositions with FGBFS. This difference in
cost increases at lower strength levels (when the design
strength is less than 100MPa) with a subsequent
increase in FGBFS content, reaching 17% for 60MPa
binders (Fig. 5).
An MMCB with a strength of 100MPa needs only

5% SF. Only 5.1% of FGBFS is allowed in this case at a
SP dosage of 1.2%. Considerably higher volumes, i.e.
20.7% of FGPA can be used in this composition at a SP
dosage of 3.7%. On the other hand, higher costs
associated with the application of FGBFS could be
offset by the superior corrosion resistance of this type of
binder [1]. Consequently, the maximum FGPA content
is 58.1% for an MMCB with strength of 60MPa; by
contrast, only 48.8% of FGBFS is needed to achieve the
same strength level (Fig. 5). The models of MMCB
containing FGMA are more conservative in the range of
high strength (100–120MPa); therefore high-strength
NPC–SF–SP binders were designed at a slightly lower
cost (Fig. 4).
6. Conclusions
(1)
 Evaluation tests demonstrated that CRGA performs
better than a conventional GA in finding the global
optimum in the case of an MMCB problem with
non-linear constraints. This is achieved by the
application of the ‘‘shifting and shrinking’’ mechan-
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ism. The proposed CRGA is highly accurate in
locating the global optimum. It is also very quick
and very efficient (i.e. it does not require additional
parameters or additional computational efforts).
(2)
 It was found that SP cost has little effect on the
optimal composition of MMCB: the proportioning
of components with minimum cost is virtually the
same for given strength levels.
(3)
 The application of FGPA in MMCB is more effective
than FGBFS. MMCB containing FGBFS requires an
increased dosage of SF and SP which increases cost. It
is clear that for a specific strength level the FGPA
content in MMCB can be considerably higher than
FGBFS. On the other hand, higher costs associated
with the application of FGBFS may be offset by the
superior corrosion resistance of this type of binder.
(4)
 The range of the strength values provided by
MMCB from 60 to 130MPa imparts the wide
range of costs (from $84.6 to $162.7) associated
with manufacturing of MMCB. The NPC–SF–
FGPA–SP-based binder is more economical than
NPC–SF–FGBFS–SP and plain NPC; for the
reference level of 70MPa it can provide 13%
(NPC–SF–FGBFS–SP) and 11% (NPC) savings.
(5)
 The optimization of the strength characteristics at
the level of MMCB helps to minimize the related
tests of concrete. It was demonstrated that the
second-order polynomial equations are suitable for
modeling the strength of MMCB systems. The
tabulated cost-optimized compositions can be used
for the proportioning of the high performance
concrete mixtures. It helps to minimize the costs
associated with an actual test program by omitting
the non-feasible compositions.
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Appendix A

The coefficients of polynomial equations used in the
models of compressive strength (adopted from [1,12])
Table A1

The coefficients of the strength model: NPC–SF–SP system
Description
 Polynomial equation coefficients bij for i
Xj
 j
 0
 1
 2

—
 0
 95.51029
 3.70645
 1.28067

SF
 1
 �0.23804
 0.26747

SP
 2
 �0.21051
Table A2

The coefficients of the strength model: NPC–SF–FGPA–SP system
Description
 Polynomial equation coefficients bij for i
Xj
 j
 0
 1
 2
 3

—
 0
 79.84697
 5.68422
 1.94891
 �0.36482

SF
 1
 �
0.29356
 0.22903
 0.01667

SP
 2
 �0.20957
 �0.00331

FGPA
 3
 �0.00806
Table A3

The coefficients of the strength model: NPC–SF–FGBFS–SP system
Description
 Polynomial equation coefficients bij for i
Xj j
 0
 1
 2
 3

— 0
 82.47044
 4.84009
 2.00346
 �0.74234

SF 1
 �
0.25912
 0.22078
 0.01194

SP 2
 �0.20397
 0.00416

FGBFS 3
 �0.00403
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