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Abstract 
 
Two computer models were developed to realize the algorithms of random Apollonian and 
Apollonian packings of the spherical particles in a unit cube. A genetic algorithm was 
developed for the latter packing model. The upper and lower bounds of a fractal dimension 
were computed using various numerical methods. It was observed that for both models the 
fractal properties were not essentially affected by the configuration of initial spheres. 
 
 
 

1. Introduction  
 
The quest to obtain the densest possible randomly packed arrangement for particles 
of varying shapes and sizes is an ongoing and challenging problem; it also has 
exceptionally wide applications in science and engineering. The hard-sphere packing 
model is one of the simplest representations of many non-crystalline systems. 
Examples of systems that are well described by dense random packing of spherical 
particles include composite materials, colloids, amorphous metals, and simple 
liquids.  
 
The packing density of spheres is characterized either by packing fraction η, or by 
porosity ε = 1 - η, which is a fraction of unoccupied volume. As Kepler conjectured - 
and Hales proved [2, 3] - the optimal packing of equal hard spheres is the face-
centered cubic (fcc) arrangement with a maximal density of 7405.018/ ≈π . As it 
was shown by Schaertl and Sillescu [1], increasing polydispersity raises the 
maximum packing fraction η of a hard-sphere system. The particle size distribution 
is a basic parameter which describes a polydispersity of a hard-sphere system that, 
for a given η, depends on the selected sphere-packing algorithm. However, for 
static polydisperse space-filling packings, Aste [4] has analytically proved that the 
size distribution for the spheres of small radius r ( 5maxrr < ) follows the power 
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law: α−∝ rrN )( , where N(r) is a number of particles. Further, Aste [4] 
demonstrated that in the case of static polydisperse packings there is an upper and 
lower bounds of α , which depends on a certain sphere-packing algorithm. The 
Apollonian packing (AP) algorithm [5] provides the lowest bound of α . The upper 
bound of α  is defined by the “random Apollonian packing” [6]. The “random 
Apollonian packing” (RAP) is realized by a process that starts with an initial 
population of hard-spheres of a specified radius with new spheres added one at a 
time into the packing’s unoccupied space. Therefore the center of newly packed 
sphere is randomly selected and the sphere’s size is determined by extending the 
radius of a sphere until it touches its closest sphere. According to Aste [4], “random 
Apollonian packing” is defined by ,1+= dα  where d is a number of dimensions. 
Recently Dodds and Weitz [6] have shown that some dynamic packing algorithms, 
where the growing spheres are seeded by a random injection in time and space, 
could be portrayed as a variation of static packing. They explored the “random 
Apollonian packing” algorithm and the “packing-limited growth” algorithm using 
various scenarios of growth dynamics (heterogeneous, exponential, linear). With 
scaling theory and a numerical simulation they analytically obtained 8.3≈α  for d 
= 3. 
 
The classical Apollonian packing is a two-dimensional case of more general 
osculatory packings, where two-dimensional osculatory packing of the unit circle is 
presented by three pairwise externally tangent circles that are all internally tangent 
to the first one. These circles are called the initial circles of the packing. In the n-
dimensional setting, the number of initial spheres is n + 2 [7].  Apollonian packings 
are self-similar [5] and are characterized by a fractal dimension D, which is related 
to α  as 1−=αD  [8].  Boyd in his remarkable theorem proved that D is the same 
for all osculatory packings [9]. It is assumed that D cannot be obtained analytically. 
Borkovec et al. constructed two fundamentally different numerical methods and 
computed the fractal dimension of the classical 3-dimensional Apollonian packing to 
be 2.4739465 [7]. More recently Baram and Herrmann developed an algorithm to 
construct classical 3-dimensional Apollonian packing with various configurations of 
initial spheres [10]. Investigating all possible configurations corresponding to 
Platonic Solids (tetrahedron, cube, octahedron, dodecahedron and icosahedron) and 
computing the fractal dimensions for these solids, they demonstrated that the fractal 
dimension D depends on the packing configuration of initial spheres. According to 
the reported results, D varies from 2.474 for the tetrahedron and up to 2.588 for the 
bichromatic (octahedron-based) configuration of initial spheres [10]. A few articles 
report the fractal properties of Apollonian packing with the random distribution of 
initially prepacked spheres (lately named Apollonian packing or AP). Anishchik and 
Medvedev [11] proposed a computer model of 3-dimensional Apollonian packing of 
the hard spheres based on the Voronoi-Delaunay method that was applied to study 
the dense packing of equal spheres [12]. Anishchik and Medvedev used the 
Voronoi-Delaunay approach to determine the centers of largest spheres inscribed 
between the spheres for a relatively narrow range of the sphere sizes (in their work 
the particle radii differ by less than 10 times). They obtained the fractal dimension 
D = 2.45 which is somewhat less than that for the classical 3-dimensional 
Apollonian packing with a tetrahedron configuration of the initial spheres (D = 
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2.474). This contradiction can be attributed to the limitations of the Voronoi-
Delaunay method applied to pack the spheres of different sizes. 
 
In our study we propose computer simulation models for 3-dimensional Apollonian 
and random Apollonian packing algorithms to evaluate the upper and lower bounds 
of α  for space-filling polydisperse packings. Our approach is based on a computer 
model described by Manna [8] for 3-dimensional random Apollonian packing (RAP) 
of hard spheres. A 3-dimensional Apollonian packing (AP) was realized using the 
same model enhanced by a genetic algorithm (GA). A GA searches the free space to 
inscribe the maximum-sized spheres among the previously packed spheres. Few 
articles deal with the sphere-packing problem using GA. Franck-Oberaspach et al. 
employed a GA for the solution of two-dimensional packing problem of different 
rigid objects [13]. In their work an arbitrary number of points is arranged within a 
given two-dimensional connected region in a such way that their mutual distances 
and the distance from the region boundary reaches a maximum [13]. Cornforth 
applied a GA for the placement of overlapping grids for input space quantization in 
machine-learning algorithms [14]. The AP is often visualized in a three-dimensional 
space with the task of fitting the maximum number of oranges (represented by equal 
spheres) into a box. Therefore, Cornforth applied a GA for a sphere-packing 
problem to achieve the maximum density of equal spheres in a given space [14]. 
Much of the existing models cannot be employed in the case of AP because of their 
lack of dimensionality and diversity of packing objects. 
 
 
2. Computer Simulation Models 
 
The RAP model is described as a predecessor of AP model. The developed 
algorithm of RAP starts with the random placement of the hard spheres of an 
initially specified configuration into the cube with periodic boundaries. The particle 
size distribution of an initial configuration of spheres is set by the Gauss’s Law. 
Further, the packing is provided by placing new spheres (one at a time) into the 
cube by a random selection of a fixed point (as the center of a new sphere) within 
the free space and extending its radius rl to meet the closest sphere. In the case of 
the AP model, the latter step includes the search for the center of a new sphere so 
that the new sphere can occupy the maximum volume within the available free space 
left between the previously packed spheres. This step represents a global numerical 
optimization problem, where max(ri) is an objective function defined by the search 
space S⊆R3, which is the finite internal region in the 3-dimensional Euclidean 
space. The search space is restricted to a feasible region (F, where F⊆ S) by a set of 
constraints imposed by the restriction for the spheres’ overlapping: 

2222 )()()()( lililili rrzzyyxx +≥−+−+− , where xi, yi, zi are the coordinates of 

packed (i) and new (l) spheres, 3),,( Rzyx ⊆ , 1,...,1 −= Ni , Nil ,...,1+=  and N is a 
total number of the spheres. 
 
The Genetic Algorithms (GAs) can be employed for solving a wide range of global 
numerical optimization problems [15]. The advantage of GA is that it does not 
require a consideration of the landscape of a search space nor the shape of an 
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optimized function [15]. Therefore, GA is a universal tool for a number of 
optimization problems. To realize GA, a “genetic pool” of solutions (i.e. the 
spheres with various radii) is transformed by random “mutations” of their respective 
codes (a binary string with a length L representing the solution of GA) with a 
probability pm and “crossovers” with a probability pc. New solutions are then 
evaluated by a “fitness function” (objective function), in such way that only the best 
solutions “survive”. This procedure is applied either for a certain number of 
generations (Ngen), or until the “pool” of solutions statistically reach a fixed point. 
The quality of a solution with reasonable computational cost (a number of runs for 
evaluation of function that is directly proportional to a number of generations) is 
usually a trade-off. Coello, comparing several constraint-handling approaches of 
GAs, showed that the best results are usually obtained with high computational costs 
[16]. For the packing problem a computational cost (T) can be represented as 

2NT ∝ , where N is the number of packed spheres; therefore, a constraint-handling 
method that provides a minimum runs for evaluation of function, but with 
reasonably high quality of a solution should be applied. For AP the constraint-
handling method proposed by Amirjanov [17] was selected. This method, named 
CRGA (changing range GA), adaptively shifts and shrinks the search space by 
employing feasible and infeasible solutions in the population to reach the global 
maximum. CRGA significantly improves the speed of convergence to the global 
maximum with reasonable precision [17]. According to the method, an elite subset 
(hs) of ranking individuals (solutions) from a whole population (Npop) is selected in 
every generation. Individuals are ranked using stochastic ranking [18] which 
balances between preserving feasible individuals (satisfied constraints) and rejecting 
infeasible ones (unsatisfied constraints). This balance is derived from a stochastic 
bubble-sort algorithm. A probability Pf was introduced for comparing any pair of 
two adjacent individuals to determine a better fit [18]. Next, for every variable (x, 
y, z) the center of attraction (or reference point) is identified by calculating mean of 
a variable from a subset of the ranking individuals [17]. Finally, the size of the 
search space is shrunk relative to the previous size using coefficient kr and is shifted 
to the center of attraction. The shrinking of the size of the search space (the domains 
of the variables) is continued within every generation until the size of the region 
becomes greater or equal to tr of an initial size of the search space. The shrinking 
and the shifting mechanisms allow the concentration of the search space to a certain 
cell of a cube. Consequently, the number of evaluations required to examine the set 
of constraints (overlapping spheres) is significantly reduced [17]. 
 
3. Computational Results 
 
Both RAP and AP packings are simulated within a unit cube with periodic boundary 
conditions.  An initial configuration consisting of 100 spheres is seeded according to 
Gauss’s Law with a mean value 5.0=r  and standard deviation 05.0=σ (first 
experiment) and 15.0=σ (second experiment). All experiments were repeated 10 
times (Ns). The following values were established for the best performance of GA to 
simulate AP: Npop=50, pc=0.85, pm= 0.02, L=15 bits, Pf =0.42, hs=0.2, 
kr=0.475, tr=0.0025, Ngen=150.   
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The experimental details and the results of a simulation for both models are 
summarized in Table 1. 
 
Figure 1 illustrates the initial configuration of spheres seeded according to Gauss’s 
Law, where spheres are placed in the cube one at a time by randomly choosing the 
center of a new sphere in the matrix’s free space and expanding its radius rl to touch 
the closest neighbor (as per as 3-dimensional RAP approach). Figure 2 demonstrates 
the sequence of the 3-dimensional Apollonian packing of the spherical particle. As 
shown in Figure 2 (from step 1 to step 4) the GA searches the packing’s free space 
within the cell in order to place a new sphere with the largest possible radius.  
 

 
 

Figure 1. Initial configuration of spheres seeded according to a Gauss’s Law 
(σ = 0.05)  

 

 
Figure 2. GA search for 3-dimensional Apollonian Packing (AP) 

 
Figure 3 represents the frequency distribution N(r) of the first experiment (double-
logarithmic plot) in order to demonstrate the differences in α  for both RAP and AP 
models (where mean values are presented). The straight lines specify the exponent 
α  for RAP and AP. The inset of Figure 3 shows the frequency distribution N(r) vs. 
r at a wider range, up to cutoff radius rc = 0.002, where RAP and AP simulations 
involved 710  and 106 spheres, respectively (Ntotal). It can be observed that a 
significantly higher number of spheres are required to occupy the packing's free 
space when the sphere's size is approaching the cutoff radius rc. 
 



 6

Table 1. Experimental details and results of the simulation for RAP and AP 
 

Experiment 1 
σ = 0.05 

Experiment 2 
σ = 0.15 

 
Parameters 

RAP AP RAP AP 
Ns 10 10 10 10 
Ntotal 107 106 107 106 
η ini 0.3524 0.3524 0.5023 0.5023 
α  @ N(r) 3.710± 0.009 3.51± 0.01 3.712± 0.009 3.49± 0.01 
α  @ ε(n) 3.727± 0.001 3.4518± 0.0006 3.729± 0.002 3.4237± 0.0004 
η 0.803 0.909 0.839 0.923 
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Figure 3. Frequency distribution function N(r) vs. r for the Experiment 1  
at σ = 0.05 

 
The best-fit estimation for the exponent α  is given with 95% confidence interval. 
The estimation of α  using a frequency distribution N(r) for RAP closely agrees 
with the scaling theory proposed by Dodds and Weitz [6]. The curves of a 
frequency distribution N(r) for the Experiment 2 are shifted to the left as can be seen 
in Figure 4 (RAP1 vs. RAP2) since the volume fraction of the initial spheres (ηini in 
Table 1) is greater in the Experiment 2. 
 
The estimation of α  using a frequency distribution N(r) for AP shows that value of 
α  in both experiments occur within the range described by Baram and Herrmann 
[10]. The estimated lower bound of α  in both experiments is found to vary from 
3.48 to 3.52 (or within the limits specified by Baram and Herrmann [10] for 
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classical Apollonian packings with various configurations of initial spheres). This 
means that the various topologies of classical Apollonian packing with different 
fractal dimensions can be realized by the packing process of AP with a random 
configuration of initial spheres. For 3-dimensional classical Apollonian packing, 
Baram and Herrmann [10] proved that the fractal dimension D (or α ) depends on a 
configuration of initial spheres. For 3-dimensional Apollonian packing based on 
random distributions and various configurations of the initial spheres we found no 
significant difference in the value of exponent α ; still more experiments might be 
necessary to strengthen this assumption.  
 

1 . 5

2

2 . 5

3

3 . 5

4

4 . 5

5

5 . 5

- 2 - 1 . 8 - 1 . 6 - 1 . 4 - 1 . 2 - 1

l o g 1 0 r

lo
g 10

N
(r

)

R A P 1

R A P 2

A P 1

A P 2

 
 

Figure 4. Behavior of the N(r) function for the Experiments 1 and 2 
 
The effect of porosity on the fractal properties of the models was also studied based 
on the presented approach. The exponent α  corresponding to the porosity is given 
in Table1. Figure 5 represents the double-logarithmic function of porosity ε(n) vs. 
n. The relative volume of porous space (or porosity) for both models follows the 
power law [6, 19]: βε −∝ nn)( , where n is a number of particles. For RAP Dodds 
and Weitz [6] developed the scaling theory of the distribution of spheres; they 
determined that )1()1( ββα +++= d . Figure 5 represents the porosity function of 

)(nε  versus n for the Experiment 1 and 2 (RAP1 and RAP2). Both curves are in 
alignment within the zone corresponding to the particles of small radii. The 
agreement in α  values calculated from )(nε  and N(r) is considered to be 
satisfactory (the difference is less than 3%). This similarity in values of α  
governing the functions of )(nε  and N(r) can be presented as an additional proof of 
the scaling theory. Based on the relation described by Herrmann et al. [19] : 

3)( +−∝ Drrε  , for 3-dimensional Apollonian packing the exponent α  is specified as 
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)1(4 βα += . For the spheres of small radii the curves corresponding to AP1 and 
AP2 are also aligned (Figure 5).  
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Figure 5. The double-logarithmic function of porosity ε(n) vs. n 
 
 
4. Conclusion  
 
Computer models were developed to investigate the fractal properties of 3-
dimensional random Apollonian packing and Apollonian packing. The latter was 
represented as a numerical optimization problem resolved by a genetic algorithm. 
These models were used in extensive numeric simulations to estimate the lower (AP) 
and upper (RAP) bounds of an exponent α . The upper bound of α  were 
numerically estimated for N(r) and ε(n); the experimental results have provided an 
additional support to the scaling theory proposed by Dodds and Weitz [6]. The 
anticipated lower bound of α  were found to be within the range from 3.48 to 3.52, 
that is to say within the limits reported by Baram and Herrmann [10] for classical 
Apollonian packing with various configurations of initial spheres. This means that 
different topologies of a classical Apollonian packing with different fractal 
dimensions may be achieved during the packing process of AP at a random 
configuration of the initial spheres. It was shown that the exponent α  was not 
significantly affected by the configuration of the initial spheres used in both models. 
When applied the developed models may predict the particle size distributions for a 
wide range of densities depending on the packing algorithms.  
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