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Abstract

The dense packing of particulate assemblies is an enduring theoretical and practical problem. In spite of its apparent simplicity, this problem

still remains challenging. Recent progress in the performance of computers boosted the development and realization of a number of effective

packing algorithms. Yet, because of the complexity of the problem, many of existing methods have difficulties in handling large numbers of

particles. A simulation model is proposed to overcome this. The model assumes that the centers of the spheres are randomly generated at the

intersections of a cubic lattice. The largest possible spheres are packed first; subsequent spheres are limited by the set of minimum diameters,

which is specified by the constraints imposed by two major parameters imitating the compaction gradient: a reduction coefficient and the

number of packing trials. Importantly, the packing arrangements are not defined by the initially specified particle size distribution (as

considered by many existing packing algorithms), but rather the most dense particle size distribution, along with the corresponding value of

packing degree, is generated by the proposed model. Based on these criteria, a very fast algorithm was developed for simulating of the dense

packing of large assemblies of particulate, spherical material (in the order of millions of particles). Using this approach, the influence of

geometrical parameters and model variables on the degree of packing and the corresponding distribution of particles was studied.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction used. In this case, smaller spheres must fit into the cavities
The problem of the best possible packing of particulate or

spherical assemblies arose with the demand for a better

understanding of both material structure and also of engi-

neering problems related to the military, trade and transpor-

tation [1–5]. Dealing with equally sized spheres, Kepler in

1611 suggested that ‘‘no packing of balls can be denser than

the face-centered cubic lattice arrangement’’, which is equal

to p=
ffiffiffiffiffi
18

p
c0:74 . Only recently Kepler’s conjecture was

confirmed by Hales; yet, the validity of Hales’ proof is still

debated by mathematicians [3–5].

The maximum packing value of randomly packed equally

sized spheres was found to be 0.64 [6–9]. An increase in

density could be achieved only if spheres of different size are
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between the already packed bigger neighbors—a similar

procedure to the small spheres in the three-dimensional

representation of the Apollonian problem [9]. By using a

wide range and large number of particles, the packing

density can theoretically approach very close to unity.

The optimal arrangement of spherical systems has been

the subject of many experimental and theoretical investiga-

tions [7–12], but, still, the problem of the dense packing of

large assemblies of particulate materials of nonuniform sizes

requires further attention. This problem has important

implications for modeling the behavior of composite mate-

rials and also for a number of engineering processes [13–

18]. Generally, it is accepted that the improvement of the

packing degree of particulate systems can boost the perfor-

mance of existing materials and technological processes.

Better packing of composite materials may advance funda-

mental engineering properties: strength, modulus of elastic-

ity, creep and shrinkage. Further, it brings valuable savings

due to a reduction in the volume of binder.
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The first attempts to provide the ‘‘best’’ particle distri-

bution for spheres of different diameters were based on trials

with balls and geometrical calculations [10,15–17,19].

These experiments resulted in the recommendations on sizes

and proportioning of balls or optimal distribution curves

[16–19]. Some of these findings are currently accepted as

standards. One of the early examples is presented by Fuller

[20] in a series of curves which are currently used for the

optimization of concrete and asphalt aggregates:

P ¼ 100
d

D

� �n

where P= total percent of particle passing through (or finer

than) sieve; D =maximum size of aggregate; d = diameter of

the current sieve; and n = exponent of the equation (n =

0.45–0.7).

Because it is relatively simple by using a few (or at least

two) sets of particulate materials to achieve the ‘‘target’’

distribution of particles with a minimum deviation [21], this

approach is extensively used. Yet in spite of its practical

importance, this empirical method cannot predict the pack-

ing degree of the particulate mixtures.

A model developed by Aim and Goff [22] and Toufar et

al. [23] has provided a useful tool for explaining the packing

mechanism. Their model deals with the packing of two

groups of equal spheres. Each group of spheres is repre-

sented by its characteristic diameter and its eigenpacking

degree. After a minor adjustment, it was demonstrated that

this model gives quite a good explanation of the experi-

mental results [24]. However, to apply this model, it is

necessary to measure or estimate the eigenpacking degree of

the individual group of particles. Moreover, real systems are

usually better represented by the particle size distributions
Fig. 1. 2D Representation and the application of the packing model
rather than by the characteristic diameter. These two con-

straints limit the applicability of this model. Another ap-

proach to the optimal packing of the particulate materials is

based on the Solid Suspension Model [25].

In spite of several reports emphasizing the valuable

contribution of the shape of the particle on packing

[16,21,26–29], it is still appropriate to model and represent

natural or artificial particulate materials (which are mainly

irregular in shape) by using groups of spheres of different

diameters. This assumption reflects the existing methods of

particle size analysis and helps to simplify the packing

calculations [19,29].

With the development of computers, the packing prob-

lems of real systems became a challenging subject for

engineers [7–12,27–32]. The first computer algorithms

were able to pack only about 1000 spheres per hour [29].

Such algorithms are usually based on the modeling of the

movement of particles (represented as spheres or ellipsoids)

due to rolling or sliding under the compaction gradient.

Based on this strategy, the particles in a rigid container are

forced to occupy the best vacant positions in the neighbor-

hood. Modern modeling approaches include better insight

into the natural packing process and even full-scale modeling

of the particulate systems [9,28,33]. The contribution of

additional factors (such as friction and deformation) acting

at the contact points was found to be essential for modeling

the dynamic processes, involving particulate materials [33–

40]. To realize such algorithms, each movement of a particle

requires the solution of the relevant differential equation; this

procedure slows down the calculation process [40]. A

comprehensive survey of packing algorithms was recently

presented by Jia and Williams [28].

An interesting approach to dense packing was suggested

by Anishchik and Medvedev [9]. It involves the solution of
for packing of 1000 spheres with 80% at N = 1M and K=� 3.
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the three-dimensional Apollonian problem using the Voro-

noi–Delaunay method extended to deal with nonequal

spheres [9]. As a result of this method, a new sphere is packed

into the Voronoi S-region (the region of a volume all points of

which are closer to the surface of a given sphere than to the

surfaces of other spheres in the packing). Using this approach,

a very high packing degree of 90% was achieved using a

relatively small number of particles (about 40,000) [9].
2. Importance of the problem

In spite of recent progress in the development of packing

algorithms, it is evident that a new approach is needed to

deal with large assemblies of particulate materials. On the

one hand, the natural packing processes must be simulated;

yet on the other hand, the approach must be robust and

easily applicable to solve engineering problems. Of special

interest for many practical applications is the problem of

establishing the relationship between the ‘‘best’’ particle

distribution and the degree of packing.
3. Description of the packing model

The improvement of existing packing strategies can be

achieved when the ‘‘classical’’ packing problem (involving

the finding the degree of packing for given particle size

distribution) is transferred to a problem of finding the ‘‘best’’

particle distribution and corresponding degree of packing for

given packing conditions [41]. It is obvious that the realiza-

tion of such an approach would require significantly reduced

computational efforts and therefore would be applicable to

large assemblies of particulate materials.

It was found that a good approximation to the packing of

particulate materials of elementary volume within a contain-

er with rigid or periodic boundaries can be achieved when

the center of the particle is randomly located at the grid of a

cubic lattice [29]. In this case, a thick 3D mesh with an

opening size of less than 1/100 of the minimal diameter of

the particle must be used to minimize any possible error. The

particle is considered as a discrete element which is repre-

sented by a sphere. A simplified two-dimensional (2D)

representation of the packing algorithm and an example of

its 3D output for 1000 spheres are presented in Fig. 1.

The developed algorithm begins with the random gener-

ation of a center for the first sphere. Packing starts using a
Table 1

Variable parameters of the simulation model

Total amount of

spheres, Ntotal

Maximum

sphere

size, Dmax

Number of

packing

trials, N

Reduction

coefficient,

K

5M= 5� 106 10k = 104 10k = 104 � 1

100k = 105 0

1M= 106 + 1
Fig. 2. Development of packing degree.
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sphere of the maximum diameter (Dmax) followed by the

placement of the spheres with a diameter larger than or equal

to the minimum diameter (Dmaxz dzDmin). Overlaps be-

tween spheres are not allowed; importantly, a sphere can be

packed only if its center is located inside the container. If the

generated coordinates are not suitable for the placement of a

sphere (with a diameter in a range between Dmin and Dmax),

then the sphere is discarded and new coordinates of the center

are generated. If parts of the accepted sphere are located

outside of the container, the corresponding reduction of the

volume is provided. After achieving a certain number of

packing trials N, Dmin is reduced using the coefficient K

according to the following formula: Dmin =Dmin/(1 + 10
K)

[41]. Finally, with the adjustment of the container size/Dmax

ratio,N andK, a very quick pseudo-dynamic packing strategy

was realized (Fig. 1).

In this research program, the packing into a container

with periodic boundaries was considered in order to repre-

sent the elementary volume of particulate assemblies and

also to eliminate the wall effect. The ratio of the container

size to the maximum diameter of the sphere was fixed at 3.3

(that is, a common assumption related to the density

measurements when the wall effect is eliminated). The total

amount of spheres used in the packing trials (Ntotal) was set

at 5� 106 (5M) for all trials, and the mesh size was 1/32,766

of the container length.

The variable parameters and their levels are presented in

Table 1.
4. Results and discussion

The results of the simulation algorithm are presented in

Figs. 2 and 3 and Table 2, where the passing values are

given for specific particle sizes that are standard for the

sieve analysis; they are determined using the formula:

di =Dmax/2
m (where m>0).

4.1. Packing process

The development of the packing degree depending on N

(number of packing trials) and K (reduction coefficient) is
Table 2

Results of the simulation

N K Packing Passing through a sieve with an opening

degree, %
0 1/2 1 2

10k � 1 83.2 100 40.84 33.98 25.1

0 80.63 100 58.74 39.2 28.8

+ 1 77.35 100 62.72 54.64 40.2

100k � 1 86.26 100 41.63 32.6 22.1

0 82.47 100 61.48 37.4 26.2

+ 1 78.73 100 61.72 53.66 38.6

1M � 1 88.64 100 43.12 34.11 22.2

0 83.98 100 62.81 38.44 26.0

+ 1 79.12 100 66.23 54.96 39.4
demonstrated in Fig. 2. As expected, the major contribution

to packing is provided by the first 105 (100k) packed

spheres. It is important that the packing of first 100 spheres

is represented by the straight line (Fig. 2) and determined

only by the reduction coefficient K. in this case, any N

results in the densest possible packing; for example, the

f 60% packing is achieved at K =� 1. There is almost no

significant density increase after the packing of 300k

spheres at KV 0 and Nz 100k. The highest value of

packing degree � 88.64% is achieved with a peak value

of N = 1M and the lowest used value of K =� 1 (Table 2).

The specific yield part of the packing curve at K < 2 and

N < 100k could be attributed to the ineffective cavity-filling

process with the limited number of the high- and medium-

sized spheres (because of low N) at the range between 1000

and 5000 spheres. This condition is lifted with the conse-

quent exploration of the free space at later stages (Fig. 2). It

is observed that an increase of N and a reduction of K serve

the same function: it provides the priority for packing

spheres of maximum size and the pseudo-dynamic func-

tionality of the algorithm.

4.2. Particle size distribution

The major interest of the model is seen in the distribution

curves (Table 2; Fig. 3). The best gradings with 86–88%

packing are obtained at N = 105–106 (100k–1M) and

K =� 1 (Table 2).

It is observed that the curves representing the densest

assemblies (N = 1M and K =� 1) are modified Fuller type or

‘‘Initially Pre-Packed’’ gradings (IPP-gradings [41]) with a

predominant volume (f 50%) of the largest particles rang-

ing from Dmax to 0.85*Dmax. This arrangement results in

48.4% of packing. About 34% of the volume is represented

solely by the spheres of maximal size (Dmax) which are

responsible for 28% of packing. Still, the relatively narrow

range of particle sizes (from Dmax to Dmax/2) provides about

60% of packing (Table 2; Fig. 2).

This group of particles can be considered as arranged in a

manner similar to the ‘‘ideal’’ regular close-packed lattices

(Fig. 1) that approaches the condition of maximum possible

value for randomly packed systems (jammed state) [8]. Such
of size di =Dmax/2
m at m

3 4 5 6 7 8

5 19.33 13.85 8.79 4.53 1.16 0.01

1 22.63 16.01 10.04 4.98 1.16 0.01

7 27.93 19.14 11.73 5.56 1.15 0.01

8 15.17 10.49 7.08 3.92 1.18 0.02

3 18.96 13.51 8.94 4.65 1.17 0.01

5 26.02 16.97 10.94 5.31 1.16 0.01

3 14.5 9.18 5.66 3.23 1.19 0.02

1 17.35 11.52 7.56 4.23 1.18 0.01

27.28 15.74 10.68 5.26 1.15 0.01



Fig. 3. Particle size distributions corresponding to 75% packing.
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dense packing conditions are determined by the combina-

tion of high N and low K. In this case, the distribution of

particles is obtained by the relatively narrow range of the

sizes. To achieve the same packing degree at a less arranged

initial structure, a much wider range of sizes is necessary

(Fig. 3).

In practice, due to friction between particles and their

irregularity, the achievement of these well-arranged initially

pre-packed structures is quite difficult using the conven-

tional compaction methods. As a result, many particulate

assemblies could be described by those models with Kz 2.

This condition is the case of a ‘‘Loose Initial Packing’’ (LIP)

arrangement [41], when the largest particles (from Dmax to

0.85Dmax) occupy only 24% of volume and provide 25.8%

of packing (Table 2; Fig. 2).

Quite interesting behavior is observed for the particle

size distribution curves at K = 2. In this case there is a gap

between Dmax and Dmin even at one of early stages of

packing process. This results in a loose initial packing, but

at the same time, the void filling capability of the algorithm

is realized (Fig. 3). Due to this feature, the ‘‘Gap-Gradings’’

are achieved. It is noticeable that with increasing N, the

amount of characteristic zones corresponding to the void

filling effect increased from three (at N = 10k) to four (at

N = 1M). At K>2, the particle size curves are represented by

the continuous distributions involving a wide range of

particles that are very close to practically applied Fuller

functions. Still, at high N, the void filling feature results in a

characteristic zone at particle size of Dmax/10 (Fig. 3).
5. Conclusions

1. For a given number of particles, dense packing is

achieved either when dense pre-packing is realized or

when a wide range of particle sizes is available. The best

packing curves with a 86–88% packing degree are

presented by the modified Fuller type or ‘‘Initially Pre-

Packed’’, IPP-gradings. The characteristic feature of the

IPP-gradings is related to high (60%) values of packing

degree obtained by the narrow range of particle sizes

from Dmax to Dmax/2. The IPP condition occurs when the

combination of a high number of packing trials and a low

reduction coefficient is set.

2. The opposite case is a ‘‘Loose Initial Packing’’ or LIP

condition when a high (77–84%) packing degree is

obtained due to a wide range of particle sizes. This

condition is characteristic of many ‘‘real’’ particulate

assemblies which could be presented by models with

Kz 2. It was found that the void filling capability of

the algorithm is realized at K = 2. In this case, there is

a gap between Dmax and Dmin, so many vacancies are

left while the program runs; however, due to a void

filling capability, these gaps are closed on the later

runs. This results in a particle size distribution known

as ‘‘Gap-Gradings’’.
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3. The predominantly static or pseudo-dynamic model,

described in this report, may be further improved if the

placed particles are allowed to change their location so

as to occupy a possible better vacancy corresponding to

a bigger diameter. Alternatively, the performance of the

algorithm, especially in the range of medium- and small-

sized spheres, could be improved by implementing the

self-adjusting (or just sliding) values for a number of

packing trials N or a reduction coefficient K in order to

keep the tight range of currently packed particles. It is

obvious, that only minor adjustments to current model

might be necessary to represent virtually any particle

size distribution. After such updates, the developed

algorithm, when built into a recursive procedure, could

even be applicable to solve the ‘‘classical’’ packing

problem involving the search for the degree of packing

for given number of particles and particle size

distribution.
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