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Setting

e [Ishii-Smillie] Let X, X be “nice” (locally contractible, finitely
generated fundamental group. ..) compact metric spaces, and
L, f: X1 — Xy two maps such that:
— Given 2/, 1y’ € Xg withdy(2',y') < e,and z € f~1(2'), there is
a unique preimage y = f~1(y') such that da(z,y) < €
“Local homeomorphism’’; and

— There exist e > 0 and A > 1s.t. if do(z,y) < ¢, then

di(f(z), f(y) = Adi(e(x),(y))

“Expansion”.
— Then call (¢, f) : Xo — X; an expanding system.
e We’ll use the Ishii-Smillie Homotopy Pseudo-Orbit theory and the

Bartholdi-Nekrashevych Iterated Monodromy Groups (IMG) theory
to build combinatorial models of expanding systems.




Example

e Eg.,if f:C — Cisarational map with finite postrcritical set P, let
X0 be C minus a neighborhood of P, set X; = f~1(X), and let ¢ be
the inclusion map.

e Based on a “fake” cubic polynomial with one critical point escaping
and one fixed (left), we derive the expanding system on the right:

(4, f) : X1 — Xo, where ¢ = ¢ is simple inclusion.




Limiting system

e Let X, be the set of n-orbits: sequences a1, ...,a, € Xgand
bi,...,b,—1 € X1, such that L(bj) = ay and f(b]) = Aj41. (This 1s
compatible with X, Xg.)

Define ¢ : X,, 11 — X, by deleting last terms a,,1 1, b,,+1, and
f: X1 — X, by deleting a1, b; and renumbering.

Let X, be the space of infinite orbits and [, : X — X the shift
map. This 1s an expanding map.

HPO Theorem [Ishii-Smillie]: If (¢f, f): X1 — X and
(tg,9): Y1 — Y, are homotopy equivalent expanding systems (i.e.,
there are semi-conjugacies hi : Xy — Y for k = 0,1 (i.e.,

tgh1 = hoty and ghy = ho f), and vice-versa), then the limiting

systems f : Xoo — Xoo and g: Y, — Y are topologically

conjugate.




Goal

e Our goal is to use HPO theory to capture f' : Xoo — X (1€., fOn

the Julia set) via a “wire model” (¢, f): Y7 — Y, which is homotopy
equivalent to (7, f): X1 — Xo.

e Since homotopy equivalence of finite models implies conjugacy of
limit systems, we have a lot of flexibility in how we capture the
homotopy information about the system (i, f): X; — Xj. One
approach is to use an IMG type model....




Construction 1

1. In each connected component C';, of X, choose a basepoint py.




Construction 2

2. Choose and label generators for each 71 (C, pi ), in Xj.




Construction 3

3. For each py in Xy, let {px,, } in X; be all the preimages under f of




Construction 4

4. For each k, and each v € 71 (Cl, pr), let 0, = f~1],,(v) in X7 be
the lift of v based at pg,,.




Construction 5

5. Now we begin defining (¢, f): Y1 — Yj. Start with Y} as the chosen
generators of 1 (Cy, pi ), for all k, and Y7 all the lifts under f of
these generators. So elements of Y,, naturally are included in X,,, and
the map f sends Y7 to Yj.
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Construction 6

6-a But how do we define ¢: Y7 — Y;? We want a map which is

homotopy equivalent to the inclusion ¢: X; — X, but it can’t just
be inclusion, after all, lifts of loops based at p;. are not necessarily
loops and are based at the preimages of py. (oops, forgot as in pic.)




Construction 6 cn’td

6-b Solution: If py, 1s in C;, choose a path Ay, in X, going from p; to

Pkem» (80 f(Prm,) is not p;, rather p, is the basepoint in the component

containing Pi, ). Now A, defines a homotopy from i(Y7) to Yj.




Construction 7

7. That s, for each v,, = f~1|,,(v) in Y1, if 0,, is a path from py,, to

Piis then ¢(Ty,) := Ak * Uy * A is an element of 71 (Cy, pr.),

(going from py tO prm, then pry, to py, then pyy to pr).




Construction 7 cn’td

o Eg, L(C~L0> = 5\01 * C~L0 X )\00 = a, but L<C~L1) = 5\00 * &1 * )\01 = €.

(Also, t(a9) is in C7 so it’s trivial, e .)




IMG

e We can encode the algebraic information of our model
(¢, f): Y1 — Yj using IMG technology: for each v in Y[, write
v = (t(vg),...,t(Vq_1))0, where o is the permutation on the
preimages of the basepoints defined by head to tail for each path v,,.

e Eg,a=(uap),tlar),tlas)o, = (a,eq,e1)(0g,1p),
eo = (€0, €0, €1)(),
€1 = (60,60,60)()




Generalize Moore Diagram

The algebraic relations

E-g-, a = (CL, €0, 61)(007 10)7 €0 — (607 €0, 61)()7 €1 — (607 €0, 60)()
can be encoded in a finite automaton called a (Generalized) Moore
Diagram (arrows = ¢ f 1, labels = o).
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A finite nucleus

e In this simple example, : mapped each element of Y7 to an element of
the chosen generating set Y. But a priori this may not always
occur— is only guaranteed to map each element of Y7 into 71 (Xy),
it may map an element of Y; to some combination of elements of Y.

In this case, following IMG theory we add this missing element to
Y0, and re-start. We claim this process terminates, i.e., there is some
finite collection of elements of 71 (X) whose lifts all map by ¢ back
into that same collection. This finite collection is called a nucleus.

There is a very dynamical proof that a finite nucleus exists (basically:
f expanding implies lifts of loops eventually shrink), which is very
general (for example, it does not require X, to be connected).
Conclusion: a finite expanding system (¢, f): Y7 — Y{ exists, which

is homotopy equivalent to (i, f) : X7 — Xj.




Summary

e To summarize, by HPO theory we can say f : Xoo — X0 (€. f On

J) 1s conjugate to f . Y., — Y., hence the “wire model”
(¢, f): Y1 — Y} (together with its Moore Diagram) provides a
combinatorial model for f on J.

Again, note any other style of “wire” models based on homotopy
type would work (for example, instead of loops you could take Yj to
consist of paths in a 1-skeleton of X, like a Hubbard Tree with
“feet”).




