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Setting
• [Ishii-Smillie] Let X0, X1 be “nice” (locally contractible, finitely

generated fundamental group. . . ) compact metric spaces, and
ι, f : X1 → X0 two maps such that:

– Given x′, y′ ∈ X0 with d1(x′, y′) < ε, and x ∈ f−1(x′), there is
a unique preimage y = f−1(y′) such that d2(x, y) < ε

“Local homeomorphism”; and

– There exist ε > 0 and λ > 1 s.t. if d2(x, y) ≤ ε, then
d1(f(x), f(y)) ≥ λ d1(ι(x), ι(y))
“Expansion”.

– Then call (ι, f) : X0 → X1 an expanding system.

• We’ll use the Ishii-Smillie Homotopy Pseudo-Orbit theory and the
Bartholdi-Nekrashevych Iterated Monodromy Groups (IMG) theory
to build combinatorial models of expanding systems.
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Example
• E.g., if f : C → C is a rational map with finite postrcritical set P , let

X0 be C minus a neighborhood of P , set X1 = f−1(X0), and let ι be
the inclusion map.

• Based on a “fake” cubic polynomial with one critical point escaping
and one fixed (left), we derive the expanding system on the right:
(i, f) : X1 → X0, where i = ι is simple inclusion.
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Limiting system
• Let Xn be the set of n-orbits: sequences a1, . . . , an ∈ X0 and

b1, . . . , bn−1 ∈ X1, such that ι(bj) = aj and f(bj) = aj+1. (This is
compatible with X1, X0.)

• Define ι : Xn+1 → Xn by deleting last terms an+1, bn+1, and
f : Xn+1 → Xn by deleting a1, b1 and renumbering.

• Let X∞ be the space of infinite orbits and f∞ : X∞ → X∞ the shift
map. This is an expanding map.

• HPO Theorem [Ishii-Smillie]: If (ιf , f) : X1 → X0 and
(ιg, g) : Y1 → Y0 are homotopy equivalent expanding systems (i.e.,
there are semi-conjugacies hk : Xk → Yk for k = 0, 1 (i.e.,
ιgh1 = h0ιf and gh1 = h0f ), and vice-versa), then the limiting
systems f̂ : X∞ → X∞ and ĝ : Y∞ → Y∞ are topologically
conjugate.
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Goal
• Our goal is to use HPO theory to capture f̂ : X∞ → X∞ (i.e., f on

the Julia set) via a “wire model” (ι, f) : Y1 → Y0 which is homotopy
equivalent to (i, f) : X1 → X0.

• Since homotopy equivalence of finite models implies conjugacy of
limit systems, we have a lot of flexibility in how we capture the
homotopy information about the system (i, f) : X1 → X0. One
approach is to use an IMG type model....
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Construction 1
1. In each connected component Ck of X0, choose a basepoint pk.
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Construction 2
2. Choose and label generators for each π1(Ck, pk), in X0.
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Construction 3
3. For each pk in X0, let {pkm} in X1 be all the preimages under f of

pk.
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Construction 4
4. For each k, and each v ∈ π1(Ck, pk), let ṽm = f−1|m(v) in X1 be

the lift of v based at pkm.
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Construction 5
5. Now we begin defining (ι, f) : Y1 → Y0. Start with Y0 as the chosen

generators of π1(Ck, pk), for all k, and Y1 all the lifts under f of
these generators. So elements of Yn naturally are included in Xn, and
the map f sends Y1 to Y0.
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Construction 6
6-a But how do we define ι : Y1 → Y0? We want a map which is

homotopy equivalent to the inclusion i : X1 → X0, but it can’t just
be inclusion, after all, lifts of loops based at pk are not necessarily
loops and are based at the preimages of pk. (oops, forgot ã2 in pic.)
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Construction 6 cn’td
6-b Solution: If pkm is in Cj , choose a path λkm in X0 going from pj to

pkm, (so f(pkm) is not pj , rather pj is the basepoint in the component
containing pkm). Now λkm defines a homotopy from i(Y1) to Y0.
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Construction 7
7. That is, for each ṽm = f−1|m(v) in Y1, if ṽm is a path from pkm to

pkl, then ι(ṽm) := λ̄kl ∗ ṽm ∗ λkm is an element of π1(Ck, pk),
(going from pk to pkm, then pkm to pkl, then pkl to pk).
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Construction 7 cn’td
• E.g., ι(ã0) = λ̄01 ∗ ã0 ∗ λ00 = a, but ι(ã1) = λ̄00 ∗ ã1 ∗ λ01 = e0.

(Also, ι(ã2) is in C1 so it’s trivial, e1.)
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IMG
• We can encode the algebraic information of our model

(ι, f) : Y1 → Y0 using IMG technology: for each v in Y0, write
v = (ι(ṽ0), . . . , ι(ṽd−1))σ, where σ is the permutation on the
preimages of the basepoints defined by head to tail for each path ṽm.

• E.g., a = (ι(ã0), ι(ã1), ι(ã2)σa = (a, e0, e1)(00, 10),
e0 = (e0, e0, e1)(),
e1 = (e0, e0, e0)()
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Generalize Moore Diagram
• The algebraic relations

E.g., a = (a, e0, e1)(00, 10), e0 = (e0, e0, e1)(), e1 = (e0, e0, e0)()

can be encoded in a finite automaton called a (Generalized) Moore
Diagram (arrows = ιf−1, labels = σ).
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A finite nucleus
• In this simple example, ι mapped each element of Y1 to an element of

the chosen generating set Y0. But a priori this may not always
occur—ι is only guaranteed to map each element of Y1 into π1(X0),
it may map an element of Y1 to some combination of elements of Y0.

• In this case, following IMG theory we add this missing element to
Y0, and re-start. We claim this process terminates, i.e., there is some
finite collection of elements of π1(X0) whose lifts all map by ι back
into that same collection. This finite collection is called a nucleus.

• There is a very dynamical proof that a finite nucleus exists (basically:
f expanding implies lifts of loops eventually shrink), which is very
general (for example, it does not require Xn to be connected).
Conclusion: a finite expanding system (ι, f) : Y1 → Y0 exists, which
is homotopy equivalent to (i, f) : X1 → X0.
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Summary
• To summarize, by HPO theory we can say f̂ : X∞ → X∞ (i.e. f on

J) is conjugate to f̂ : Y∞ → Y∞, hence the “wire model”
(ι, f) : Y1 → Y0 (together with its Moore Diagram) provides a
combinatorial model for f on J .

• Again, note any other style of “wire” models based on homotopy
type would work (for example, instead of loops you could take Y0 to
consist of paths in a 1-skeleton of X0, like a Hubbard Tree with
“feet”).
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