"Homotopy Pseudo-Orbits and Iterated Monodromy Groups"

Suzanne Lynch Hruska University of Wisconsin Milwaukee shruska@uwm.edu http://www.uwm.edu/~shruska

Joint with Rodrigo Perez (IUPUI) and John Smillie (Cornell)

Setting

- [Ishii-Smillie] Let X₀, X₁ be "nice" (locally contractible, finitely generated fundamental group...) compact metric spaces, and
 ι, f : X₁ → X₀ two maps such that:
 - Given $x', y' \in X_0$ with $d_1(x', y') < \epsilon$, and $x \in f^{-1}(x')$, there is a unique preimage $y = f^{-1}(y')$ such that $d_2(x, y) < \epsilon$ "Local homeomorphism"; and
 - There exist $\epsilon > 0$ and $\lambda > 1$ s.t. if $d_2(x, y) \le \epsilon$, then $d_1(f(x), f(y)) \ge \lambda d_1(\iota(x), \iota(y))$ "Expansion".
 - Then call $(\iota, f) : X_0 \to X_1$ an expanding system.
- We'll use the Ishii-Smillie Homotopy Pseudo-Orbit theory and the Bartholdi-Nekrashevych Iterated Monodromy Groups (IMG) theory to build combinatorial models of expanding systems.

Example

- E.g., if f : C → C is a rational map with finite postreritical set P, let X₀ be C minus a neighborhood of P, set X₁ = f⁻¹(X₀), and let ι be the inclusion map.
- Based on a "fake" cubic polynomial with one critical point escaping and one fixed (left), we derive the expanding system on the right:
 (i, f) : X₁ → X₀, where i = ι is simple inclusion.

Limiting system

- Let X_n be the set of n-orbits: sequences a₁,..., a_n ∈ X₀ and b₁,..., b_{n-1} ∈ X₁, such that ι(b_j) = a_j and f(b_j) = a_{j+1}. (This is compatible with X₁, X₀.)
- Define $\iota: X_{n+1} \to X_n$ by deleting last terms a_{n+1}, b_{n+1} , and $f: X_{n+1} \to X_n$ by deleting a_1, b_1 and renumbering.
- Let X_∞ be the space of infinite orbits and f_∞ : X_∞ → X_∞ the shift map. This is an expanding map.
- HPO Theorem [Ishii-Smillie]: If (ι_f, f): X₁ → X₀ and (ι_g, g): Y₁ → Y₀ are homotopy equivalent expanding systems (i.e., there are semi-conjugacies h_k: X_k → Y_k for k = 0, 1 (i.e., ι_gh₁ = h₀ι_f and gh₁ = h₀f), and vice-versa), then the limiting systems f̂: X_∞ → X_∞ and ĝ: Y_∞ → Y_∞ are topologically conjugate.

Goal

- Our goal is to use HPO theory to capture f̂: X_∞ → X_∞ (i.e., f on the Julia set) via a "wire model" (ι, f): Y₁ → Y₀ which is homotopy equivalent to (i, f): X₁ → X₀.
- Since homotopy equivalence of finite models implies conjugacy of limit systems, we have a lot of flexibility in how we capture the homotopy information about the system (i, f): X₁ → X₀. One approach is to use an IMG type model....

1. In each connected component C_k of X_0 , choose a basepoint p_k .

2. Choose and label generators for each $\pi_1(C_k, p_k)$, in X_0 .

3. For each p_k in X_0 , let $\{p_{km}\}$ in X_1 be all the preimages under f of p_k .

4. For each k, and each $v \in \pi_1(C_k, p_k)$, let $\tilde{v}_m = f^{-1}|_m(v)$ in X_1 be the lift of v based at p_{km} .

Now we begin defining (ι, f): Y₁ → Y₀. Start with Y₀ as the chosen generators of π₁(C_k, p_k), for all k, and Y₁ all the lifts under f of these generators. So elements of Y_n naturally are included in X_n, and the map f sends Y₁ to Y₀.

6-a But how do we define $\iota: Y_1 \to Y_0$? We want a map which is homotopy equivalent to the inclusion $i: X_1 \to X_0$, but it can't just be inclusion, after all, lifts of loops based at p_k are not necessarily loops and are based at the preimages of p_k . (oops, forgot \tilde{a}_2 in pic.)

Construction 6 cn'td

6-b Solution: If p_{km} is in C_j , choose a path λ_{km} in X_0 going from p_j to p_{km} , (so $f(p_{km})$ is not p_j , rather p_j is the basepoint in the component containing p_{km}). Now λ_{km} defines a homotopy from $i(Y_1)$ to Y_0 .

7. That is, for each $\tilde{v}_m = f^{-1}|_m(v)$ in Y_1 , if \tilde{v}_m is a path from p_{km} to p_{kl} , then $\iota(\tilde{v}_m) := \bar{\lambda}_{kl} * \tilde{v}_m * \lambda_{km}$ is an element of $\pi_1(C_k, p_k)$, (going from p_k to p_{km} , then p_{km} to p_{kl} , then p_{kl} to p_k).

Construction 7 cn'td

• E.g., $\iota(\tilde{a}_0) = \bar{\lambda}_{01} * \tilde{a}_0 * \lambda_{00} = a$, but $\iota(\tilde{a}_1) = \bar{\lambda}_{00} * \tilde{a}_1 * \lambda_{01} = e_0$. (Also, $\iota(\tilde{a}_2)$ is in C_1 so it's trivial, e_1 .)

IMG

We can encode the algebraic information of our model

 (ι, f): Y₁ → Y₀ using IMG technology: for each v in Y₀, write
 v = (ι(ṽ₀), ..., ι(ṽ_{d-1}))σ, where σ is the permutation on the
 preimages of the basepoints defined by head to tail for each path ṽ_m.

• E.g.,
$$a = (\iota(\tilde{a}_0), \iota(\tilde{a}_1), \iota(\tilde{a}_2)\sigma_a = (a, e_0, e_1)(0_0, 1_0),$$

 $e_0 = (e_0, e_0, e_1)(),$
 $e_1 = (e_0, e_0, e_0)()$

Generalize Moore Diagram

• The algebraic relations

E.g., $a = (a, e_0, e_1)(0_0, 1_0), e_0 = (e_0, e_0, e_1)(), e_1 = (e_0, e_0, e_0)()$ can be encoded in a finite automaton called a (Generalized) Moore Diagram (arrows = ιf^{-1} , labels = σ).

A finite nucleus

- In this simple example, ι mapped each element of Y₁ to an element of the chosen generating set Y₀. But a priori this may not always occur—ι is only guaranteed to map each element of Y₁ into π₁(X₀), it may map an element of Y₁ to some combination of elements of Y₀.
- In this case, following IMG theory we add this missing element to Y₀, and re-start. We claim this process terminates, i.e., there is some finite collection of elements of π₁(X₀) whose lifts all map by ι back into that same collection. This finite collection is called a *nucleus*.
- There is a very dynamical proof that a finite nucleus exists (basically: *f* expanding implies lifts of loops eventually shrink), which is very general (for example, it does not require X_n to be connected).
 Conclusion: a finite expanding system (ι, f): Y₁ → Y₀ exists, which is homotopy equivalent to (i, f) : X₁ → X₀.

Summary

- To summarize, by HPO theory we can say f̂: X_∞ → X_∞ (i.e. f on J) is conjugate to f̂: Y_∞ → Y_∞, hence the "wire model"
 (ι, f): Y₁ → Y₀ (together with its Moore Diagram) provides a combinatorial model for f on J.
- Again, note any other style of "wire" models based on homotopy type would work (for example, instead of loops you could take Y₀ to consist of paths in a 1-skeleton of X₀, like a Hubbard Tree with "feet").