"Homotopy Pseudo-Orbits and Iterated Monodromy Groups"

Suzanne Lynch Hruska

University of Wisconsin Milwaukee
shruska@uwm.edu
http://www.uwm.edu/~shruska

Joint with Rodrigo Perez (IUPUI) and John Smillie (Cornell)

Setting

- [Ishii-Smillie] Let X_{0}, X_{1} be "nice" (locally contractible, finitely generated fundamental group...) compact metric spaces, and $\iota, f: X_{1} \rightarrow X_{0}$ two maps such that:
- Given $x^{\prime}, y^{\prime} \in X_{0}$ with $d_{1}\left(x^{\prime}, y^{\prime}\right)<\epsilon$, and $x \in f^{-1}\left(x^{\prime}\right)$, there is a unique preimage $y=f^{-1}\left(y^{\prime}\right)$ such that $d_{2}(x, y)<\epsilon$ "Local homeomorphism"; and
- There exist $\epsilon>0$ and $\lambda>1$ s.t. if $d_{2}(x, y) \leq \epsilon$, then $d_{1}(f(x), f(y)) \geq \lambda d_{1}(\iota(x), \iota(y))$
"Expansion".
- Then call $(\iota, f): X_{0} \rightarrow X_{1}$ an expanding system.
- We'll use the Ishii-Smillie Homotopy Pseudo-Orbit theory and the Bartholdi-Nekrashevych Iterated Monodromy Groups (IMG) theory to build combinatorial models of expanding systems.

Example

- E.g., if $f: \mathbb{C} \rightarrow \mathbb{C}$ is a rational map with finite postrcritical set P, let X_{0} be \mathbb{C} minus a neighborhood of P, set $X_{1}=f^{-1}\left(X_{0}\right)$, and let ι be the inclusion map.
- Based on a "fake" cubic polynomial with one critical point escaping and one fixed (left), we derive the expanding system on the right: $(i, f): X_{1} \rightarrow X_{0}$, where $i=\iota$ is simple inclusion.

Limiting system

- Let X_{n} be the set of n-orbits: sequences $a_{1}, \ldots, a_{n} \in X_{0}$ and $b_{1}, \ldots, b_{n-1} \in X_{1}$, such that $\iota\left(b_{j}\right)=a_{j}$ and $f\left(b_{j}\right)=a_{j+1}$. (This is compatible with X_{1}, X_{0}.)
- Define $\iota: X_{n+1} \rightarrow X_{n}$ by deleting last terms a_{n+1}, b_{n+1}, and $f: X_{n+1} \rightarrow X_{n}$ by deleting a_{1}, b_{1} and renumbering.
- Let X_{∞} be the space of infinite orbits and $f_{\infty}: X_{\infty} \rightarrow X_{\infty}$ the shift map. This is an expanding map.
- HPO Theorem [Ishii-Smillie]: If $\left(\iota_{f}, f\right): X_{1} \rightarrow X_{0}$ and $\left(\iota_{g}, g\right): Y_{1} \rightarrow Y_{0}$ are homotopy equivalent expanding systems (i.e., there are semi-conjugacies $h_{k}: X_{k} \rightarrow Y_{k}$ for $k=0,1$ (i.e., $\iota_{g} h_{1}=h_{0} \iota_{f}$ and $g h_{1}=h_{0} f$), and vice-versa), then the limiting systems $\hat{f}: X_{\infty} \rightarrow X_{\infty}$ and $\hat{g}: Y_{\infty} \rightarrow Y_{\infty}$ are topologically conjugate.

Goal

- Our goal is to use HPO theory to capture $\hat{f}: X_{\infty} \rightarrow X_{\infty}$ (i.e., f on the Julia set) via a "wire model" $(\iota, f): Y_{1} \rightarrow Y_{0}$ which is homotopy equivalent to $(i, f): X_{1} \rightarrow X_{0}$.
- Since homotopy equivalence of finite models implies conjugacy of limit systems, we have a lot of flexibility in how we capture the homotopy information about the system $(i, f): X_{1} \rightarrow X_{0}$. One approach is to use an IMG type model....

Construction 1

1. In each connected component C_{k} of X_{0}, choose a basepoint p_{k}.

Construction 2

2. Choose and label generators for each $\pi_{1}\left(C_{k}, p_{k}\right)$, in X_{0}.

Construction 3

3. For each p_{k} in X_{0}, let $\left\{p_{k m}\right\}$ in X_{1} be all the preimages under f of p_{k}.

Construction 4

4. For each k, and each $v \in \pi_{1}\left(C_{k}, p_{k}\right)$, let $\tilde{v}_{m}=\left.f^{-1}\right|_{m}(v)$ in X_{1} be the lift of v based at $p_{k m}$.

Construction 5

5. Now we begin defining $(\iota, f): Y_{1} \rightarrow Y_{0}$. Start with Y_{0} as the chosen generators of $\pi_{1}\left(C_{k}, p_{k}\right)$, for all k, and Y_{1} all the lifts under f of these generators. So elements of Y_{n} naturally are included in X_{n}, and the map f sends Y_{1} to Y_{0}.

Construction 6

6-a But how do we define $\iota: Y_{1} \rightarrow Y_{0}$? We want a map which is homotopy equivalent to the inclusion $i: X_{1} \rightarrow X_{0}$, but it can't just be inclusion, after all, lifts of loops based at p_{k} are not necessarily loops and are based at the preimages of p_{k}. (oops, forgot \tilde{a}_{2} in pic.)

Construction 6 cn'td

6-b Solution: If $p_{k m}$ is in C_{j}, choose a path $\lambda_{k m}$ in X_{0} going from p_{j} to $p_{k m}$, (so $f\left(p_{k m}\right)$ is not p_{j}, rather p_{j} is the basepoint in the component containing $p_{k m}$). Now $\lambda_{k m}$ defines a homotopy from $i\left(Y_{1}\right)$ to Y_{0}.

Construction 7

7. That is, for each $\tilde{v}_{m}=\left.f^{-1}\right|_{m}(v)$ in Y_{1}, if \tilde{v}_{m} is a path from $p_{k m}$ to $p_{k l}$, then $\iota\left(\tilde{v}_{m}\right):=\bar{\lambda}_{k l} * \tilde{v}_{m} * \lambda_{k m}$ is an element of $\pi_{1}\left(C_{k}, p_{k}\right)$, (going from p_{k} to $p_{k m}$, then $p_{k m}$ to $p_{k l}$, then $p_{k l}$ to p_{k}).

Construction 7 cn'td

- E.g., $\iota\left(\tilde{a}_{0}\right)=\bar{\lambda}_{01} * \tilde{a}_{0} * \lambda_{00}=a$, but $\iota\left(\tilde{a}_{1}\right)=\bar{\lambda}_{00} * \tilde{a}_{1} * \lambda_{01}=e_{0}$. (Also, $\iota\left(\tilde{a}_{2}\right)$ is in C_{1} so it's trivial, e_{1}.)

IMG

- We can encode the algebraic information of our model $(\iota, f): Y_{1} \rightarrow Y_{0}$ using IMG technology: for each v in Y_{0}, write $v=\left(\iota\left(\tilde{v}_{0}\right), \ldots, \iota\left(\tilde{v}_{d-1}\right)\right) \sigma$, where σ is the permutation on the preimages of the basepoints defined by head to tail for each path \tilde{v}_{m}.
- E.g., $a=\left(\iota\left(\tilde{a}_{0}\right), \iota\left(\tilde{a}_{1}\right), \iota\left(\tilde{a}_{2}\right) \sigma_{a}=\left(a, e_{0}, e_{1}\right)\left(0_{0}, 1_{0}\right)\right.$, $e_{0}=\left(e_{0}, e_{0}, e_{1}\right)()$,
$e_{1}=\left(e_{0}, e_{0}, e_{0}\right)()$

Generalize Moore Diagram

- The algebraic relations
E.g., $a=\left(a, e_{0}, e_{1}\right)\left(0_{0}, 1_{0}\right), e_{0}=\left(e_{0}, e_{0}, e_{1}\right)(), e_{1}=\left(e_{0}, e_{0}, e_{0}\right)()$ can be encoded in a finite automaton called a (Generalized) Moore Diagram (arrows $=\iota f^{-1}$, labels $=\sigma$).

A finite nucleus

- In this simple example, ι mapped each element of Y_{1} to an element of the chosen generating set Y_{0}. But a priori this may not always occur— ι is only guaranteed to map each element of Y_{1} into $\pi_{1}\left(X_{0}\right)$, it may map an element of Y_{1} to some combination of elements of Y_{0}.
- In this case, following IMG theory we add this missing element to Y_{0}, and re-start. We claim this process terminates, i.e., there is some finite collection of elements of $\pi_{1}\left(X_{0}\right)$ whose lifts all map by ι back into that same collection. This finite collection is called a nucleus.
- There is a very dynamical proof that a finite nucleus exists (basically: f expanding implies lifts of loops eventually shrink), which is very general (for example, it does not require X_{n} to be connected). Conclusion: a finite expanding system $(\iota, f): Y_{1} \rightarrow Y_{0}$ exists, which is homotopy equivalent to $(i, f): X_{1} \rightarrow X_{0}$.

Summary

- To summarize, by HPO theory we can say $\hat{f}: X_{\infty} \rightarrow X_{\infty}$ (i.e. f on $J)$ is conjugate to $\hat{f}: Y_{\infty} \rightarrow Y_{\infty}$, hence the "wire model" $(\iota, f): Y_{1} \rightarrow Y_{0}$ (together with its Moore Diagram) provides a combinatorial model for f on J.
- Again, note any other style of "wire" models based on homotopy type would work (for example, instead of loops you could take Y_{0} to consist of paths in a 1 -skeleton of X_{0}, like a Hubbard Tree with "feet").

