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Forward-scattering holography has advantages for the study of the structure of subsurface atoms,
but early results reveal the need for image-correction techniques to compensate for the angular
dependence of the scattered waves which are the object waves of the photoelectron hologram. We
have developed a generalized integral transform for image reconstruction, with a kernel derived
from the single-scattering wave functions, that includes the effects of the angular variation of the
atomic-scattering-factor amplitude and phase, as well as matrix-element effects that appear in the
scattered object waves. This method for scattering-factor corrections preserves the direct-inversion
principle of holographic transforms and does not require a priori knowledge of atomic positions. In
the limit of pure s-wave scattering, the scattered-wave-included Fourier transform reduces to a sim-
ple phased Fourier transform. It can also be approximately described as a generalized deconvolu-
tion which uses a function with six degrees of freedom (momentum and position) derived from the

scattered wave functions.

I. IMAGE ABERRATIONS IN FORWARD-SCATTERING
HOLOGRAPHY

The diffraction limit of spatial resolution in a holo-

graphic reconstruction, §r ~7/|k|, suggests that a way "

to improve the accuracy of the image is to use electrons
with high kinetic energies. An additional benefit of in-
creased kinetic energy is a longer electron mean free
path, which makes it possible to get images of atoms ly-
ing below the surface. "As the kinetic energy of a
diffracting electron is raised above a few hundred elec-
tron volts, the atomic scattering factor becomes increas-
ingly anisotropic, showing both a strongly peaked ampli-
tude in the forward-scattering direction, and a large vari-
ation of the phase with scattering angle. The angular
dependence of the scattering factor affects the form of the

scattered waves that are the object waves of the photo-

emission hologram. This leads to additional subtleties in
the interpretation of forward-scattering photoemission
holograms.! =7 o
Experimental studies of single-crystal"?” and ultrathin
film? forward-scattering geometry holograms have
demonstrated that atomic-resolution real-space images
can be produced from diffraction patterns collected over
a substantial portion of 2# steradian solid angle, at near-
kilovolt kinetic energy. Single-crystal holograms give im-
ages with high intensity near the correct locations of
atoms in the sample in planar reconstructions parallel to
the surface, and in radial image plots along near-neighbor
bond axes.>* The radial image function (see below, and
Ref. 2) has peaks at the correct location for atoms, with
no “false atoms” at large radii. Large peaks in the radial
image function near the origin have been found to be due
in part to an artifact of the zeroth-order diffraction peaks
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in the forward-scattering diffraction pattern.*3

In planar sections perpendicular to the sample surface,
forward-scattering holographic reconstructions show
elongated ellipsoidal tubes of intensity near the correct
atom positions, with the tubes aligned along the internu-
clear axis connecting the emitter and scattering atoms.
This effect is the result of having the holographic fringes
localized in a small angular region of the diffraction pat-
tern, surrounding the forward-scattering direction.”? In
the absence of strong forward-scattering peaks, the atom
image is elongated parallel to the sample normal, since
the range of momentum in the Z direction is half that
parallel to the surface."”?

Perhaps unexpectedly, the high quality of single-crystal
images is a direct result of the large amount of multiple
forward-scattering paths that contribute to the diffraction
pattern and reduce the overall impact of the forward-
scattering zero-order diffraction peaks, as noted by Fad-
ley.!® In Fig. 1 we show a multiple-scattering calculation
for a chain of Cu atoms, embedded in an isotropic ab-
sorber.!! The diffraction from an atom near the surface
(shown as the two-atom chain result) has a very strong
forward-scattering feature. As more ‘emitter atoms are
added to the diffraction pattern (simulating a film of in-
creasing thickness), the relative contribution of the
forward-scattering peak is reduced in comparison to the
oscillating fringes at larger scattering angles, due to the
effects of multiple forward scattering along the chain
axis. These fringes are the important component of the
hologram for Fourier-transform image reconstruction,
and it is seen that these fringes are reinforced as multiple
emitter atoms in equivalent positions are added to the
chain.

Real-space images have been obtained from the oscilla-
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FIG. 1. Multiple-scattering calculation of the Auger electron
angular distribution for emitter atoms at different depths in a
solid. The model consists of a linear chain of Cu atoms embed-
ded in an isotropic absorber with a surface. The kinetic energy
of Cu LVV Auger electrons was assumed.

tory part of the forward-scattering diffraction patterns,
x(k), called the anisotropy,'?” !> which is viewed as re-
sulting from the interference between the direct wave
from the emitted atom (the reference wave) and the waves
scattered from near-neighbor atoms (the object waves).

D(r)=4r

|k| |r1_ru__r]

~41r[f¢,’5(r")1ﬁf(r"+r)d3r”—6r'o , ask—oo .

If the scattered waves that make up the final-state wave
function are also s-like, then from symmetry considera-
tions the autocorrelation of the wave function [Eq. (3)]
will have intensity maxima for offset vectors r corre-
sponding to atomic nuclei. For more complex scattered
waves, the identification of maxima in |®(r)|? with the
geometric structure is not immediately obvious. Never-
theless, we point out that the autocorrelation function
contains important structural information that is
different from that available by other techniques. In par-
ticular, the holographic image function ®2 is quite
different from the Patterson function of x-ray scattering,
a difference that is ultimately a result of the difference be-
tween the diffraction patterns formed by a localized
“reference” wave and an external plane wave.'®

Both the forward-scattering holography experi-
ments' ~* and numerical simulations®’ have shown that
there are considerable differences in the results of holo-
grapic imaging from single crystals and very thin films.
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We have used a slightly modified form of the phased
Fourier-integral introduced by Barton:®

@(r)= [ak)y(kle™ " d0; . (1)

The factor a(k) is an apodizing function that is intro-
duced to reduce the influence of the Gibbs effect on the
final image, |®(r)|?, which arises from the finite range of
integration in momentum space.

The physical meaning of the “image function” ®(r)
can be understood from some simple arguments.!® If we
neglect effects such as refraction or reflection at the sur-
face, the diffraction pattern can be considered to be a
map of the final state wave function, ¥,(r) in momentum
space. Let the momentum space wave function be nor-
malized so that its angular average is
JIKklps)|?"dQ=4r. Then the anisotropy of the

diffraction pattern has the form
x(&)=(kly(r)[>~1. @)

The three-dimensional Fourier transform of |(k|¢(r)) [2
is just the autocorrelation of the original final-state wave
function. With this as a guide, we can look for a similar
interpretation of the high-energy limit of the phase
Fourier transform [Eq. (1)] of the final-state wave func-
tion. Given certain simplifications!” that allow the range
of integration to extend over 47 solid angle, it is easy to
see that the image function is closely related to the final-
state autocorrelation:

L wpa ey Snlklle =e" =) s s, sindkl Ie)

[k} ||

In thin films (or small clusters), single-scattering paths
are the major contributions to the diffraction pattern, so
that at high kinetic energy the forward-scattering peaks
are very large. The angular variation of the atomic
scattering factor is responsible for the scattered waves
having large peaks in the forward-scattering direction.!®
This angular anisotropy of the scattered waves in turn
leads to aberrations in the thin-film images. The two pri-
mary aberrations are an atom shift and image asymmetry
or broadening. These two effects are illustrated by
multiple-scattering calculations>”2%2! for a single emitter
atom at the end of a linear chain of copper atoms, shown
in Fig. 2. The atom shift can be traced to the angular
variation of the phase shift, and the asymmetry arises
from the scattering-factor amplitude envelope.®> The
zeroth-order forward-scattering peak itself introduces ar-
tifacts in the holographic image that appear near the ori-
gin of the reconstruction.*

These have led us to introduce an improved Fourier-
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FIG. 2. Angular diffraction patterns (left) and holographic
reconstructions (right) for atom chains, simulating Auger emis-
sion from Cu at 914 eV. The pattern at the bottom is the
“ideal” angular profile for pure s-wave scattering; the recon-
struction at the right shows the [sin[k(r —7;)1/(r—r;)|* behav-
ior of an s-wave hologram, which has a symmetric shape and
maximum at the correct location. The multiple-scattering cal-
culation for two-, three-, and four-atom-long chains is shown in
sequence above the ideal model. As more atoms are added to
the chain, the forward-scattering feature becomes less prom-
inant, and the image maximum moves towards the correct loca-
tion.

transform algorithm, which preserves the basic goal of a
direct transform method that produces a three-
dimensional image from the two-dimensional diffraction
pattern. For images reconstructed from diffraction pat-
terns at a single kinetic energy, one form of the general-

ized holographic integral® can be written.>’
1 ~ ”~ - .
o(r)= rd Qe
(0= [ T (one a0 @)

The factor F(k,r) contains the angular dependence of the
scattered waves arising from the atomic scattering factor,
as well as angular factors from the emitted wave and
scattered waves due to the dipole matrix element. This
form of the scattered-wave integral transform is valid in
the plane-wave and point-scattering approximations of
electron scattering, for which the general integral trans-
form [Eq. (11) below] reduces to a generalized Fourier in-
tegral.

The effect of the scattered-wave included Fourier-
transform [Eq. (4)] algorithm is to remove the atom shift
and anisotropy which is due to the angular dependence of
the direct reference wave and the scattered object waves.
Application of this transform produces a three-
dimensional image with peaks at the correct atom loca-
tions and atom sizes near the diffraction limit. The trans-
form does not require prior knowledge of the atom posi-
tions. Since the transform corrects the image line shape
and position, and does not require initial assumptions
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about atom positions, we have previously described this
algorithm as the “scattered-wave deconvolution method”
of holographic imaging.>’

The need for such corrections can be seen in Fig. 3(a).
We show the holographic images reconstructed from a
model of a two-layer thick Cu(111) film, calculated with a
full multiple-scattering cluster theory.”?>2! The images
are in a plane containing the atoms above the emitter
atom, parallel to the surface. The top image was created
using the simple phased Fourier integral transform of Eq.
(1), with a(k)=k-fi, where @i is the normal to the crystal
surface. The image contains large areas of high intensity
surrounding the correct atom locations, which are
marked by white crosses. It is certainly true that such an
image can be useful in determining the structure of a thin
film. In particular, it immediately determines the local
symmetry and approximate location of atoms surround-
ing the emitter, without the necessity of comparing the
actual diffraction pattern to a calculation. However, the
spatial resolution is very poor in the (simulated) thin-film
image, and the maximum intensity is displaced radially
outwards from the origin (see also the experimental im-
ages in Ref, 3).

Both the atom shift and the asymmetry can be correct-
ed by the scattered-wave deconvolution method of holo-
graphic imaging. The image created by the generalized

(b) v

FIG. 3. Holographic image reconstructions of the atoms in
the surface of a two-layer Cu(111) film, from a full multiple-
scattering cluster calculation of the diffraction pattern. (a) The
reconstruction using a simple phased Fourier integral, (b) the
improvement using the deconvolution method described in the
text. The model in the center shows some of the atoms in the

cluster (the emitter and top layer atoms).
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Fourier integral [Eq. (4)] can be seen in Fig. 3(b), applied
to the same calculated diffraction pattern. The improve-
ment in the image is dramatic. The local maxima are
moved back to the correct locations of the atoms in the
sample. The shaded regions of the contours in the decon-
volved image are slightly larger than the diffraction limit
(~0.5 A diameter). In addition, the next-nearest-
neighbor atoms, which are invisible in the ordinary trans-
form, become readily apparent in the deconvolution. The
deconvolved image of Fig. 3(b) is produced in a single
step, without prior knowledge of the atom positions.
This is still a direct transform method, and an image of
all near-neighbor atoms in the correct positions is created
at the same time. Applications of the scattered-wave in-
tegral transform theory show that it corrects for image
aberrations introduced by the anisotropy of the scattered
object waves, as well as those due to the angular distribu-
tion of the emitted reference wave. It reduces to Barton’s
phased Fourier transform® in the case of s-wave reference
and object waves.

II. SCATTERED-WAVE INTEGRAL TRANSFORMS

The factor a(k) appearing in Eq. (4) is an apodizing
function, that attenuates the diffraction pattern ampli-
tude as Ifc\x,k\yalkl, to avoid oscillations in the Fourier
transform due to the finite range of momentum in the
data. This factor arises naturally in the way that we ordi-
narily process the data. Diffraction patterns are original-
ly acquired as a function of momentum direction relative
to the sample normal Ai. The normalized, oscillatory part
of the photoelectron diffraction pattern in polar and ax-
imuthal coordinates Y(©,,®;) is then projected into a
plane using a change of variables equivalent to an ortho-
graphic projection:

X(ky, @y)dkdk, =cosOyx(Og, 2y)d 0y 5
with
k" =k Sin(eﬁ) .

With an apodizing function of a(©,)=cos©;, the
Fourier-transform integral becomes®*

o= [ [ grarok, e akd, . ®)

The purpose of the deconvolution factor F(k,r) is to
correct for distortions in the holographic image ®(r) that
are due to the angular dependence of the atomic-
scattering factor, as well as angular factors in the
diffraction intensity (k) due to the atomic photoemis-
sion matrix element for cases other than s-wave emitters.
The deconvolution factor Fk,r) is derived from the
functional form of the scattered waves by replacement of
the scattering atom position vector r; by the general posi-
tion vector r. In the case of s-wave emission, which is
used to approximately model high-energy Auger
diffraction,” F(k,r) is formed from the generalization of
the atomic scattering factor to a 6 degree-of-freedom
function: f(k,r). The corrected Fourier integral of Eq.
(4) is actually a special case of a more general imaging in-
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tegral transform, that we now proceed to develop.

To illustrate the construction of the scattered-wave in-
tegral transform, consider the final-state wave function
for photoemission from an atom at the origin single-
scattering from a near neighbor located at r 5

Yo K)=1o(k) + o (k,1;) . )

The first term represents the emission from the emitter
atom in the absence of the scattering neighbor, and plays
the role of the reference wave in the holographic inter-
pretation of photoelectron diffraction. Similarly, the
scattered waves 9, are the object waves.

The photoelectron diffraction pattern is formed from
the angular dependence of the photocurrent, which is
proportional to |¢,,(k)|>. The component of the
diffraction pattern |i,,|* containing the holographic
fringes is called the anisotropy,

Itptotlthbolz
%ol

Various approximate experimental techniques are used to
approximately determine the angular dependence of the
reference wave |if,|% %12

Given the definition of Eq. (8) the single-scattering an-
isotropy can be written

* 2
=t B 1

Yo Py lgol®

The Fourier transform of the first term of this expression
produces the “direct” holographic image of the scatter-
ing atom. The second term above leads to the “twin” im-
age, and the third term has low angular-frequency com-
ponents that contribute to artifacts in the image at small
radii.*

In the simplest case, for which both the direct (refer-
ence) wave i, and the scattered (object) waves i, are s-
like, the reconstruction integral of Eq. (1) produces
“ideal” images of atoms at the correct locations (see
below).>” Deviations of both the reference wave and the
object waves from s-like angular dependence lead to im-
age aberrations in the reconstruction. Thus, we can use
the functional form of the image term in Eq. (9) as a
guide to create a “test function,” which will be compared
to the actual hologram (or diffraction pattern) of the sam-
ple.

This “test function” is found by replacing the specific
atom-position vector r; in the scattered wave ¥,(k,r;) of
Eqg. (9) by the general vector r. We form a new function
from the scattered waves and the reference waves

_%ko o
= (10)

It is important to stress that this is now a generalized
function of both momentum and position with 6 degrees
of freedom, and it does not depend on knowledge of a
specific atom location.

We use the generalized scattered wave of Eq. (10) as a
kernel for an image reconstruction integral. This is given
by

k)= e ®

()]

V.dk,r)
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rd(n)= [ a(®)[ ¥, dk,1)] " Wk)dQ; . an

This result forms the basis for a series of progressively
more complex integral transforms for creating images
from diffuse electron diffraction patterns. In the case of
s-wave reference and object waves, it reduces to the
phased Fourier transform derived by Barton.’ For s-
wave emitters, but including the angular dependence of
the scattered waves, Eq. (11) reduces to the scattering-
factor deconvolution Fourier integral [Eq. (4)] whose use
has been described earlier.>’

Under both the plane-wave approximation and the
spherical-wave-corrected point-scatterer approximation,
the scattered-wave integral transform will have the form
of a generalized phased Fourier transform, shown in Eq.
(4). Therefore, for convenience, we refer to these speciali-
zations of the integral transform of Eq. (11) as the
scattered-wave-included Fourier transform SWIFT. The
definition of the integral transform has been made in
terms of an image function r®(r) in order to maintain
consistency with previous usages of image func-
tions, 16923

In the simple case of an s-wave emitter and scatterer,
the scattered-wave kernel is easily seen to be

eikr —ik
wref(k’r)=fOTe ! r, (12)

where f, is the s-wave atomic-scattering factor for the
scattering atom. Substitution into Eq. (11) gives

O(r)=e ~ikrL

So

which is identical to Barton’s phased Fourier integral

[Eq. (1)], except for the additional complex factor that de-
pends on the magnitude of the momentum (or energy).

In the case of an s-wave emitter, but now allowing for
anisotropic scattering from the object atom at position r i
the single-scattering wave function can be written in the
form

Jakyxe*an; , (13)

eikrj "
—iker,
i (14)

Y=o 1+ r) E—e
J
where the scattering factor f (k,rj) can obtain spherical-
wave corrections. By inspection, the second term of this
approximate wave function generates the scattered-wave
kernel function W by the replacement of r; with the
general vector r. After substitution into Eq. (11) this
simplifies, through the change of variables discussed
above, to

r<D(r)=re_”"fff(li 5

This is the deconvolution integral that we have previous-
ly used to correct for the atom shift and asymmetry intro-
duced by the atomic scattering factor, for diffraction pat-
terns of an s-emitter (such as the high-energy Auger holo-
gram of Fig. 2).> Notice that the scalar phase factor e _”f',
which is important in filtering out multiple-scattering
path contributions to holograms averaged over several
energies, arises in a natural way in this treatment.>716.24

x(k, ke dk dk, . (15)
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An alternative way of describing the generalized
Fourier integral [Eq. (4) above, or Eq. (15)] makes use of
the “radial image function” concept.?~* The image func-
tion is viewed as a transform relative to a coordinate sys-
tem that is not fixed with respect to the crystal, but ro-
tates in image space. All angles are then referenced to
the direction T in image space. For example, rewriting
Eq. (4) in the case of an s-wave emitter with a plane-wave
scattering factor we have

N ikr cos@.
®(r,2)=e ik [ fT'ise:)X“’?@f-’e %40,

(16)

where the explicit dependence of angles on the direction
in image space is shown. This way of writing the trans-
form, in which [r| and cos6, appear as transform pairs,
makes the idea of a “deconvolution factor” more ap-
parent,

HI. CONSTRUCTION OF SCATTERED-WAVE
KERNELS

For s-wave emitters, the deconvolution factor that ap-
pears in the denominator of Egs. (15) and (6) has been cal-
culated using both the plane-wave atomic scattering fac-
tor,

fpw=%§(2’+ De®sin,P,(k 1) , (17)

which depends on the relative direction of k and r, and
from the spherical-wave-corrected scattering factor,

(s%{,(k,r)=%§(2l +1)e sing, P, (K %)

XV I+ +1)/2(kr Peilti+ D72k~
(18)

Note that in the case of the spherical-wave-corrected
scattering factor, the function £ depends on the magni-
tude of r, in addition to the relative direction of k and r.
The expression for f% in Eq. (18) is from the high-
energy limit of Rehr and Alber’s separable Green’s-
function propagator theory for electron scattering, for
the case of an s-wave emitter.”> Equation (15) with a
plane-wave scattering-factor correction [Eq. (17)] was
used to create the images of Figs. 2—4 . Both the plane-
wave and spherical-wave factors were used in the results
shown in Fig. 5.

The calculated atomic scattering factor f(6)
=|£(6)|e’? for Cu is shown in Fig. 6. This calculation
used the potential of Moruzzi, Janak, and Williams,?® to
determine 20 phase shifts. These (real) phase shifts were
subsequently temperature corrected using a Debye-
Waller factor for 300 K with a Debye temperature of 320
K.2" Spherical-wave corrections were included using the
approximation valid in the high-energy limit, as shown in
Eq. (18).”® At 914 eV and with a nearest-neighbor dis-
tance of 2.55 A, kr~40, and so this approximation is
well justified.
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FIG. 4. Reconstructed image of a plane of Cu atoms from a
cluster multiple-scattering calculation simulating a two-layer
Cu(111) film. The diffraction pattern was the same as that used
in Fig. 3. The reconstruction was done using the plane-wave
scattered-wave deconvolution discussed in the text. Distances
arein (A).

The scattered-wave deconvolution integral that results
from the “test function” model, Eq. (15), differs from the
definition given by Eq. (6) by a phase factor and the sca-
lar prefactor r. The phase factor is necessary for combin-
ing holographic inversions at different energies.?'%>7 In
single-energy holograms, it is removed upon taking the
modulus squared of the image function, |®(r)|?, whose

intensity represents the holographic image. The prefac-
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FIG. 5. Six different methods of image reconstruction are il-
lustrated using the calculated diffraction pattern from a four-
atom chain. The simple phased Fourier integral (F=1) is at the
bottom. The remaining curves show plane-wave and spherical-
wave deconvolution factors using amplitude along, phase alone,
or full scattering factor. e
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 FIG. 6. Comparison of the plane-wave- and spherical-wave-
corrected atomic scattering factor for Cu LVV Auger electrons.
The approximation used for the spherical-wave correction is
discussed in the text. The angular dependence of the amplitude
of the scattering factor, which has an approximate exponential
shape, contributes to a broadening in the holographic image of
an atom. The angular dependence of the phase leads to a shift
in the atom position.

tor of r has a physical interpretation: it corrects for the
1/r decay of the outgoing electron reference wave. How-
ever, for the results shown here, we have used the
definition of Eq. (6), so that the atomic image decreases in
intensity away from the origin (see Fig. 5). As these tech-
niques become better understood in terms of reliability,
the use of #2|®|? may help improve the visibility of next-
nearest-neighbor atoms, and suppress the remnant of the
emitted reference wave at the origin.?

Relatively simple expressions for the scattered-wave
kernel can be derived for higher angular momentum pho-
toemission initial states in the plane-wave or point-
scatterer approximations.?>?® Following the formalism
of Muster de Leon et al.,” the single-scattering final-
state wave function can be written as an expansion in
spherical harmonics,

bol)=3 ¥, ®)+e “U3Y, ®)4G,, (1) | A, »
Lf f 13 f f
(19)

where Ach o« (¢Lf|?~’f|¢c) is the dipole matrix element

between the core state and the final state of angular
momentum L, € is the photon polarization vector, and
Y =¢"sind ; is the ¢ matrix for scattering from the neigh-
bor atom. The double-scattering term that involves the ¢
matrix for the emitter, necessary for flux conservation in
the single-scattering cross section,?® has been left out
since at high kinetic energy this backscattering term is
very small,

In order to achieve atomic resolution in the recon-
structed image, we require kr]- >>1. .This condition is the
same as that used to justify the approximate form of the
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Green’s function,?
e ikr
kr

The spherical-wave correction factors have the high-
energy limiting form of

_‘/ I(l+1 /2(kr) 1I(I+1)/2kr i . (21)

Gy (D)=4mS—Yi®)Y, Rley(kr)e (kr) . (0)

Substitution of the Green’s function (20) into Eq. (19)
leads to the single-scattering spherical-wave-corrected
wave function

ikr,

f(lf

Y,_f(iE)+
J

¢tot(k)=2 Ach
Ly

XYy (x;) ] , (22)

where we use the spherical-wave-corrected atomic-
scattering factor

f(sl{{,)(k,rj)=%§(2l + 1Py (k2 e (23)

From this expression, the scattered-wave kernel for
primary photoemission from an s state into a single p-
wave final state is found using the same generalization
procedure we have used earlier,

Y (89) o

Ve dk,r)=—x——
rrlloT) = Y, (k) r

—1k rf(l) k r) 24)

In the scanned-angle geometry, this does not differ great-
]y from the expressmn found for s-wave emitters, since
€.k is a constant (the €7 term is not constant, however).
In terms of the generalized Fourier integral (4), the
spherical-wave deconvolution function for an s initial-
state core level is simply

Fk, r)———f“’ (k,r) . (25)

Note that for both the PW (Ref. 30) and SW (Ref. 28)
approximations, the scattered-wave kernel function fac-
tors into a structure factor times terms containing the
scattering factor,

W, (k,1)=S(k-1)FK,r) , (26)

where  the structure factor is  defined as
S=(1/r)exp[ikr(1—k-F)]. The two forms for the
“deconvolution” factor #(k,r) are

EAchYLf(r)

Srwlker) , plane wave

zAcL,YL,m

%Achfsw(k,r)YLf(r)

, spherical wave .

LzAchYLf(k)

(27)
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IV. ANALYTICAL MODELS OF SCATTERED-WAVE
IMAGE ABERRATIONS

It is worthwhile to consider some simple models of
photoelectron holographic imaging that can be solved ex-
actly. The stationary phase condition used by Barton’® to
justify the phased two-dimensional Fourier integral of
Eq. (1) is exactly satisfied in the case of pure s-wave
scattering. This corresponds to an angle-independent
scattering factor f=fe

Consider the example of single scattering from an s-
wave emitter at the origin by an atom at r=r;, with the
vector connecting the atom positions arranged to be
parallel to the surface normal fi, and the emitter atom
below the scatterer. Assuming f /erI, the diffrac-
tion pattern amsotropy is approximately
X(k)—(Zfo/r Jeos[kr;(1— -kt ‘T;)+¢p]. For positions r
parallel to the 1nternuclear axxs ;» the radial image func-
tion ®(rf;) can be evaluated using Eq. (1) (with a =1) to
give

ilk(r+r;)/2+ )

e )
<I>(r=r’f-)= —27 fO

J
T

sin(kR /2)
kR /2

+twin—irﬂage term , (28)

where R =r—r; is the displacement vector of the image

from the atom position, the twin-image term is given by

the real term with r; replaced by —r;. The modulus of

the radial-image function for pure s-wave scattering has

the “ideal image” form of

2mfy |°
’

J

sin(kR /2)
kR /2

|®(r)|2=

sin(kR'/2) ?

* kR'/2

) (29)

where R'=r +r; is the location of the twin image, and
cross terms from the square of Eq. (28) have been left out.
The factor of 1 in the argument of the sin (kR /2)/kR
function comes from integrating over only the half-sphere
of electron emission outside the sample, which is accessi-
ble to experiment. The full width at half maximum
(FWHM) of the ideal image function, along the radial
direction, is approximately
42

ArFWHM=—k" - (30)

In the case of the 914-eV LVV Auger line from Cu, this
corresponds to an image full width of 0.37 A.

To further illustrate the effects that the angular depen-
dence of the atomic scattering factor has upon the holo-
graphic image, we construct an analytical model scatter-
ing factor of the form

fO=110)e™®,
|f(9)|=f0e—u(1—cos0) , (31)
P(0)=B(1—cosf)+5 .

This form is chosen since it contains the essential ele-
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ments of the shape of the scattering factor at high kinetic
energy for copper, and it leads to a readily integrable im-
age function. This simple functional form has two of the
important characteristics of the atomic-scattering factor
at high kinetic energy: the amplitude of the scattering
factor is strongly peaked in the forward direction, and
the phase depends strongly on scattering angle. By least-

2

2
[®(r=r%;)|*= /o

1+e 22—2¢~ cos[k(r—r;)—pB]
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squares fitting to the actual spherical-wave, temperature-
corrected scattering factor (Fig. 6), we find values of
a~25,56=1.8, =5, and f;=5.0 a.u.

We can now substitute Eq. (31) into Eq. (9) and per-
form the Fourier integral [Eq. (1)] over the half-sphere
representing photoemission outside the crystal. The re-
sult gives a radial image function whose leading terms are

7,

fi : az-i-[k(r—-rj)—ﬁ]2

,+&

+twin—image term

2
1+e~4*—2¢ ~22c05(kr)

T

where again the twin-image term is found from the “im-
age” term by the replacement of ryby —r;. Asa—0and
B—0, this reduces to

2

2 sin’[k(r—r;)/2
|¢(I')|2= fO £ ; ]
+twin—image term
4 .
So | sin®(kr/2)
+Q2r)? | — | ——== - ~
(2m) rj k2r2/4

(33)

which is equivalent to the “ideal” image function for the
case of pure s-wave scattering with an s-wave emitter,
with the exception of the last term. In both cases we
have again ignored small cross terms in evaluating
|®(r)|%. The last term in (33) is smaller than the real im-
age and twin image by the factor (f, /r; )2, which was as-
sumed to be small in the s-wave scattering case. This is
not true for the forward-scattering geometry, and there is
therefore a “forward-scattering artifact” that appears at
or near r =0 (see also experimental examples in Ref. 4).

In the case of Cu at 914 eV, the factor « is quite large,
so that the exponential terms in Eq. (32) can be neglected.
In this limit the model image function [Eq. (32)] for an
anisotropic atomic scattering factor has the approximate
form of a Lorentzian function. The image function peaks
at a radius of

r=rj+%'. SR S < (34)
The full width of the image at half maximum is just
ArFWHM=2% . - (35)

This simple analysis has many of the important
features of the full multiple-scattering simulations. First,
note that the constant part of the phase #(8), which was
called 8 and is equal to the forward-scattering phase shift,

40+ k22

, (32)

[

does not enter into the expression for either the atom po-
sition or the image shape. Instead, the cause of the atom
shift is clearly due to the angular dependence of the
scattering factor phase shift, with the dominant contribu-
tion coming from the cos@ Fourier component which is
proportional to the factor 8. For Cu at 914 eV, the atom
shift in this simple model is found to be
dr~B/k=5/15.5 A~0.3 A. Considering the simpli-
fications made in deriving these analytical results, this is
in very good agreement with the results from full
multiple-scattering simulations for atom chains® which
show a shift of the order of ~0.5 A. If the phase factor
is fit only in the small-angle region below 45° scattering
angle, the predicted atom shift is the same as that found
in the multiple-scattering simulations. This means that
an inspection of the atomic-scattering factor angular
dependence may be used to determine the extent of the
atom shift in a holographic reconstruction.

The broadening or peak width of the Lorentzian line
shape is determined by the angular dependence of the
amplitude of the scattering factor, as expressed by the pa-
rameter o. Again using the appropriate values from the
fit to the Cu scattering factor, we get an image width
along the radial direction of Ar=2a/k~3 A. This is in
general agreement with the elongated ellipsoidal tubes
seen in forward-scattering images perpendicular to the
sample surface.? The angular envelope of the amplitude
part of the scattering factor also reduces the image inten-
sity, by an amount 1/, as compared to the ideal s-wave
image.

In order to improve the resolution it is desirable to
minimize the effects of the angular variation of both the
amplitude (smaller @) and phase (smaller ) of the scatter-
ing factor. This may be done by physically altering the
experiment through different choices of electron energy,
sample temperature, or scattering geometry, such as ar-
ranging to enhance backscattering instead of forward
scattering. Alternatively, the effects of the scattering fac-
tor can be removed by the SWIFT generalized deconvo-
lution procedures discussed here.

We have shown that a completely arbitrary phase shift
produces no atom shift in the holographic image, so long
as the angular dependence of the phase is small (3—0).
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This is partly the reason that the holographic images of
single-crystal samples have atoms in the correct posi-
tions, even though multiple-scattering effects are large in
the forward-scattering geometry. As shown in Fig. 1,
emitter atoms lying several layers below the surface do
not contribute significantly to the forward-scattering
peak along the internuclear axis. As more emitter atoms
are added to the chain, the higher-order fringes at larger
scattering angle are strengthened relative to the forward-
scattering peak, since each atom has the same nearest-
neighbor environment. These results confirm the results
of previous calculations using a different formalism for
embedded Cu chains.?!

Since many different scattering paths can contribute to
the final outgoing spherical wave from any particular
subsurface atom in a single-crystal sample, the effective
angular distribution of the phase tends to have less an-
isotropy than the single-scattering case. The reduction in
the relative intensity of the forward-scattering peaks in
single-crystal holograms also contributes to a reduction
in the image full width, since the diffraction pattern in-
tensity becomes effectively more isotropic This can be
seen in the experimental radial image functions from
Cu(111),%3 which show an image full width of 0.4-0.5 A,
which is close to the diffraction limit. However, the in-
tensity of the feature is weak.

V. MULTIPLE-SCATTERING SIMULATIONS

The Lorentzian-like analytical model of a thin-film im-
age reconstruction predicts several important features to
be expected from a numerical simulation of the scatter-
ing.

(i) An arbitrary isotropic phase shift has no impact on
the image, but the angular variation of the phase causes a
shift in the apparent atom position. The direction of the
shift is given by the sign of B, which measures the
(1 —cos@) dependence of the phase shift, and is positive
for phase increasing with scattering angle.

(ii) The angular dependence of the amplitude of the
scattering factor causes a broadening of the atomic im-
age, or loss of resolution.

(iii) The angular dependence of the amplitude of the
scattering factor reduces the intensity of the atomic im-
age.

We expect these analytical results to be a guide in
selecting suitable deconvolution factors for correcting
aberrations in forward-scattering images. For example,
(i) suggests that removing the phase dependence alone
will shift the atom positions, but not affect the asymmetry
or peak width. Similarly, from (ii) we expect that remo-
val of the effects of the scattering factor amplitude on its
own should correct the image asymmetry without mov-
ing the atom positions, and the image intensity should in-
crease. Lastly, (ii) and (iii) imply that the image resolu-
tion and intensity can be improved by removal of the am-
plitude part of the scattering factor alone, but this will
not shift the apparent position of the atomic images.

These concepts have been tested using a variety of im-
age reconstruction integrals based on Egs. (4) and (6). In
order to include the strongest multiple-scattering effects
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that are present at high kinetic energy, calculations of the
diffraction pattern from a linear chain of four copper
atoms were used in these simulations. The atom spacing
is 2.55 A, to model the [110] nearest-neighbor direction
in fcc copper. The multiple-scattering calculations were
done using a cluster geometry and a formalism originally
developed by Saldin and Pendry for low-energy electron
diffraction,?’ and subsequently modified for photoemis-
sion, Auger electron, and Kikuchi electron diffraction
calculations.” the diffraction patterns are calculated for
s-wave emission from the atom at the end of the chain.

Seven different reconstruction algorithms are com-
pared in the radial image-function plots shown in Fig. 5.
The direction of image reconstruction is along the chain
axis. The simple phased Fourier transform is represented
by Eq. (4) with F=1. This image function illustrates the
basic aberrations that we have discussed. There is a shift
in the local maximum for the nearest-nelghbor atom of
about 0.5 A, and the shape of the peak is anisotropic,
with a tail extending towards larger radii.

Six different deconvolution treatments are compared in
the same figure. These are based on deconvolution of the
scattering phase, the scattering amplitude, and the full
scattering factor, for both a plane-wave and spherical-
wave form of the scattering factor. The spherical-wave
scattering factor used in the deconvolution is not the ex-
act form, but rather the approximate form shown in Eq.
(18). Since this expression is notovalid at small radius, the
deconvolution is truncated at 2 A.

Removal of the effect of the amplitude of the scattering
factor by deconvolution of F=|£(6,r)| is seen to increase
the intensity of the atom images, and to largely remove
the anisotropy of the atom image. However, the local
maxima still are shifted from the expected position
(shown by the dashed vertical lines). Notice that the
spherical-wave deconvolution gives a larger image inten-
sity than the plane wave. Since removal of the amplitude
alone does not shift the atom positions, this technique
may be useful when applied to single-crystal holographic
images, or equivalently for thick films, which will already
have atoms at the correct locations.

Deconvolution of the phase alone is accomplished with
a factor 27=f(6,r)/|f(9,r)l. This causes a shift in the
atom positions to smaller radius, while the anisotropy is
largely still present. There is a smaller difference between
the spherical-wave and plane-wave scattering fctor
deconvolution in the phase correction. Notice that the
near-neighbor atom position is overcorrected by the
phase deconvolution. Furthermore, removal of the phase
alone does not reduce the image width.

When the full scattering factor is used in the deconvo-
lution integral, the image of the near-neighbor atom is
shifted to the correct position, and the peak shape be-
comes fully symmetric. The intensity is also increased.
Again, the spherical-wave factor provides an improve-
ment in intensity as compared to the plane-wave decon-
volution. Notice, however, that the atom positions of the
next two atoms in the chain are overcorrected slightly by
this process. This is due to the same multiple-scattering
effects that result in single-crystal images having atoms at
the right position. The scattered wave emanating from
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atoms further down the chain are less forward-peaked
than the near-neighbor scattered waves. In particular,
the effective angular dependence of the phase of the
second and third atoms from the emitter is more isotro-
pic, so that when the phase correction is applied these
atoms are shifted too far towards the origin.

The behavior of the deconvolution method as applied
to strong forward scattering along atom chains confirms
each of the features found in the analytical model: the
atom shift, image asymmetry, and intensity loss.

VI. APPLICATIONS

Perhaps the most important feature of the structure of
the general transforms Egs. (11) and (4) is that they
preserve the direct inversion of diffraction patterns, and
produce a complete three-dimensional image without the
need for a priori judgments about atom positions (cf. the
methods in Refs. 5 and 6, which require a knowledge of
the location of bond directions).

In some cases, it may be possible to determine the bond
directions of an unknown structure from inspection of
the diffraction pattern. This is often true if a “reference”
diffraction pattern can be obtained.* However, it is not al-
ways easy to identify the forward-scattering directions in
a photoemission diffraction pattern, even for a relatively
simple system such as an ultrathin film. As an example,
in Fig. 7 we show the experimental diffraction pattern
from an epitaxial fcc Cu(111) film grown on an Ir(111)
single crystal. This film was determined to have between
four and six layers of copper atoms, so that only three to
five layers of emitter atoms are contributing to the
diffraction pattern (the outermost layer contributes no
significant features to the diffraction pattern).® In the fcc
(111) stacking sequence, atoms in each layer have the
same near-neighbor environment. Since the holographic
inversion process is linear, a superposition of the
diffraction patterns from each layer simply adds intensity
at identical atom locations. The holographic image
reconstructed from this data has been reported in Ref. 3.

The Auger diffraction pattern from Cu/Ir(111) film
shows many symmetrical lobes of roughly the same inten-
sity. Without addition information, it can be difficult to
separate out the peaks that are due to forward scattering
along internuclear axes from the higher-order interfer-
ence peaks, a step required by the image-improvement
techniques of Thevuthasan et al.® and Tong et al.®

Fortunately, the scattered-wave deconvolution method
does not require such prior knowledge. As shown in the
reconstructions of Fig. 3, a complete three-dimensional
image is created as a direct output of the application of
the Fourier integral in the form of Eq. (4) and Eq. (6).

The correction of both the absolute position of the im-
age maximum and the line shape are together important
to the accuracy of the holographic reconstruction. Since
it is possible to obtain symmetrical peaks at the correct
atom sites, the effective resolution will be smaller than
the full width at half maximum of the sin*kR /2)/R?
function. The simulations shown in Figs. 5 and 3 suggest
that the absolute accuracy of holographic images taken
with near-kilovolt energy electrons may reach 0.1 A. To
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FIG. 7. X-ray excited Auger electron diffraction pattern
from a 4—6-monolayer-thick fce Cu(111) oriented epitaxial film
on Ir(111). The diffraction pattern is shown in stereographic
projection, so that pattern is shown as a function of &, and l?y.
The boundary of the pattern corresponds to a maximum
momentum of [k]=15 A ~1,

illustrate this, we show the corrected image of the
Cu(111) bilayer simulation in a different form in Fig. 4.

In addition to accuracy of atom image reconstructions,
the fidelity of the image is important. That is, there
should be peaks at the right-atom positions, but just as
well there should not be “false-atom” peaks at the wrong
places. This is an important distinction between the
holographic  transformation  of  angle-dependent
diffraction patterns, and the one-dimensional Fourier
transform of energy-dependent photoelectron diffraction
data (sometimes called EDPD, for energy-dependent
photoelectron diffraction).’> The Fourier transform of
EDPD data has peaks at every scalar path-length
difference, which can result in a considerable number of
peaks for even a simple system.*®

In very great contrast, the holographic radial image
function for s-wave scattering has peaks at only the
correct atom locations, even in the presence of multiple
scattering.” When forward scattering modifies the angu-
lar distribution, additional peaks are introduced at small
radius in the radial image function.* Such features have
been seen in the single-crystal data from Cu(100) and
Cu(111).7%* They can also be seen at small radius in the
atom-chain calculations of Fig. 5. Some of these small-
radius features have been shown to arise from the
forward-scattering peaks, which contribute to the Fourier
integral as very large wave-vector psuedofringes [see the
“artifact” terms in Egs. (32) and (33)].

Satellite peaks lying between atom positions have been
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seen, for example, in planar image reconstructions of
Cu(100) holograms.? These appear to be primarily due to
cross terms of the form #,(r; )¢ (r;) from the interfer-
ence of scattered waves from two different atoms (the “in-
termodulation noise”?). When forward scattering is
strong, these terms tend to be small because the overlap
in angle or momentum space of scattered waves from
different bond axes is small. In the case of s-wave scat-
tered waves, these terms will be of order (f,/;) smaller

in intensity than the atom image, so that satellite
features, though present should be smaller than the atom
image in both limits.** This is an encouraging sign of the
fidelity of the holographic reconstructions.
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