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Atomic Position Recovery by Iterative Optimization of Reconstructed Intensities:
Overcoming Limitations of Holographic Crystallography
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We propose a rapid new iterative scheme for accurately reconstructing the relative positions of source
and scatterers directly from the data of a monoenergetic point-source diffraction pattern. [t takes ac-
count of the squared object-wave terms neglected in traditional holographic algorithms, does not suffer
from a twin-image problem, and even identifies the chemical species of the scattering atoms.

PACS numbers: 61.14.Dc, 42.40.—i, 79.60.—i

A by-product of the proposal [1] to reconstruct struc-
tural data from a diffraction pattern by computer holog-
raphy has been the stimulation of new thought about
direct methods [2] in crystallography. The earliest [3] of
the holographic reconstruction algorithms used in prac-
tice was based entirely on analogy with ideas current in
optics, and which stem from the seminal work of Gabor
[4]. More reliable algorithms for holographic crystallog-
raphy [5] have been developed subsequently which in-
clude corrections for the anisotropies of atomic scattering
factors [6-9], and that of the reference wave [8,10].

A problem which was recognized early [5(c),6] was the
fact that the object waves are not always much smaller in
magnitude than the reference wave, giving rise to ar-
tifacts on reconstructed “images” [11,12]. Algorithms
which combine data from diffraction patterns due to elec-
trons of several different energies have been proposed
[13] in part to overcome the problem of holographic twin
images [3]. However, with present technology, collection
of photoelectron diffraction data over a large solid angle
range at several regularly spaced energies is a rather la-
borious task (and may be impossible with Auger elec-
trons). We present in this Letter a robust new recon-
struction algorithm, which offers the prospect of overcom-
ing all the above difficulties, using data from a single
monoenergetic diffraction pattern.

We begin by drawing attention to some of the limita-
tions of prior schemes [3,6-10l, for the reconstruction of
the positions of atomic scatterers of different chemical
species, from a single diffraction pattern, when the
scatterers lie on both sides of an emitter atom. We illus-
trate our point by considering a Ni-C-O linear chain
model of a CO molecule adsorbed on the atop site of a Ni
surface. The interference between, say, s-wave electrons
emitted from the C atom (forming a reference wave R)
and those scattered from the nearby O and Ni atoms (the
object waves O) gives rise to a far-field diffraction pattern
which will have an azimuthal symmetry about a polar
axis directed from the C atom towards the O. In Fig. 1
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we show the polar-angle variation 7(8) of the intensity of
this diffraction pattern, for 500 eV electrons, and 6 lying
in the range 0° to 70°, as calculated by an exact mul-
tiple-scattering cluster scheme [9].

We first use Barton’s Helmholtz-Kirchhoff algorithm
[3] to reconstruct the image intensities along a line pass-
ing through the three atoms in our model. The resulting
radial image function (RIF) is shown in Fig. 2(a). The
vertical dashed line on the positive side of the abscissa
denotes the position of the O scatterer relative to the
emitter (the C atom, at the origin), while that on the neg-
ative side represents the position of the Ni atom. Note
the symmetry of the RIF about the origin as a conse-
quence of the holographic twin problem. No particular
indication of the O or Ni atoms is present on the RIF.

We next utilize a scattered-wave included Fourier
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FIG. 1. Polar angle variation of the intensity 7(8) of the
diffraction pattern formed by the emission of an s-wave electron
from the C atom of the Ni-C-O linear atomic chain shown, as
calculated by an exact multiple-scattering scheme. The inset
shows the atomic geometry and the directions of the scattering
paths. The polar axis is defined to lie in the direction from the
C to the O atom. The Ni-C and C-O distances were taken to
be 1.8 and 1.15 A, respectively.
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FIG. 2. Radial image functions (RIFs) along the atom chain
as reconstructed from the diffraction intensities of Fig. 1 by
various methods. (a) Barton’s Helmholtz-Kirchhoff integral.
(b) A scattered-wave-included Fourier transform (SWIFT) algo-
rithm with a scattered-wave kernel containing a spherical-wave
electron scattering factor of an O atom. The profiles on the
positive side of the abscissa are multiplied by the scale factor
shown to compensate for an inverse kernel containing large
forward-scattering factors. (c) Same as (b) except using a
scattered-wave kernel of Ni. (d) The distribution p§” for O, as
calculated by the APRIORI algorithm after four iterations. (e)
The corresponding distribution p&’ for Ni, found by the same
optimization process. The vertical dashed lines represent the
positions of the Ni and O scatterers assumed in the calculation
of 1(9) in Fig. 1.

transform (SWIFT) [7-9] to calculate the corresponding
RIFs, using the spherical-wave scattering factors (4) of O
and Ni separately in the scattered-wave kernel. The re-
sulting RIFs are shown in Figs. 2(b) and 2(c), respective-
ly. In Fig. 2(b) a peak is indeed seen close to the position
of the O atom, but a quite spurious one is also seen on the
opposite side of the emitter, where no O atom is present.
The latter feature is either due to the incomplete removal
of the twin image of the O or else due to the incomplete
filtering out of the image of the Ni atom. The profile
shown in Fig. 2(c) shows a peak close to the Ni atom, but
also an unwanted artifact on the other side of the scatter-
er.

1) =|RK)| 2+;px(r;) {[R*(k)OX(k,r;) +c.cl+0% (k,ri)zz.pz(rj)Oz(k,rj) } ,
Wl »J

Szoke [14] has recently pointed out that many of the
spurious features on holographically reconstructed im-
ages, like those in Figs. 2(a)-2(c), are a consequence of
the use of back-propagation algorithms, with their atten-
dant diffraction limits and problems of wave interference.
Since the aim of holographic crystallography is the deter-
mination of the positions of scatterers rather than their
scattered wave fields, he suggested introducing into the
theory the idea of a spatial distribution function to be
determined from the experimental data and a knowledge
of the forms of the reference and scattered waves. We
propose here a novel algorithm for determining such
a function, which we term atomic position recovery
by iterative optimization of reconstructed intensities
(APRIORI).

Consider first the kinematic expression for the ampli-
tude of an electron wave of detected wave vector k, emit-
ted at the origin of a coordinate system, and scattered by
atoms of chemical species X at positions specified by the
vectors r;:

Ak) =R(k)+xz_px(r,-)0x(k,r,-) , (1
)

where the (real) functions px(r;) [14] represent the spa-

tial distribution of atoms of chemical species X. We take

the emitted wave function as the reference wave R of an-

gular momentum quantum numbers Im, i.e.,

R(K) =Y (k)

and

10))

o
(fl) fX (k,l'i) ei(kr;—k'n)

ri

Ox(k,l',‘) = Y[m (3)
as the object waves scattered by nearby atoms. Equations
(2) and (3) represent amplitudes measured on a distant
spherical detector approximately centered on the emitter,
so we have dropped some unimportant common factors.
The atomic scattering factors in (3) take the spherical-
wave form [8]

Pk,r;) = 7lzc1(kr,-) 3 QI+ Diferlkr) ek £,

(4)

where ¢ is an atomic f-matrix element of angular
momentum quantum number /' for the chemical species
X, Py a Legendre polynomial, and ¢;(kr;) the polynomial
coefficient of the Hankel function 2 (kr;) [15]. Inelas-
tic damping is taken into account in Egs. (2)-(4) by al-
lowing the wave numbers k to be complex. Using Eqgs.
(1)-(3) we see that the intensity, I(k) [=|4&)|?], of
the diffraction pattern, regarded as a function of the wave
vector k of the detected electron, can be written

(s)

where c.c. denotes complex conjugation, and Z is another dummy index specifying a chemical element and r; the coor-
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dinate of chemical species Z.

We take as our task the determination of the spatial
distributions px(r;) land pz(r;)]. We describe below an
iterative process for determining these quantities from ex-
perimental measurements of I(k) and calculated values
of R(k) and Ox(k,r;) [and Oz(k,r;)]. If we allow the
position vectors r; and r; to take a set of values on a uni-
form grid of points [14] in a space large enough to in-
clude all expected positions of the scattering atoms, we
may obtain an nth-order estimate p{® of the distributions
Px, by the following method.

We define the error £ “?(k) in our nth-order estimate
of the experimentally measured intensity /exp(k) at the
position on the diffraction pattern specified by the detect-
ed wave vector k as

E™ (k) =|R(K)|*+ ;p§"’(ri)M}">(k,ri) —ulexp(k)

(6)

where p a constant of proportionality to be determined,
and we take

MP(k,r;) =[R*&)Ox(k,r;)+c.c.]
+0:\§(k,l'i)Zz.pé"_l)(l'j)Oz(k,fj) , (D
+J

a form suggested by the terms within the curly brackets
of Ecg. (5). Note that M{” contains the distributions
£=(r;) determined by th ious iterati
p r;) determined by the previous iteration.
For any particular iteration n= 1, we propose finding
the best fit to Iexp(k) by minimizing an *“objective func-
tion” [16] defined by

~ZIE® )] ®
subject to the constraints that
u=0, ©)
p(r;) =0 for all X and r; (10)
and that
;p}")(ri) =Ny forall X, (11
i

where Ny is the number of scattering atoms of type X.
The problem has now been cast in a form from which it
may be solved directly by, e.g., an iterative application of
the simplex algorithm [17]. By this means, we find the
values of the constant y and of the distributions p”(r;)
which minimize the errors (8) of our fit to the data points
Iexp(k), using the values of the distributions p$"~"(r;)
from the previous iteration. The iterations are halted
when p(r;)=p{~"(r;), i.e., when the distributions
have converged to self-consistency.

As a test of our algorithm, we simulated an “‘experi-
mental” angular distribution of intensities Iexp(k) equat-
ing these to a set of values of 7(8) from Fig. | at 64
equally spaced polar angles 8 in a measurable range from
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0° to 70°, where the direction k is specified by the polar
and azimuthal angles 6 and ¢. The spatial grid of test
positions, r;, of the atoms was taken to be a uniform grid
of 128 points in the range =5 A from the C atom along
the polar axis (making a grid spacing of a little less than
0.08 A). Since we have described a self-consistency cy-
cle, the final distributions p” should be quite indepen-
dent of the initial values of pé‘” used in (7) to start the
process. However, in our test case, we have found that
taking

péO)(l'j) ==62‘X5,,‘,j (12)

gave rise to the most rapid convergence. This includes
the square moduli of the object waves from the same
atom, but excludes the corresponding cross terms from
different atoms in the initial estimates of Mx(k,r;) in (7).

We found that the distributions p,{z") converged after
just four iterations of the above algorithm, after which
our constant of proportionality u also converged to within
a few percent of the correct value relating our “experi-
mental” intensities /exp(k), in the arbitrary units of Fig.
1, to the theoretical expression for 7(k) in (5). The re-
sulting distributions p(S‘” and p&“i) for the O and Ni
scatterers, respectively, are shown in Figs. 2(d) and 2(e).
The largest spikes on these histograms are at the pixels
closest to the positions of the O and Ni atoms, respective-
ly. The much smaller spikes are presumably due to the
multiple scattering neglected in the reconstruction algo-
rithm. Nevertheless, the accuracy with which the posi-
tions of the scatterers are located relative to the C emitter
appear in dramatic contrast to that from panels (a)-(c)
in the same figure. Also notable is the complete absence
of twin images in panel (d) or (e). This has been
achieved without the need for multiple-energy diffraction
data [13]. Perhaps most striking is the clear identifi-
cation for the first time of the different chemical species.
The computer time required for the reconstruction of
profiles 2(d) and 2(e) by our new algorithm was compa-
rable with those required for Figs. 2(b) and 2(c), from
the SWIFT scheme.

We also tested the effects of perturbing the diffraction
intensities of Fig. 1 by random Gaussian noise. We found
no perceptible shifts of the reconstructed peak positions
for errors, Al, of & o (where o is a standard deviation)
of up to 4% of the mean intensity of the diffraction pat-
tern. Even for Al of up to about 12%, we found that the
Ni atom peak was reproduced at the same position, with
the O atom shifted just three points of our spatial grid
(i.e., about 0.2 A). This is an encouraging indication of
the stability of our technique even in the presence of fair-
ly noisy experimental data.

In the above example, of course, the chemical species
of the scatterers, and the number Ny of atoms of each
species were known beforehand. In an application of our
algorithm to real experimental data, the sums over X and
Z above could be restricted to the chemical elements
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known to constitute the sample, as determined by, e.g., an
Auger or photoelectron spectrum.

It might be argued that the particular example we have
presented above to illustrate our method belongs to a
class of atomic geometries, which includes the case of a
source atom forming part of a simple adsorbate on a sur-
face, in which the scattering is fairly kinematical, and
that our technique may not be so applicable, for example,
when the sources are buried deep beneath a surface, when
strong multiple-scattering effects may be unavoidable.

However, we argue that it may be possible to handle the

problem of structure refinement by an adaptation of our
method even in much more general geometries. It should
be noted that, in a typical problem in surface crystallog-
raphy, the relative positions of most of the atoms
affecting the measured intensities are assumed known,
and effort is directed towards determining the positions
(or small displacements from certain reference positions)
of a few of them. We may then redefine our reference
wave R(k) as being not just that emitted by a single
atom, but that arising after the scattering of emitted
wave from some known reference structure [14], as calcu-
lated by a full multiple-scattering computer program. It
is then often reasonable to regard the scattering of this
reference wave from the small number, which we reiden-
tify as Ny for species X, of atoms of unknown positions
(or which deviate from their positions in the reference
structure) as being kinematic, as assumed, for example,
in the “tensor LEED” (low-energy electron diffraction)
technique [18]. For such a problem a kinematic treat-
ment of the object waves in a reconstruction algorithm
would be no limitation.

More generally, it is possible that our method may be
extended to include some multiple scattering of even the
object waves. For example, if we were to include double
scattering, our matrix elements M (k,r;) would contain
terms involving double and triple products of the distribu-
tions pz(r;). A procedure can still be envisaged in which
some initial guess péO) of these distributions is refined by
the same type of iterative optimization process.
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