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A B S T R A C T   

Work zone safety management and research relies heavily on the quality of work zone crash data. However, it is 
possible that a police officer may misclassify a crash in structured data due to: restrictive options in the crash 
report; a lack of understanding about their importance; lack of time due to police officers’ work load; and 
ignorance of work zone as one of the crash contributing factors. Consequently, work zone crashes are under 
representative in crash statistics. Crash narratives contain valuable information that is not included in the 
structured data. The objective of this study is to develop a classifier that applies text mining techniques to quickly 
find missed work zone (WZ) crashes through the unstructured text saved in the crash narratives. 

The study used three-year crash data from 2017 to 2019. The data from 2017 to 2018 was used as training 
data, and the 2019 data was used as testing data. A unigram + bigram noisy-OR classifier was developed and 
proven to be an efficient and effective means of classifying work zone crashes based on key information in the 
crash narrative. The ad-hoc analysis of misclassified work zone crashes sheds light on when, where and the 
plausible reasons as to why work zone crashes are more likely to be missed.   

1. Introduction 

Work zone activities are essential for maintaining good roadways, 
supporting economic development and competition, and improving 
safety. While road work is temporary, the poor decisions and mistakes 
made by motorists that lead to work zone crashes can have lasting im
pacts. According to the Federal Highway Administration (FHWA), 
27,037 people, or 773 per year, died in work zone crashes in the U.S. 
from 1982 through 2017 (CDC, 2020). In Wisconsin, more than 2600 
work zone crashes took place every year over the past five years, 
resulting in 5200 injuries and 50 deaths (WisDOT, 2020). Work zone 
safety for both motorists and workers is an urgent issue that must be 
addressed through better design, operations and management. 

Observational safety analysis has been instrumental in identifying 
potential deficiencies in work zone design and traffic operations. Ex
amples of safety analyses based on crash data include: crash rate esti
mation across different work zone configurations (Cheng et al., 2012; 
Daniel et al., 2000; Elias and Herbsman, 2000; Khattak et al., 2002); 
crash pattern identification and categorization(Garber and Zhao, 2002; 

Graham et al., 1978; Weng et al., 2016); work zone crash prediction (Li 
and Bai, 2009b; Meng et al., 2010); and evaluating the safety of inno
vative work zone designs and management strategies (Li and Bai, 2009a; 
Maze et al., 2005; Rahman et al., 2017; Ullman et al., 2008). All of the 
aforementioned examples are dependent on the completeness and ac
curacy of work zone crash data. Although narrative contains valuable 
information about a specific crash, (such as a work zone crash), the crash 
in the structured data of the narrative may not have been coded or 
recorded as that specific crash type. 

Work zones near traffic, whether they involve major road construc
tion, utility work, or emergency vehicles at the side of the road, always 
present some risk to both drivers and workers. Identifying and analyzing 
historical work zone crashes can save lives; however, work zone crashes 
are missed in the structured data for a variety of reasons: restrictive 
reporting options in tabular forms (Blackman et al., 2020; Ullman and 
Scriba, 2004; Wang et al., 1996); lack of understanding about the 
importance of work zone crashes, overloaded by work during crash 
reporting time (Graham and Migletz, 1983); and misclassification of 
work zone areas and/or work zone activities (Wang et al., 1996, Farmer, 
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2003). 
Generally, a police officer makes certain judgments about a crash 

based on the severity of the crash and the driver. A fatal crash is usually 
given the highest reporting priority, compared with property damage 
crashes which usually receive a lower priority (Ye and Lord, 2011). 
Work zone crashes that happened at or near work zones with less severe 
or no injuries are not reported in structured data (Wang et al., 1996). In 
addition, the probability of reporting an injury crash increases with the 
age of the driver (i.e., for young children, it is 20–30 %; and for persons 
over 60, it is 70 %); and the number of vehicles involved. (Hauer and 
Hakkert, 1988). A crash involving a younger or female driver has a lower 
probability of being reported (Amoros et al., 2006). Estimates based 
solely on structured data reported by the police greatly underestimate 
the results of the safety analysis (Abay, 2015). Safety analysts often 
resort to a manual review of the crash narrative in order to recover the 
missed work zone crashes. The narrative is the detailed description of a 
crash by law enforcement officers. While crash reports contain valuable 
information, manually reviewing them is time-consuming and labor 
intensive. 

Crash narratives include a significant amount of information that is 
presented in an unstructured text format. For example, a work zone 
narrative may include any combination of the words “orange barrels”, 
“orange signs”, “flags”, “flagging operations”, “workers”, or “flashing 
lights”. Text mining techniques use automatic information extraction 
and text classification, providing a predictable, consistent and efficient 
way of reviewing thousands of crash reports in a matter of minutes. The 
goal of this study is to develop a text mining-based work zone classifier 
that uses crash narratives in order to quickly recover missed work zone 
crashes and to develop a better understanding of the circumstances 
under which work zone crashes are more likely to be missed. The in
formation gained from this study will be helpful in providing recom
mendations on how to better collect and analyze work zone data. 

2. Literature review 

Text mining was introduced as a way to enable machine-supported 
analysis of text (Feldman and Dagan, 1995). Information retrieval, 
natural language processing, information extraction, text summariza
tion, opinion mining and sentiment analysis are some of important areas 
of text mining research (Allahyari et al., 2017). Text mining has become 
both popular and necessary in many fields, including financial services, 
health care, transportation, communication and media, information 
technology and internet, political analysis, public administration and 
legal services (Gupta and Lehal, 2009; Inzalkar and Sharma, 2015; 
Maheswari and Sathiaseelan, 2017). 

Most text mining algorithms require some text preprocessing, such as 
tokenization, filtering, lemmatization, stemming, etc. Once preprocess
ing has been completed, algorithms for classification, clustering, or in
formation extraction are applied to the text. Some commonly used 
clustering algorithms are hierarchical clustering, k-means clustering, 
and probabilistic clustering and topic models (e.g., probabilistic latent 
semantic analysis, latent Dirichlet allocation) (Allahyari et al., 2017). 
Examples of popular classification algorithms include naive Bayes, 
nearest neighbor, decision tree, decision rule, support vector machine, 
logistic regression, Rocchio’s algorithm, neural network, associative 
classifier, and centroid based classifier (Allahyari et al., 2017; Brindha 
et al., 2016; Korde and Mahender, 2012). 

In highway safety analysis, most of the text mining-based studies are 
conducted using social media and medical data, while a few studies are 
conducted using crash narratives. Text mining techniques used to 
identify a specific type of crashes are primarily based on keywords, or 
words that are direct or indirect indicators of certain unique and specific 
crash characteristics. Sorock et al. applied Haddon’s injury epidemi
ology model of crash phases to identify pre-crash vehicle activities and 
various work zone crashes from automobile insurance claim narratives. 
In a pilot study, the authors manually selected a set of work zone-related 

words and showed that the keyword “construction” had maximum fre
quency in the dataset (Sorock et al., 1996). Williamson et al. extracted 
patterns of events of fatal injuries from crash narratives based on a 
pre-established text search mechanism (Williamson et al., 2001). Zheng 
et al. identified secondary crashes by using the keywords’ distance, 
which was calculated by the absolute difference of indexes between two 
types of keywords: relationships keywords (RKWs) and events keywords 
(EKWs) (Zheng et al., 2015). 

Rakotonirainy et al. used a keyword selection approach that auto
matically selects keywords in the narratives. The authors used text 
mining to identify curve-related crash factors and their associated 
severity from insurance claim reports. The words mentioned only in 
curve-related crashes were selected as keywords, and the keywords with 
high frequencies were used as the main factors contributing to curve- 
related crashes (Rakotonirainy et al., 2015). Gao and Wu developed a 
verb-based text mining method by applying various Natural Language 
Processing (NLP) techniques that automatically identify the sequence of 
crash events from crash narratives (Gao and Wu, 2013). Their method 
utilized syntactic and semantic information from the text to overcome 
the limitations of previous methods that used predefined keywords. 
However, the process was not completely automatic, as the words with 
similar meaning had to be grouped together manually. Trueblood et al. 
developed a classifier tool in Excel to identify agricultural crash from 
crash narratives. The authors prepared two lists of keywords (agricul
tural and nonagricultural) manually and used the lists to search key
words in the narratives for identifying the agricultural crashes 
(Trueblood et al., 2019). However, their classifier assigns equal weight 
to the narratives that are related to agricultural crash, so it may not be 
effective for large data sets in which narratives are more relevant to 
agricultural crash. 

Existing research also uses structured data reported by the police and 
data from other sources to recover missed crashes. For example, Watson, 
Watson, & Vallmuur used police reported structured data with Hospital 
Admitted Patients (HAP), Emergency Department Information System 
(EDIS) and Injury Surveillance Unit(ISU) data using ‘separation princi
ple’ approach to recover missed crashes (Watson et al., 2015). Salifu & 
Ackaah conducted survey at medical and among drievers and link those 
data to police report to find missed crashes (Salifu and Ackaah, 2012). 
Cheung & Braver used vehicle identification number(VIN) to find missed 
fatalities in single-unit truck crashes from Trucks Involved in Fatal Ac
cidents (TIFA) and Fatality Analysis Reporting System (FARS) data 
(Cheung and Braver, 2016). The TIFA data is prepared from police re
ports and the interview of truck owners. Thomas, Thygerson, Merrill, & 
Cook used hospital and survey data to detect missed crashes that were 
not found in the structured data of the police report (Thomas et al., 
2012). 

While past research has focused on analyzing various aspects of 
traffic crashes from crash narratives, none of the studies emphasized 
missed work zone crashes. Their methods are either complicated, time- 
consuming, external data dependent or require substantial manual 
intervention, which does not meet our research goals. Moreover, the 
data from other sources are not easily accessible to the public and can be 
costly. This study develops a work zone crash classifier that is simple, for 
example, there is no need to manually prepare any keyword lists, and no 
hyperparameters to fine tune. It is also computationally efficient and 
easy to implement. 

3. Data collection 

The dataset comprised 377,479 crash reports, including crash nar
ratives, that occurred between January 1, 2017 and October 31, 2019 
that were acquired from the Wisconsin Department of Transportation 
(WisDOT) through the WisTransPortal data hub. A construction zone 
flag (CONSZONE) within the crash data indicates whether “a crash 
occurred in a construction, maintenance, or utility work zone or is related to 
activity within a work zone”. The reported work-zone (WZ) crashes make 
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up 2.27 %, 2.49 %, and 1.93 % of total crashes for years 2017, 2018 and 
2019, respectively. Narratives were included in 94.21 % of the reported 
WZ crashes and 77 % of the non-work zone (NWZ) crashes. The ratio of 
WZ to NWZ crashes is 1:36, which is a highly imbalanced dataset. The 
two following sample crash narratives were randomly chosen from the 
dataset to illustrate the structure of crash narratives. 

WZ crash narrative example: “Entering construction zone with right 
lane closure. Unit 1 driver stated unit 2 and a semi were straddling 
center line. Unit 1 driver stated thought unit two was merging to right 
lane toward hwy c exit and tried to pass unit 2. Unit 1 driver stated 
himself and semi were straddling traffic lane to stop other drivers from 
passing on right as right lane was closed ahead. Unit 2 stated unit 1 
attempted to pass on left shoulder but ran out of room due to portable 
warning sign. Unit 2 driver stated unit 1 driver side swiped driver side.” 

NWZ crash narrative example: “Unit #2 was stopped in the inside 
straight lane of eastbound university ave., at a red light at the inter
section with n. Midvale blvd. Unit #1 was traveling in the same lane 
directly behind unit #2, and was unable to stop in time to avoid a rear 
end collision with unit #2. The roadway was wet, and the weather 
conditions were rainy.” 

The numeric values within the narratives usually represent date, 
time, driver and road information. The narratives have a certain for
mality but can still be flexible in the sequence of events. In the WZ 
narrative, some sentences contain words that indicate WZ (e.g., “con
struction zone”, “right lane closure”, “portable warning sign”), while 
others do not contain any WZ indicators. In fact, the latter cannot be 
distinguished from sentences that could have been in a NWZ narrative. 
This observation is true of other WZ narratives as well; only a few words 
are indicative of a WZ while the rest of the narrative is not, suggesting 
that presence of just a few words can be used to identify a WZ narrative 
without having a deep understanding of the entire narrative. Addition
ally, there are no such words in the narrative that specifically indicate 
NWZ. 

4. Methodology 

This section describes the principles and procedures used in the 
method for identifying missed WZ crashes. The study uses a probabilistic 
approach in which word probabilities were combined using the noisy- 
OR method. 

4.1. The nature of noisy data 

The 2017 and 2018 work zone crash data were used to train a clas
sifier (described later) to categorize a narrative as either WZ or NWZ and 
the NWZ narratives of 2019 (Data was available till October 31, 2019) 
were used as testing data to recover missed WZ crashes. The narratives 
corresponding to reported WZ crashes (i.e., marked under CONSZONE 
flag) were used as examples of WZ narratives to train the classifier. 
Similarly, the narratives corresponding to reported NWZ crashes (i.e., 
not marked under CONSZONE flag) were used as examples of NWZ 
narratives. The method did not require the manual annotation of 
training examples, a task that usually requires the huge effort of training 
a classifier. 

However, the training dataset created does include a high level of 
noise. On one hand, many narratives of reported WZ crashes may not 
contain any relevant information about the WZ. For example, the officer 
may have already indicated a crash as WZ by using the CONSZONE flag, 
hence not feeling the need to mention it in the narrative. However, WZ 
crashes are known to be missed, and there are narratives corresponding 
to reported NWZ crashes that are actually WZ. The classifier may have 
difficulty learning from such noisy training data. 

4.2. Data cleaning and pre-processing 

Several text mining techniques for data cleaning and pre-processing 

were applied to prepare the data. The key terminologies from the text 
mining domain are introduced here:  

• Corpus is the collection of all of the narratives.  
• Tokenization is the process of breaking up the sentence into a token. 

A token can be words, numbers, unigram, or bigram. The terms 
unigram and bigram are used interchangeably as the token in this 
study.  

• Collection frequency (cf) is the number of times a token occurred in 
the corpus.  

• Term frequency (tf) is the number of times a token occurred in a 
narrative.  

• Document frequency (df) is the number of documents/narratives 
that contain a token. Only the tokens with high df values in WZ 
narratives will have a high impact on the model. 

In the training dataset, the narratives were first lower-cased to merge 
the occurrences of the same word in different cases. Then, all punctua
tions and special characters (e.g., ! " # $ % & ’ () * +, -. / : ; <=>? @ [\] 
^ _ ` {|} ~) were removed from the narratives. Next, the narratives were 
converted into tokens to build a vocabulary list from the training set. 
The narratives may include spelling errors and/or words in multiple 
forms, such as “zone” and “zones” or “construction” and “construct”, 
which are common issues when mining unstructured text data. While 
some text mining techniques can handle these issues, there is no guar
antee the problem will be solved completely. Furthermore, improper 
processing of these words may lead to new problems. Thus, the words in 
the vocabulary list were kept as-is. 

4.3. Computing unigram/bigram probabilities 

Unigrams, or single words (e.g., “flagman”, “barrel”), as well as 
bigrams, or consecutive words (e.g., “orange barrel”, “construction 
zone”), can be highly indicative of WZ. Hence, the method used in this 
study uses both unigrams and bigrams. The probability that a unigram 
or bigram in the corpus indicates WZ is computed using simple fre
quency counts (see Eq. 1). 

Probability Score (w) =
Positive Count(w) + 1

Positive Count (w) + Negative Count(w) + 2
(1)  

where w is a unigram or a bigram, a positive count indicates the number 
of occurrences of a unigram or bigram in the WZ narratives. A negative 
count indicates the number of occurrences of a unigram or bigram in the 
NWZ narratives. A simple version of Laplace smoothing adds one in the 
numerator and two in the denominator of the equation, which assumes 
each unigram or bigram occurred once in the WZ narrative and once in 
the NWZ narrative. Laplace smoothing ensures that among the unigrams 
and bigrams that have zero negative counts, those with higher positive 
counts receive higher probability scores. Without smoothing, the unig
rams and bigrams would receive an unrealistic probability score of 1, for 
instance, just because they occurred in a few WZ narratives and no NWZ 
narrative. 

Probability scores for the unigrams and bigrams in the training data 
were estimated. The unigrams and bigrams that have a less than 0.25 
probability score were discarded because they are unlikely to impact the 
classification decision. This truncation threshold was set to low due to 
imbalanced data (i.e., the number of NWZ narratives are much higher 
than the number of WZ narratives). The unigrams and bigrams that 
appeared fewer than four times in the training narratives also were 
discarded. The remaining are called positive unigrams and positive 
bigrams in this study. Consequently, there are two lists of positive to
kens: Positive Unigrams contain all of the positive unigrams, and Posi
tive Bigrams contain all of the positive bigrams. 
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4.4. Combining unigram/bigram probabilities 

A narrative’s probability of being WZ is computed by combining the 
probability scores of the unigrams and bigrams in the narrative. The 
noisy-OR method was applied to combine probabilities ((Zagorecki and 
Druzdzel, 2004), a method commonly used in Bayesian networks 
(Onísko et al., 2001; Vomlel, 2006). Noisy-OR is a probabilistic exten
sion of logical “or”. In logical “or”, if any one of the inputs is equal to 
true, the output is equal to true. The output is equal to false only when 
all inputs are equal to false. In noisy-OR, the inputs and outputs are 
probabilities instead of true/false values, hence the term “noisy”. 

Analogous to logical “or”, if any one of the input probabilities in 
noisy-OR is high (i.e. close to 1), then the combined probability is high. 
But unlike logical “or”, the combined probability in noisy-OR is even 
higher if more input probabilities are high. The combined probability is 
low (i.e. close to 0) only when all input probaibilities are low. The noisy- 
OR combined probability is mathematically computed as shown in Eq. 2. 
In the equation, the probability score of a narrative is computed by 
combining the probability scores of the unigrams and bigrams occurring 
in it. 

Probability Score (N) = 1 −
∏n

i,j=1
(1 − Pi)

j (2)  

where N is a given narrative, Pi indicates the probability of ith unigram or 
bigram as computed from the training data, and j equals the number of 
occurrences of that ith unigram or bigram in the crash narrative N. 

It should be clear from Eq. 2 that if neither a unigram nor a bigram in 
a narrative has a high probability score, the probability score of the 
narrative will be close to zero. On the other hand, a single unigram or 
bigram with a high probability score will result in a high probability 
score of the entire narrative. Furthermore, presence of more unigrams 
and bigrams with high probability scores will only make the combined 
probability score higher. Another advantage of using the noisy-OR 
method is that it is resistant to the type of noise in the training data 
that was mentioned earlier; this is because the unigrams and bigrams 
with high probability scores will not necessarily be the ones that occur in 
high percentages of WZ narratives (which we know are noisy), but they 
will be the ones that occur more often in WZ narratives than in NWZ 
narratives. 

4.5. Crash verification and model performance evaluation 

The main objective of this study is to find missed WZ crashes from the 
crash narratives. The performance of the proposed method on the test 
dataset was manually reviewed. Since the test data are unlabeled, it is 
not possible to manually check all possible WZ crashes from the huge 
test data (over 80,000 cases). Initially, it was anticipated that a 
threshold could be set up for the classification score to separate the cases 
into WZ and NWZ. However, the classification scores show that many 
cases have very small differences. Hence, the performance of the model 
was evaluated by sorting the results in descending order so that the most 
probable scenarios are at the top. The authors reviewed and manually 
classified (NWZ or WZ) the top 100 narratives with the highest proba
bility scores using only unigrams, as well as the top 450 narratives with 
the highest probability scores using both unigrams and bigrams. Each 
reviewer was assigned an equal number of samples to eliminate any 
reviewer bias. This study avoids using any external data (such as work 
zone inventory data) for evaluating the model performance. 

5. Results and analysis 

The results of unigram and unigram + bigram are compared and 
discussed in this section. The characteristics of missed crashes are 
analyzed from spatial and temporal perspectives, along with other fea
tures. The additional analysis is expected to provide insight on the 

circumstances in which crashes are not reported as WZ related so that 
recommendations can be made for improving future data collection. 

5.1. The analysis of positive unigram and positive bigram 

The 2017–2018 crash data were cleaned and preprocessed, showing 
10,875 unigram and 96,550 bigram words (tokens) in the corpus. 
Table 1 presents the top ten positive unigrams and bigrams and their 
corresponding probability scores. As shown in Table 1, the bigram 
approach extracted more WZ-related information than the unigram 
approach. However, despite high probability scores, some positive 
unigrams did not carry meaningful information such as “Kampo”, 
“Kucej”, or “Werych”. While “Kampo”, “Kucej”, and “Werych” may 
appear only in WZ cases, at a very low frequency, meaning including 
them in the Positive Unigram list may degrade the model’s performance. 
For example, if a narrative has many such unigrams, the noisy-OR may 
tend to classify it as a WZ crash even if it’s not. 

The document frequency (df) and collection frequency (cf) of the 
training set were calculated to examine how the positive unigrams and 
bigrams with high probability scores influence the proposed method. 
The classifier performance did not degrade much due to lower document 
frequency(df) of the less meaningful positive unigrams and bigrams. 
Thus, an important positive token should have both high df and cf values 
and with high probability score. 

Table 2 populates a list of the top 15 important positive unigrams and 
bigrams ranked by df, cf and probability score (pr) in a decreasing order. 
In the positive unigram list, the token “construction” is the most 
important because it has the highest df and cf values. The most impor
tant token in the positive bigram list is “construction zone”. Approxi
mately 35.15 % of the WZ crash narratives contain the token 
“construction”, whereas 16.16 % of the WZ crash narratives contain 
“construction zone”. Table 2 shows that the Positive Bigram list offers 
more specific WZ crash information and higher probability scores than 
the unigram list. 

The unigram method will classify a narrative as a WZ crash if it 
contains the token “construction” (pr = 0.89) from the positive unigram 
list only because the threshold value is greater than or equal to 0.89. The 
df of “construction” is much higher compared to other unigrams in the 
list, so the misclassification rate by the unigram method will be higher. 
Compared with the positive unigram “construction”, the positive bigram 
“construction zone” (pr = 0.90) is more contextual and has a higher df 
than the remaining bigrams in the list. A narrative with the presence of 
“construction zone” instead of “construction” is more likely to be 
correctly classified as a WZ crash. The manual review result shows that 
all of the NWZ narratives that contain “construction zone” are true WZ 
crashes. However, 22 NWZ narratives that contain “construction” are 
not WZ crashes. 

Positive tokens such as “fst”, “kampo” and “kicmol” in the Positive 
Unigram list do not carry any meaningful information. These unigrams 
have a small df with high probability scores, meaning they should be 
discarded to reduce the misclassification rate. The positive token lists 

Table 1 
Top Ten Positive Unigrams and Bigrams by Probability Score.  

Rank 
Positive Unigram Positive Bigram 

Positive Words Probability Positive Words Probability 

1 flagman 0.960 active construction 0.990 
2 taper 0.947 in construction 0.988 
3 barreled 0.937 temporary cement 0.983 
4 dividers 0.929 zone where 0.972 
5 roadworks 0.923 construction crew 0.971 
6 kampo 0.917 zone lane 0.964 
7 unfinished 0.917 interstate is 0.960 
8 flaggers 0.917 no workers 0.960 
9 kucej 0.909 flag person 0.957 
10 werych 0.900 workers present 0.956  

M.A. Sayed et al.                                                                                                                                                                                                                               



Accident Analysis and Prevention 159 (2021) 106211

5

also contain names of locations such as “zoo” in unigram and “the zoo1 ” 
in bigram. The presence of those tokens can cause the noisy-OR method 
to misclassify NWZ crashes as WZ crashes. 

5.2. Comparing unigram and unigram + bigram methods 

The preceding section explains that in using the noisy-OR method, 
the unigram method may not be effective as expected. Positive unigrams 
with high cf values may have low probability values because the same 
unigrams also appear in the NWZ crash narratives. The problem can be 
mitigated by adding some context to the noisy-OR approach, such as in 
the form of bigrams. The ordered positive bigram list provides more 
contextual information related to WZ. This section provides empirical 
evidence of using the noisy-OR method as a text classifier to identify 
missed WZ crashes from narratives. The section also explores the clas
sification outcomes of unigram and unigram + bigram when compared 
with gold label, or manual reviewing. 

The 100 narratives with the highest probability scores in each clas
sifier were manually reviewed. The top 100 narratives of the unigram 
noisy-OR classifier included 65 actual WZ crashes, while the top 100 
narratives of the unigram + bigram noisy-OR classifier included 78 
actual WZ crashes. The unigram + bigram noisy-OR narratives that were 
correctly classified contained more contextual positive bigrams such as 
“construction zone”, “under construction”, “construction worker” and 
“lane closed” with high df values in the WZ training set. 

A close review of 35 unigram noisy-OR cases that were misclassified 
shows that they contain WZ-related positive unigrams such as “con
struction”, “barrels”, “attenuator”, “barricades”, “orange” and some 
noisy words such as “carrao”, “kampo”, “melloch”. These noisy unig
rams have high df values in the WZ training set, indicating their popu
larity in the WZ crash narratives. On the contrary, the unigram + bigram 
noisy-OR misclassified 22 cases from its top 100 narratives. A close re
view of these 22 cases reveals that the unigram portion of unigram +
bigram noisy-OR contains few positive unigrams but with high proba
bility scores; the bigram portion contains a longer list of positive 
bigrams with moderate probability values. Thus, the comparison reaf
firms that unigram + bigram noisy-OR tackled the noisy tokens more 
successfully than unigram noisy-OR. 

5.3. Classification accuracy rate of unigram + bigram results 

Further analysis was performed to quantify the classification accu
racy rate against the case rank of the unigram + bigram method. Starting 
from the highest-ranked cases, the number of correctly-identified WZ 
crashes is counted over the 50-case intervals, as shown in Fig. 1. 

Based on the 450 cases reviewed, two observations can be made from 
Fig. 1: a) more than 50 % of cases correctly classified till the fifth interval 
(201–250), and b) the model performance degrades rapidly from 80 % in 
the first interval [0–50] to 12 % in the last interval [401–450]. The fitted 
quadratic equation has a R2 value of 0.9668, suggesting a strong and 
consistent trend for the descending accuracy rate. The findings are good 
news for an agency who wants to estimate the effort of a manual review 
for missed WZ crashes, as the manual effort seems manageable and 
quantifiable. 

The probabilistic distribution of narrative length was plotted for WZ 
and NWZ crashes, respectively, in Fig. 2. The distribution was inspired 
by a study that shows that narratives not designated by officers as speed- 
related crashes have a longer length on average than non-speed related 
crashes (Fitzpatrick et al., 2017). Fig. 2 shows that the narrative length 
of actual NWZ crashes is approximately normally distributed, while 
missed WZ crashes are slightly skewed toward the left. The two distri
butions are statistically different at a 5% level of significance (two 
sample t-test, p=<0.0001). 

Moreover, the average narrative length of reported WZ crashes is 
104, and Std. is 68 (sample size:1989), which is a statistically significant 
difference between NWZ (two sample t-test, p=<0.001) and missed WZ 
(two sample t-test, p=<0.001). Though it is expected that long narra
tives would have more positive tokens than short narratives, no corre
lations are observed between the length of narratives and the number of 
positive tokens for reported WZ and NWZ and missed WZ. In other 
words, there is not enough evidence to claim that long narratives tend to 
classify crashes more accurately than short narratives. 

5.4. Analysis of missed WZ crashes 

Further analysis was conducted on the crash time and location for a 
better understanding of the circumstances under which a WZ crash is 
missed. Fig. 3 illustrates the distribution of police reported WZ crashes 
and missed WZ confirmed in this study by time of day, day of week, and 
month of year. 

In 2017–2019, 70.96 % of all reported WZ crashes and in 2019, 
73.13 % of the missed WZ crashes identified in this study occurred 
during daylight hours from 8 a.m. to 6 p.m., as shown in Fig. 3(a). 
Among daytime WZ crashes, a high percentage of missed cases occurred 

Table 2 
Top 15 Positive Unigrams and Positive Bigrams By df, cf, and Probability Score*.  

Rank 
Positive Unigram Positive Bigram 

Token cf df Pr Token cf df Pr 

1 construction 2960 2088 0.89 construction zone 966 826 0.9 
2 zone 1181 972 0.45 the construction 763 625 0.82 
3 closed 743 588 0.44 a construction 484 437 0.77 
4 barrels 407 314 0.69 to construction 320 312 0.73 
5 closure 265 191 0.61 was closed 242 228 0.51 
6 orange 192 152 0.34 construction barrels 195 167 0.77 
7 barrel 228 147 0.56 lane closed 212 161 0.67 
8 temporary 170 126 0.37 construction unit 158 156 0.78 
9 zoo 219 123 0.56 under construction 151 149 0.79 
10 cones 166 122 0.45 construction area 158 136 0.82 
11 workers 120 110 0.52 road construction 145 135 0.68 
12 barriers 119 97 0.49 work zone 161 132 0.92 
13 barricades 107 78 0.42 the zoo 206 120 0.67 
14 attenuator 145 74 0.47 construction and 123 120 0.7 
15 worker 95 67 0.51 zoo interchange 181 114 0.67  

* cf = collection frequency in WZ narratives, df = document frequency in WZ narratives, pr = probability.  

1 Zoo interchange construction is the most complex and expensive highway 
project in Wisconsin’s history, which began in 2014 with an expected 
completion date of 2022. 
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in the midmorning (10am), early afternoon (1pm) and late afternoon 
when traffic is busiest, from 4 p.m. to 5 p.m. It is plausible that crashes 
are missed when traffic is high or when construction activities are 
intense. The day of week distribution suggests that the WZ crashes are 
probably missed throughout the week, especially on Monday, 
Wednesday and Saturday, as shown in Fig. 3(b). Fig. 3(c) also displays 
the monthly distribution of reported WZ crashes versus missed WZ 
crashes, showing that a high percentage of missed cases are observed in 
the summertime, especially in July and August when construction ac
tivities are extensive and intensive. 

Fig. 4 shows the distribution of missed WZ crashes compared to re
ported WZ crashes by highway class. The evidence shows that most 
missed WZ crashes occurred in urban areas, including urban city streets 
(43.11 %), urban state highways (16.89 %) and urban interstate high
ways (15.33 %). The rural interstate highway system has the best per
formance in terms of a low ratio of missed crashes to reported crashes. 
The next best performance is from state highways, where the ratio is 
close to 1. Urban city streets have the highest ratio of missed crashes to 
reported crashes, particularly urban city streets which have only 20 % of 
the total reported WZ crashes but make up 43 % of missed WZ crashes 
identified in this study. Cheng et al. stated that construction work zones 
are usually assumed to be long term works, but maintenance or utility 
works are usually short term and temporarily, which may not be known 
to driver in advance (Cheng et al., 2012). Since many crashes on urban 
streets involve utility work zones, it is plausible that police may not 
consider those as construction zone related. 

Comparisons were conducted for other structured data fields, 
including weather conditions, pavement conditions, light conditions, 
and injury severity. The results show similar distributions between all 

reported WZ crashes and missed WZ crashes, mainly due to the lack of 
variety since most WZ crashes, reported or missed, occur during clear or 
cloudy weather, on dry pavement, in the daytime, and involve less se
vere injuries. 

In summary, the unigram + bigram noisy-OR method is an effective 
and efficient method for classifying and recovering missed WZ crashes 
from narratives. According to Fig. 1, a review of the top 450 cases of the 
unigram + bigram noisy-OR identified 201 WZ crashes as missed, which 
is more than 8% of reported WZ crashes from 01/01/2019 to 10/31/ 
2019. Moreover, the decreasing trend of finding missed WZ crashes 
suggests the chance may be 12 % or lower after the first 450. Addi
tionally, 450 crashes is a tiny fraction of the pool of potentially missed 
WZ crashes (i.e., 125,509 NWZ crashes in 2019), which is very helpful to 
an agency that wants to prioritize and estimate the level of effort of a 
manual review. 

An analysis of missed cases suggests the 73.13 % of the missed WZ 
crashes identified in the study occurred from 8 a.m. to 6 p.m. with a high 
percentage in the afternoon from 4 p.m. to 5 p.m. A high percentage of 
WZ crashes that are misclassified are observed in July and August when 
the construction activities are extensive and intensive. 43 % of the 
missed WZ crashes identified in this study occurred on urban city streets. 

6. Conclusion and lessons learned 

In this study, a keyword-based text classifier was developed using the 
noisy-OR combined probability to identify misclassified WZ crashes 
from the crash narratives of police reports. Specifically, the unigram +
bigram noisy-OR classifier was created and proven to be an effective 
means to recover WZ crashes from those police officers did not flag as 

Fig. 1. Accuracy of (Unigram + Bigram) Noisy-OR.  

Fig. 2. Histogram of narrative length for a) NWZ and b) Missed WZ.  
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construction zone crashes. The narrative in a flagged WZ crash may not 
contain any relevant information linking it to a work zone, and narra
tives from unflagged WZ crashes may contain information related to a 
work zone. The noisy-OR method was used because of its ability to work 
effectively despite the high level of noise in the unstructured text or 
crash narratives. Moreover, noisy-OR does not require much training 
time, is computationally efficient and is easier to implement. 

The authors used 377,479 crash reports from January 1, 2017 
through October 31, 2019. The 2017 and 2018 WZ and NWZ crashes 
were treated as training data, and the 2019 NWZ crashes were used as 
the testing data. A manual review of the top 450 cases classified as WZ 
crashes in the testing data recovered 201 missed WZ crashes, which was 

0.24 % of the testing data. The review also indicated that beyond 450 
cases, the chance of having missed WZ crashes may be very low. A 
follow-up analysis revealed that 73.13 % of the missed crashes occurred 
from 8 a.m. to 6 p.m., with a high percentage happening from 4 p.m. to 5 
p.m. A large percentage of those crashes occurred in the summer (July 
and August) and 43 % occurred on urban city streets. 

The narratives of the cases that have high noisy-OR scores but are not 
WZ crashes were carefully reviewed and categorized into the five 
following groups:  

1) Cases with positive words for location or address such as “the Zoo”, 
“Zoo interchange”: This issue is caused primarily by major roadway 
construction projects that span over multiple years, multiple stages 
and phases and multiple areas.  

2) Cases with positive words for (temporal) traffic control devices such 
as “concreate barrier”, “median cement”, “attenuator” and “bar
riers”: Many of these devices, such as median concrete barriers, are 
permanently deployed to channelize traffic or to protect overpass 
and underpass structures such as an attenuator near a bridge or at a 
gore area.  

3) Cases with weak positive words for traffic situations such as 
“congestion” or “backup” which are caused by non-WZ events (i.e., 
regular congestion or secondary crashes). 

Fig. 3. WZ crash analysis by a) hour, b) day and c) month.  

Fig. 4. WZ crash analysis by highway class.  
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4) Cases with strong positive words such as “orange construction” or 
even “construction zone” whose situations are actually not related to 
a work zone location or work zone activities.  

5) Undecided cases, even after a manual review: The authors were 
conservative and categorized undecided crashes from this study as 
NWZ crashes. 

A location and/or time that a work zone crash occurred can certainly 
improve WZ classification in types 1 and 5. Such information, however, 
has to be linked to and retrieved from a different data source or system 
such as a lane closure system or a work zone management system. 
Application of advance text mining techniques may help improve clas
sification accuracy for cases in types 2 and 3. Unfortunately, no good 
solutions are available for cases in type 4, but such cases rarely occur. 
Nevertheless, the discussion underscores the importance of properly 
documenting the presence of a work zone or work zone activities in the 
crash narrative. 
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